Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.324
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(3): 326-336, 2019 03.
Article in English | MEDLINE | ID: mdl-30778252

ABSTRACT

T cell dysfunction is a hallmark of many cancers, but the basis for T cell dysfunction and the mechanisms by which antibody blockade of the inhibitory receptor PD-1 (anti-PD-1) reinvigorates T cells are not fully understood. Here we show that such therapy acts on a specific subpopulation of exhausted CD8+ tumor-infiltrating lymphocytes (TILs). Dysfunctional CD8+ TILs possess canonical epigenetic and transcriptional features of exhaustion that mirror those seen in chronic viral infection. Exhausted CD8+ TILs include a subpopulation of 'progenitor exhausted' cells that retain polyfunctionality, persist long term and differentiate into 'terminally exhausted' TILs. Consequently, progenitor exhausted CD8+ TILs are better able to control tumor growth than are terminally exhausted T cells. Progenitor exhausted TILs can respond to anti-PD-1 therapy, but terminally exhausted TILs cannot. Patients with melanoma who have a higher percentage of progenitor exhausted cells experience a longer duration of response to checkpoint-blockade therapy. Thus, approaches to expand the population of progenitor exhausted CD8+ T cells might be an important component of improving the response to checkpoint blockade.


Subject(s)
Antibodies, Blocking/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma, Experimental/prevention & control , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Blocking/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Line, Tumor , Female , Humans , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Lymphocyte Subsets/virology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/virology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/prevention & control , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/drug effects , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Melanoma, Experimental/immunology , Melanoma, Experimental/virology , Mice, Congenic , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism
2.
Cell ; 158(6): 1309-1323, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25215489

ABSTRACT

The balance between oxidative and nonoxidative glucose metabolism is essential for a number of pathophysiological processes. By deleting enzymes that affect aerobic glycolysis with different potencies, we examine how modulating glucose metabolism specifically affects hematopoietic and leukemic cell populations. We find that a deficiency in the M2 pyruvate kinase isoform (PKM2) reduces the levels of metabolic intermediates important for biosynthesis and impairs progenitor function without perturbing hematopoietic stem cells (HSCs), whereas lactate dehydrogenase A (LDHA) deletion significantly inhibits the function of both HSCs and progenitors during hematopoiesis. In contrast, leukemia initiation by transforming alleles putatively affecting either HSCs or progenitors is inhibited in the absence of either PKM2 or LDHA, indicating that the cell-state-specific responses to metabolic manipulation in hematopoiesis do not apply to the setting of leukemia. This finding suggests that fine-tuning the level of glycolysis may be explored therapeutically for treating leukemia while preserving HSC function.


Subject(s)
Glycolysis , Hematopoiesis , Leukemia/metabolism , Animals , Gene Deletion , Hematopoietic Stem Cells/metabolism , Humans , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Mice , Mice, Congenic , Mice, Inbred C57BL , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
3.
Immunity ; 51(1): 155-168.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31248780

ABSTRACT

Genetic variation influences how the genome is interpreted in individuals and in mouse strains used to model immune responses. We developed approaches to utilize next-generation sequencing datasets to identify sequence variation in genes and enhancer elements in congenic and backcross mouse models. We defined genetic variation in the widely used B6-CD45.2 and B6.SJL-CD45.1 congenic model, identifying substantial differences in SJL genetic content retained in B6.SJL-CD45.1 strains on the basis of the vendor source of the mice. Genes encoding PD-1, CD62L, Bcl-2, cathepsin E, and Cxcr4 were within SJL genetic content in at least one vendor source of B6.SJL-CD45.1 mice. SJL genetic content affected enhancer elements, gene regulation, protein expression, and amino acid content in CD4+ T helper 1 cells, and mice infected with influenza showed reduced expression of Cxcr4 on B6.SJL-CD45.1 T follicular helper cells. These findings provide information on experimental variables and aid in creating approaches that account for genetic variables.


Subject(s)
Cathepsin E/metabolism , Enhancer Elements, Genetic/genetics , Immunity/genetics , Receptors, CXCR4/metabolism , Th1 Cells/immunology , Animals , Cathepsin E/genetics , Commerce , Gene Expression Regulation , Genetic Background , Genetic Variation , Germinal Center/immunology , High-Throughput Nucleotide Sequencing , Inbreeding , Leukocyte Common Antigens/genetics , Mice , Mice, Congenic , Mice, Inbