Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.292
Filter
Add more filters

Publication year range
1.
Traffic ; 25(1): e12920, 2024 01.
Article in English | MEDLINE | ID: mdl-37886910

ABSTRACT

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.


Subject(s)
Hepatolenticular Degeneration , Animals , Humans , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Copper/toxicity , Copper/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Hepatocytes/metabolism
2.
Genes Dev ; 32(13-14): 944-952, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29945887

ABSTRACT

The levels of copper, which is an essential element in living organisms, are under tight homeostatic control. Inactivating mutations in ATP7B, a P-type Cu-ATPase that functions in copper excretion, promote aberrant accumulation of the metal, primarily the in liver and brain. This condition underlies Wilson's disease, a severe autosomal recessive disorder characterized by profound hepatic and neurological deficits. Current treatment regimens rely on the use of broad specificity metal chelators as "decoppering" agents; however, there are side effects that limit their effectiveness. Here, we present the characterization of DPM-1001 {methyl 4-[7-hydroxy-10,13-dimethyl-3-({4-[(pyridin-2-ylmethyl)amino]butyl}amino)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl] pentanoate} as a potent and highly selective chelator of copper that is orally bioavailable. Treatment of cell models, including fibroblasts derived from Wilson's disease patients, eliminated adverse effects associated with copper accumulation. Furthermore, treatment of the toxic milk mouse model of Wilson's disease with DPM-1001 lowered the levels of copper in the liver and brain, removing excess copper by excretion in the feces while ameliorating symptoms associated with the disease. These data suggest that it may be worthwhile to investigate DPM-1001 further as a new therapeutic agent for the treatment of Wilson's disease, with potential for application in other indications associated with elevated copper, including cancer and neurodegenerative diseases.


Subject(s)
Chelating Agents/pharmacology , Copper/metabolism , Hepatolenticular Degeneration/drug therapy , Animals , Brain/drug effects , Brain/pathology , Cell Line , Chelating Agents/therapeutic use , Copper/toxicity , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Hepatolenticular Degeneration/physiopathology , Liver/drug effects , Liver/pathology , Mice
3.
Hepatology ; 79(5): 1065-1074, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38088886

ABSTRACT

BACKGROUND AND AIMS: Trientine (TRI) and D-penicillamine (PEN) are used to treat copper overload in Wilson disease. Their main mode of action is thought to be through the facilitation of urinary copper excretion. In a recent study, TRI was noninferior to PEN despite lower 24-hour urinary copper excretion than PEN. We tested whether TRI and/or PEN also inhibit intestinal copper absorption. APPROACH AND RESULTS: Sixteen healthy volunteers were examined with positron emission tomography (PET)/CT 1 and 15 hours after an oral Copper-64 ( 64 Cu) dose. They then received 7 days of either PEN or TRI (trientine tetrahydrochloride), after which the 64 Cu PET/CT scans were repeated. Venous blood samples were also collected. Pretreatment to posttreatment changes of the hepatic 64 Cu uptake reflect the effect of drugs on intestinal absorption. 64 Cu activity was normalized to dose and body weight and expressed as the mean standard uptake value. TRI (n=8) reduced hepatic 64 Cu activity 1 hour after 64 Cu dose from 6.17 (4.73) to 1.47 (2.97) standard uptake value, p <0.02, and after 15 hours from 14.24 (3.09) to 6.19 (3.43), p <0.02, indicating strong inhibition of intestinal 64 Cu absorption. PEN (n=8) slightly reduced hepatic standard uptake value at 15 hours, from 16.30 (5.63) to 12.17 (1.44), p <0.04. CONCLUSIONS: In this mechanistic study, we show that TRI inhibits intestinal copper absorption, in addition to its cupriuretic effect. In contrast, PEN has modest effects on the intestinal copper absorption. This may explain why TRI and PEN are equally effective although urinary copper excretion is lower with TRI. The study questions whether the same therapeutic targets for 24-hour urinary excretion apply to both drugs.


Subject(s)
Hepatolenticular Degeneration , Penicillamine , Humans , Penicillamine/pharmacology , Penicillamine/therapeutic use , Trientine/pharmacology , Trientine/therapeutic use , Copper , Positron Emission Tomography Computed Tomography , Copper Radioisotopes/therapeutic use , Hepatolenticular Degeneration/drug therapy , Positron-Emission Tomography
4.
Hum Mol Genet ; 31(21): 3652-3671, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35388883

ABSTRACT

Wilson's disease (WD) is a copper metabolic disorder caused by a defective ATP7B function. Conventional therapies cause severe side effects and significant variation in efficacy, according to cohort studies. Thus, exploring new therapeutic approaches to prevent progression to liver failure is urgent. To study the physiology and pathology of WD, immortalized cell lines and rodent WD models have been used conventionally; however, a large gap remains among different species as well as in genetic backgrounds among individuals. We generated induced pluripotent stem cells (iPSCs) from four WD patients carrying compound heterozygous mutations in the ATP7B gene. ATP7B loss- and gain-of-functions were further manifested with ATP7B-deficient iPSCs and heterozygously corrected R778L WD patient-derived iPSCs using CRISPR-Cas9-based gene editing. Although the expression of ATP7B protein varied among WD-specific hepatocytes differentiated from these iPSCs, the expression and secretion of ceruloplasmin (Cp), a downstream copper carrier in plasma, were consistently decreased in WD patient-derived and ATP7B-deficient hepatocytes. A transcriptome analysis detected abnormalities in the retinoid signaling pathway and lipid metabolism in WD-specific hepatocytes. Drug screening using WD patient-derived hepatocytes identified retinoids as promising candidates for rescuing Cp secretion. All-trans retinoic acid also alleviates reactive oxygen species production induced by lipid accumulation in WD-specific hepatocytes treated with oleic acid. These patient-derived iPSC-based hepatic models function as effective platforms for the development of potential therapeutics for hepatic steatosis in WD and other fatty liver diseases.


Subject(s)
Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/genetics , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Copper/metabolism , Retinoids/metabolism , Retinoids/therapeutic use , Copper-Transporting ATPases/genetics , Hepatocytes/metabolism , Oxidative Stress , Mutation
5.
J Hepatol ; 80(4): 586-595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081365

ABSTRACT

BACKGROUND & AIMS: In Wilson disease (WD), copper accumulates in the liver and brain causing disease. Bis-choline tetrathiomolybdate (TTM) is a potent copper chelator that may be associated with a lower risk of inducing paradoxical neurological worsening than conventional therapy for neurologic WD. To better understand the mode of action of TTM, we investigated its effects on copper absorption and biliary excretion. METHODS: In a double-blind randomized setting, hepatic 64Cu activity was examined after orally administered 64Cu by PET/CT in 16 healthy volunteers before and after seven days of TTM treatment (15 mg/d) or placebo. Oral 64Cu was administered one hour after the final TTM dose. Changes in hepatic 64Cu activity reflected changes in intestinal 64Cu uptake. Additionally, in four patients with WD, the distribution of 64Cu in venous blood, liver, gallbladder, kidney, and brain was followed after i.v. 64Cu dosing for up to 68 hours before and after seven days of TTM (15 mg/day), using PET/MRI. Increased gallbladder 64Cu activity was taken as evidence of increased biliary 64Cu excretion. RESULTS: In healthy volunteers, TTM reduced intestinal 64Cu uptake by 82% 15 hours after the oral 64Cu dose. In patients with WD, gallbladder 64Cu activity was negligible before and after TTM, while TTM effectively retained 64Cu in the blood, significantly reduced hepatic 64Cu activity at all time-points and significantly reduced cerebral 64Cu activity two hours after the intravenous 64Cu dose. CONCLUSIONS: While we did not show an increase in biliary excretion of 64Cu following TTM administration, we demonstrated that TTM effectively inhibited most intestinal 64Cu uptake and retained 64Cu in the blood stream, limiting the exposure of organs like the liver and brain to 64Cu. IMPACT AND IMPLICATIONS: Bis-choline tetrathiomolybdate (TTM) is an investigational copper chelator being developed for the treatment of Wilson disease. In animal models of Wilson disease, TTM has been shown to facilitate biliary copper excretion. In the present human study, TTM surprisingly did not facilitate biliary copper excretion but instead reduced intestinal copper uptake to a clinically significant degree. Our study builds on our understanding of human copper metabolism and the mechanism of action of TTM.


Subject(s)
Hepatolenticular Degeneration , Molybdenum , Animals , Humans , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Copper/metabolism , Positron Emission Tomography Computed Tomography , Healthy Volunteers , Chelating Agents/pharmacology , Choline
6.
Gastroenterology ; 165(1): 187-200.e7, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36966941

ABSTRACT

BACKGROUND & AIMS: Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS: Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS: We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS: ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.


Subject(s)
Hepatolenticular Degeneration , Rats , Animals , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Copper , Hepatobiliary Elimination , Liver/metabolism , Chelating Agents/pharmacology , Chelating Agents/therapeutic use
7.
BMC Neurol ; 24(1): 44, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273263

ABSTRACT

BACKGROUND: Wilson's disease (WD) is an inherited disorder of copper metabolism. Agenesis of the corpus callosum is the complete or partial absence of the major united fiber bundles connecting the cerebral hemispheres. Intracranial lipoma is an adipose tissue tumor resulting from an abnormal embryonic development of the central nervous system. The simultaneous occurrence of these three disorders is rare and has not been reported. This report focuses on the pathogenesis and association between the three disorders and highlights the importance of recognizing and effectively managing their coexistence. CASE PRESENTATION: The purpose of this study was to present a patient with coexisting WD, intracranial lipoma, and corpus callosum dysplasia. We reviewed a female patient hospitalized in 2023 with clinical manifestations of elevated aminotransferases and decreased ceruloplasmin, as well as genetic testing for an initial diagnosis of Wilson's disease. Subsequently, a cranial MRI showed corpus callosum dysplasia with short T1 signal changes in the cerebral falx, leading to a final diagnosis of Wilson's disease combined with intracranial lipoma and corpus callosum dysplasia. The patient's WD is currently stable after treatment with sodium dimercaptosulfonamide (DMPS) and penicillamine, and the patient's abnormal copper metabolism may promote the growth of intracranial lipoma. CONCLUSION: The pathogenesis of WD combined with intracranial lipoma and corpus callosum dysplasia is complex and clinically rare. The growth of intracranial lipomas may be associated with abnormal copper metabolism in WD. Abnormal copper metabolism affects lipid metabolism and triggers inflammatory responses. Therefore, early diagnosis and treatment are beneficial for improvement. Each new case of this rare co-morbidity is important as it allows for a better assessment and understanding of these cases' more characteristic clinical manifestations, which can help estimate the course of the disease and possible therapeutic options.


Subject(s)
Brain Neoplasms , Hepatolenticular Degeneration , Lipoma , Pregnancy , Humans , Female , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnostic imaging , Hepatolenticular Degeneration/drug therapy , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Copper/metabolism , Penicillamine/therapeutic use , Lipoma/complications , Lipoma/diagnostic imaging , Lipoma/pathology , Brain Neoplasms/complications , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology
8.
J Pediatr Gastroenterol Nutr ; 78(5): 1017-1026, 2024 May.
Article in English | MEDLINE | ID: mdl-38695602

ABSTRACT

OBJECTIVES: Long-term D-penicillamine (D-pen) therapy in Wilson disease (WD) has numerous adverse effects which advocates its withdrawal, but with an inherent risk of relapse. This prospective observational study was conducted with the objective of evaluating incidence of relapse following withdrawal of D-pen from combination (D-pen + zinc) therapy in maintenance phase of previously symptomatic hepatic WD. METHODS: Hepatic WD patients <18 years of age and on combination therapy for >2 years with 6 months of biochemical remission were included. Biochemical remission was defined as achievement of (i) aspartate aminotransferase (AST) and alanine aminotransferase (ALT) ≤1.5 times upper limit of normal (ULN), (ii) serum albumin >3.5 g/dL, international normalized ratio (INR) <1.5 and (iii) 24-h urinary copper excretion (UCE) <500 mcg/day, nonceruloplasmin-bound-copper (NCC) <15 mcg/dL. After D-pen withdrawal, monthly liver function test (LFT) and INR and 3 monthly UCE and NCC were done till 1 year or relapse (elevation of AST/ALT/both >2 times ULN or total bilirubin >2 mg/dL), whichever occurred earlier. RESULTS: Forty-five patients enrolled with median combination therapy duration of 36 months. Sixty percent of them had their index presentation as decompensated cirrhosis. Fourteen patients (31.8%) relapsed (cumulative incidence: 4 at 3 months, 11 at 6 months, and 14 at 12 months after D-pen discontinuation). All relapsers had index presentation as decompensated cirrhosis. On Cox-regression, ALT at D-pen withdrawal was an independent predictor of relapse (hazard ratio [HR]: 1.077, 95% confidence interval [CI]: 1.014-1.145, p = 0.017) with area under the receiver operating characteristic (AUROC) of 0.860. ALT ≥40 U/L predicted risk of relapse with 85.7% sensitivity, 70.9% specificity. CONCLUSION: Incidence of relapse after withdrawal of D-pen from combination therapy is 31.8% in hepatic WD. ALT ≥40 U/L, at the time of D-pen stoppage, predicts future relapse.


Subject(s)
Chelating Agents , Drug Therapy, Combination , Hepatolenticular Degeneration , Penicillamine , Recurrence , Humans , Hepatolenticular Degeneration/drug therapy , Penicillamine/therapeutic use , Penicillamine/administration & dosage , Female , Male , Prospective Studies , Adolescent , Child , Chelating Agents/therapeutic use , Chelating Agents/administration & dosage , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Zinc/administration & dosage , Zinc/therapeutic use , Liver Function Tests/methods , Copper/blood , Withholding Treatment
9.
Neurol Sci ; 45(3): 987-996, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37851293

ABSTRACT

The objective is to investigate the presentation, complications, management, and outcomes of copper deficiency-induced neurological pathologies due to Wilson disease (WD) overtreatment. We examined the case of a WD patient who developed a low thoracic dorsal myelopathy due to chronic hypocupremia from excessive zinc therapy. A comprehensive literature review was conducted to identify similar cases. Ten additional cases of neurological pathology resulting from copper deficiency in the context of WD over-treatment were identified, all occurring during therapy with zinc salts. Myelopathy and peripheral neuropathy were the most common complications, while two additional groups reported leukoencephalopathy. Early cytopenia was often associated with copper deficiency-related neurological pathology appearing early in the context of copper deficiency. WD patients undergoing treatment, especially with zinc salts, should be closely monitored to prevent over-treatment and the consequent copper deficiency. Regular complete blood counts could provide early detection of copper deficiency, avoiding irreversible neurological damage. Swift recognition of new neurological signs not consistent with WD and timely discontinuation of the decoppering therapy are critical for improving outcomes. The optimal management, including the potential benefit of copper supplementation in patients with WD and subsequent therapy adjustments, remains unclear and necessitates further investigation. Despite the general poor functional neurological outcomes, there were some exceptions that warrant further exploration.


Subject(s)
Hepatolenticular Degeneration , Spinal Cord Diseases , Humans , Copper , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/diagnosis , Follow-Up Studies , Salts/therapeutic use , Zinc/therapeutic use , Spinal Cord Diseases/diagnostic imaging , Spinal Cord Diseases/etiology
10.
BMC Pediatr ; 24(1): 253, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622515

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) and Wilson's disease (WD) are both systemic diseases that can affect multiple organs in the body. The coexistence of SLE and WD is rarely encountered in clinical practice, making it challenging to diagnose. CASE REPORT: We present the case of a 9-year-old girl who initially presented with proteinuria, haematuria, pancytopenia, hypocomplementemia, and positivity for multiple autoantibodies. She was diagnosed with SLE, and her blood biochemistry showed elevated liver enzymes at the time of diagnosis. Despite effective control of her symptoms, her liver enzymes remained elevated during regular follow-up. Laboratory tests revealed decreased serum copper and ceruloplasmin levels, along with elevated urinary copper. Liver biopsy revealed chronic active hepatitis, moderate inflammation, moderate-severe fibrosis, and a trend towards local cirrhosis. Genetic sequencing revealed compound heterozygous mutations in the ATP7B gene, confirming the diagnosis of SLE with WD. The girl received treatment with a high-zinc/low-copper diet, but her liver function did not improve. Upon recommendation following multidisciplinary consultation, she underwent liver transplantation. Unfortunately, she passed away on the fourth day after the surgery. CONCLUSIONS: SLE and WD are diseases that involve multiple systems and organs in the body, and SLE complicated with WD is rarely encountered in the clinic; therefore, it is easy to misdiagnose. Because penicillamine can induce lupus, it is not recommended. Liver transplantation is indicated for patients with liver disease who do not respond to medical treatment with WD. However, further research is needed to determine the optimal timing of liver transplantation for patients with SLE complicated with WD.


Subject(s)
Hepatolenticular Degeneration , Lupus Erythematosus, Systemic , Child , Female , Humans , Ceruloplasmin/metabolism , Ceruloplasmin/therapeutic use , Copper/urine , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/drug therapy , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Penicillamine/therapeutic use
11.
Metab Brain Dis ; 39(1): 89-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37999884

ABSTRACT

Wilson disease (WD) is a rare hereditary copper metabolism disorder, wherein cognitive impairment is a common clinical symptom. Chrysophanol (CHR) is an active compound with neuroprotective effects. The study aims to investigate the neuroprotective effect of CHR in WD and attempted to understand the potential mechanisms. Network pharmacology analysis was applied to predict the core target genes of CHR against cognitive impairment in WD. The rats fed with copper-laden diet for 12 weeks, and the effect of CHR on the copper content in liver and 24-h urine, the learning and memory ability, the morphological changes and the apoptosis level of neurons in hippocampal CA1 region, the expression level of Bax, Bcl-2, Cleaved Caspase-3, p-PI3K, PI3K, p-AKT, and AKT proteins were detected. Network pharmacology analysis showed that cell apoptosis and PI3K-AKT signaling pathway might be the main participants in CHR against cognitive impairment in WD. The experiments showed that CHR could reduce the copper content in liver, increase the copper content in 24-h urine, improve the ability of the learning and memory, alleviate the damage and apoptosis level of hippocampal neurons, down-regulate the expression of Bax, Cleaved Caspase-3, and up-regulate the expressions of Bcl-2, p-PI3K/PI3K, p-AKT/AKT. These results suggested that CHR could alleviate cognitive impairment in WD by inhibiting cell apoptosis and triggering the PI3K-AKT signaling pathway.


Subject(s)
Anthraquinones , Cognitive Dysfunction , Hepatolenticular Degeneration , Humans , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , Hepatolenticular Degeneration/drug therapy , Copper , bcl-2-Associated X Protein , Network Pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Apoptosis
12.
J Hepatol ; 79(2): 321-328, 2023 08.
Article in English | MEDLINE | ID: mdl-37116715

ABSTRACT

BACKGROUND & AIMS: Prevention of neurological worsening (NW) under therapy is an unmet need in the management of Wilson disease (WD). In this study, we aimed to characterize the occurrence, associated outcomes and potential reversibility of NW in WD. METHODS: From a total cohort of 457 patients with WD, 128 patients with WD and neurological features at any time point (all Caucasian, 63 females, median age at diagnosis 22 years) were identified by chart review at University Hospital Heidelberg and grouped according to initial presentation. The timing and occurrence of NW was assessed following a structured clinical examination during clinical visits. RESULTS: Early NW (within the first 3 months of therapy) was observed in 30 out of 115 (26.1%) patients with neurological or mixed presentation and never in patients with a purely hepatic or asymptomatic presentation (0%). Late NW (after >12 months) was seen in a further 23 (20%) with neurological or mixed presentation and in 13 out of 294 (4.4%) patients with a hepatic or asymptomatic presentation. The median time from start of treatment to late NW was 20 months. Only three patients experienced NW between 3 and 12 months. NW was observed with D-penicillamine, trientine and zinc therapy and was reversible in 15/30 (50%) with early NW and in 29/36 (81%) with late NW. CONCLUSIONS: In this study, we identified two peaks in NW: an early (≤3 months) treatment-associated peak and a late (>12 months of treatment) adherence-associated peak. Early paradoxical NW was attributed to treatment initiation and pre-existing neurological damage, and was not observed in those with a hepatic or asymptomatic presentation. Late NW is likely to be associated with non-adherence. IMPACT AND IMPLICATIONS: In patients with Wilson disease, defined as an excess accumulation of copper which can damage the liver, brain and other vital organs, neurological worsening can occur despite chelation therapy. The study identifies different patterns of 'early' (<3 months) vs. 'late' (>12 months) neurological worsening in relation to initiation of chelation therapy and establishes possible causes and the potential for reversibility. These data should be useful for counseling patients and for guiding the optimal management of chelation therapy.


Subject(s)
Hepatolenticular Degeneration , Female , Humans , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/drug therapy , Penicillamine/therapeutic use , Penicillamine/adverse effects , Trientine , Zinc/therapeutic use , Copper
13.
Clin Gastroenterol Hepatol ; 21(5): 1323-1329.e4, 2023 05.
Article in English | MEDLINE | ID: mdl-36096368

ABSTRACT

BACKGROUND AND AIMS: Although a good genotype-phenotype correlation has not been established in Wilson disease (WD), patients with loss-of-function (LOF) ATP7B variants demonstrate different clinical and biochemical characteristics. We aim to describe long-term treatment outcomes in the chronic liver disease (CLD) phenotype and evaluate an association with LOF variants. METHODS: This was a single-center retrospective review of WD patients with at least 1 variant in ATP7B. Demographic, biochemical, genetic, and clinical parameters were obtained. The composite clinical endpoint of liver transplantation or death was used for probands with CLD phenotype on chelators. RESULTS: Of 117 patients with hepatic WD: 71 had CLD, 27 had fulminant hepatic failure requiring urgent liver transplantation, and 19 were diagnosed through family screening. Median age at diagnosis was 13.1 (interquartile range, 9.7-17.6) years. In total, 91 variants in ATP7B were identified in the study population. At least 1 LOF variant was present in 60 (51.3%) patients. During median follow-up of 10.7 (interquartile range, 6.7-18.9) years, 10 (14.1%) of the probands with CLD reached the composite endpoint. There was a worse transplant-free survival for patients prescribed chelation therapy in patients with at least 1 LOF variant (P = .03). CONCLUSIONS: Patients with WD and CLD phenotype on chelators, who have at least 1 LOF variant in ATP7B, have a worse prognosis during long-term follow up. This subgroup of patients requires close monitoring for signs of progressive liver disease. Sequencing of ATP7B may be used in the diagnosis of WD, and in addition, it may provide useful prognostic information for patients with hepatic WD.


Subject(s)
Hepatolenticular Degeneration , Humans , Chelating Agents , Genotype , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/drug therapy , Mutation , Phenotype , Treatment Outcome
14.
J Inherit Metab Dis ; 46(5): 982-991, 2023 09.
Article in English | MEDLINE | ID: mdl-37254446

ABSTRACT

Wilson disease (WD) is a complex disease in which diagnosis and long-term metabolic copper control remains challenging. The absence of accurate biomarkers requires the combination of different parameters to ensure copper homeostasis. Exchangeable copper and its ratio (REC) have been suggested to be useful biomarkers in this setting. We aimed at introducing these measurements and evaluate their performance and accuracy in our real-world cohort of WD patients. Exchangeable copper and REC were measured in 48 WD patients and 56 control individuals by inductively coupled plasma-mass-spectrometry. Demographic and clinical characteristics were collected. REC was shown to be significantly higher among WD patients compared to controls and useful for WD identification by using the previously established cutoffs: 71.4% of WD patients with a recent diagnosis had REC ≥18.5% and 95.1% of long-term treated WD had REC ≥14%; only four patients of the cohort presented discordant levels. Moreover, REC values were below 15% in all the control individuals. Exchangeable copper was significantly higher in WD patients compared to controls and tended to be reduced among WD patients who were compliant to medication. This real-life study confirmed that exchangeable copper and REC are useful serum biomarkers that can be used as complementary tests to ensure WD diagnosis (REC) and copper homeostasis whithin time (exchangeable copper). The desirable target levels for this last objective still needs to be validated in prospective cohorts.


Subject(s)
Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/drug therapy , Copper/metabolism , Prospective Studies , Biomarkers
15.
BMC Neurol ; 23(1): 89, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36855079

ABSTRACT

OBJECTIVE: To analyze and explore the risk factors for neurological symptoms in patients with purely hepatic Wilson's disease (WD) at diagnosis. METHODS: This retrospective study was conducted at the First Affiliated Hospital of the Guangdong Pharmaceutical University on 68 patients with purely hepatic WD aged 20.6 ± 7.2 years. The physical examinations, laboratory tests, color Doppler ultrasound of the liver and spleen, and magnetic resonance imaging (MRI) of the brain were performed. RESULTS: The elevated alanine transaminase (ALT) and aspartate transaminase (AST) levels and 24-h urinary copper level were higher in the purely hepatic WD who developed neurological symptoms (NH-WD) group than those in the purely hepatic WD (H-WD) group. Adherence to low-copper diet, and daily oral doses of penicillamine (PCA) and zinc gluconate (ZG) were lower in the NH-WD group than those in the H-WD group. Logistic regression analysis showed that insufficient doses of PCA and ZG were associated with the development of neurological symptoms in patients with purely hepatic WD at diagnosis. CONCLUSION: The development of neurological symptoms in patients with purely hepatic WD was closely associated with insufficient doses of PCA and ZG, and the inferior efficacy of copper-chelating agents. During the course of anti-copper treatment, the patient's medical status and the efficacy of copper excretion should be closely monitored.


Subject(s)
Hepatolenticular Degeneration , Humans , Brain , Copper , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/drug therapy , Penicillamine/therapeutic use , Retrospective Studies , Risk Factors , Zinc/therapeutic use
16.
J Gastroenterol Hepatol ; 38(2): 219-224, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331262

ABSTRACT

BACKGROUND AND AIM: This retrospective, multicenter study aims to assess the efficacy and safety in Wilson disease (WD) patients treated with trientine tetrahydrochloride (TETA 4HCl) after switch from trientine dihydrochloride (TETA 2HCl). METHODS: In total, 68 WD patients with stable copper metabolism were identified to receive TETA 4HCl (Cuprior™) after previous treatment with TETA 2HCl. We analyzed biochemical markers such as urinary copper, serum copper, non-coeruloplasmin bound copper (NCC), and transaminases as well as clinical scores (APRI; FIB-4 score) at baseline with a follow-up (FU) of 12 months. Safety of TETA 4HCl treatment was based on reported adverse events (AEs). RESULTS: The study cohort reflects a common WD cohort with a mean age of 20.3 years at diagnosis and 38.3 years at baseline. There are no significant differences concerning serum copper, NCC, transaminases, APRI, and FIB-4 score in the 3-month FU. Six-month FU revealed a decreased AST (P = 0.008), APRI (P = 0.042), and FIB-4 score (P = 0.039). GGT varied only borderline significantly in the 3-month, but not in the 6-month FU. Comparison of urinary copper within the subsets did not reveal a difference to baseline in all FUs, suggesting stable control of copper metabolism. Few AEs during TETA 4HCl treatment were reported, most commonly gastrointestinal discomfort. Only three treatments with TETA 4HCl were discontinued. CONCLUSION: Copper parameters and liver function were stable after treatment switch to TETA 4HCl. Treatment with TETA 4HCl was generally well tolerated. This study indicates that the switch from TETA 2HCl to TETA 4HCl is safe and viable.


Subject(s)
Hepatolenticular Degeneration , Trientine , Humans , Young Adult , Adult , Trientine/adverse effects , Hepatolenticular Degeneration/drug therapy , Copper , Retrospective Studies , Chelating Agents/adverse effects , Transaminases
17.
Neurol Sci ; 44(10): 3443-3455, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37311952

ABSTRACT

INTRODUCTION: Neurological deterioration, soon after anti-copper treatment initiation, is problematic in the management of Wilson's disease (WD) and yet reports in the literature are limited. The aim of our study was to systematically assess the data according to early neurological deteriorations in WD, its outcome and risk factors. METHODS: Using PRISMA guidelines, a systematic review of available data on early neurological deteriorations was performed by searching the PubMed database and reference lists. Random effects meta-analytic models summarized cases of neurological deterioration by disease phenotype. RESULTS: Across the 32 included articles, 217 cases of early neurological deterioration occurred in 1512 WD patients (frequency 14.3%), most commonly in patients with neurological WD (21.8%; 167/763), rarely in hepatic disease (1.3%; 5/377), and with no cases among asymptomatic individuals. Most neurological deterioration occurred in patients treated with d-penicillamine (70.5%; 153/217), trientine (14.2%; 31/217) or zinc salts (6.9%; 15/217); the data did not allow to determine if that reflects how often treatments were chosen as first line therapy or if the risk of deterioration differed with therapy. Symptoms completely resolved in 24.2% of patients (31/128), resolved partially in 27.3% (35/128), did not improve in 39.8% (51/128), with 11 patients lost to follow-up. CONCLUSIONS: Given its occurrence in up to 21.8% of patients with neurological WD in this meta-analysis of small studies, there is a need for further investigations to distinguish the natural time course of WD from treatment-related early deterioration and to develop a standard definition for treatment-induced effects.


Subject(s)
Hepatolenticular Degeneration , Nervous System Diseases , Humans , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/diagnosis , Penicillamine/therapeutic use , Trientine/therapeutic use , Copper , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Nervous System Diseases/diagnosis
18.
BMC Nephrol ; 24(1): 147, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237412

ABSTRACT

BACKGROUND: Dimercaptosuccinic acid (DMSA) therapy is a kind of chelation therapy for patients with Wilson 's disease (WD). While there have been reports of side effects associated with DMSA, the development of membranous nephropathy as a result of this therapy is uncommon. CASE PRESENTATION: We present a case of a 19-year-old male patient with Wilson's disease who experienced proteinuria while receiving long-term DMSA treatment. Further evaluation revealed abnormally low levels of serum ceruloplasmin and serum albumin, as well as a 24-hour urinary protein excretion of 4599.98 mg/24 h. A renal biopsy confirmed the presence of membranous nephropathy. After ruling out other potential causes, we determined that the patient's membranous nephropathy was likely caused by DMSA. Following treatment with glucocorticoids, there was a significant reduction in proteinuria. CONCLUSION: This case highlights the possibility of DMSA-induced membranous nephropathy and the importance of considering this diagnosis in patients receiving DMSA treatment. Given the widespread use of DMSA in the treatment of Wilson's disease, further research is needed to fully understand the potential role of this drug in the development of membranous nephropathy.


Subject(s)
Glomerulonephritis, Membranous , Hepatolenticular Degeneration , Male , Humans , Young Adult , Adult , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/diagnosis , Succimer/therapeutic use , Glomerulonephritis, Membranous/chemically induced , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/diagnosis , Copper/metabolism , Copper/therapeutic use , Proteinuria/chemically induced , Proteinuria/complications
19.
Mediators Inflamm ; 2023: 3236911, 2023.
Article in English | MEDLINE | ID: mdl-37362448

ABSTRACT

Background: Gandoufumu decoction (GDFMD) is a traditional Chinese medicine that has been widely used to treat Wilson's disease (WD) liver damage patients. However, its specific molecular mechanism currently remains unclear. Autophagy as a key contributor to WD liver damage has been intensely researched in the recent years. Therefore, the aim of this present study is to explore the effect of GDFMD on autophagy in WD liver damage, and the final purpose is to provide scientific evidence for GDFMD treatment in WD liver damage. Methods: The molecular mechanisms and autophagy-related pathways of GDFMD in the treatment of WD liver damage were predicted using network pharmacology. Copper assay kit was used to determine copper content in serum. Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify serum levels of liver enzymes and oxidative stress-related indicators. Hematoxylin-eosin (HE), Masson, and Sirius red staining were used for the characterization of liver pathological changes. Transmission electron microscopy, immunofluorescence, and Western blot analyses were used to evaluate autophagy activity. The impact of the GDFMD on typical autophagy-related pathway (PI3K/Akt/mTOR pathway) molecules was also assessed via Western blot analysis. Results: GDFMD effectively attenuated serum liver enzymes, oxidative stress, autophagy, and degree of hepatic histopathological impairment and reduced serum copper content. Through network pharmacological approaches, PI3K/Akt/mTOR pathway was identified as the typical autophagy-related pathway of GDFMD in the treatment of WD liver damage. Treatment with GDFMD activated the PI3K/Akt/mTOR pathway, an effect that was able to be counteracted by LY294002, a PI3K antagonist or Rapa (rapamycin), an autophagy inducer. Conclusions: GDFMD imparted therapeutic effects on WD through autophagy suppression by acting through the PI3K/Akt/mTOR pathway.


Subject(s)
Hepatolenticular Degeneration , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hepatolenticular Degeneration/drug therapy , Copper/pharmacology , Network Pharmacology , TOR Serine-Threonine Kinases/metabolism , Autophagy
20.
Proc Natl Acad Sci U S A ; 117(51): 32453-32463, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288711

ABSTRACT

Pathogenic mutations in the copper transporter ATP7B have been hypothesized to affect its protein interaction landscape contributing to loss of function and, thereby, to hepatic copper toxicosis in Wilson disease. Although targeting mutant interactomes was proposed as a therapeutic strategy, druggable interactors for rescue of ATP7B mutants remain elusive. Using proteomics, we found that the frequent H1069Q substitution promotes ATP7B interaction with HSP70, thus accelerating endoplasmic reticulum (ER) degradation of the mutant protein and consequent copper accumulation in hepatic cells. This prompted us to use an HSP70 inhibitor as bait in a bioinformatics search for structurally similar Food and Drug Administration-approved drugs. Among the hits, domperidone emerged as an effective corrector that recovered trafficking and function of ATP7B-H1069Q by impairing its exposure to the HSP70 proteostatic network. Our findings suggest that HSP70-mediated degradation can be safely targeted with domperidone to rescue ER-retained ATP7B mutants and, hence, to counter the onset of Wilson disease.


Subject(s)
Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Domperidone/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Hepatolenticular Degeneration/genetics , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cells, Cultured , Copper/metabolism , Domperidone/chemistry , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Hep G2 Cells , Hepatocytes/metabolism , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Hepatolenticular Degeneration/pathology , Humans , Mutation, Missense , Nipecotic Acids/chemistry , Nipecotic Acids/pharmacology , Protein Transport/drug effects , Protein Transport/genetics , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL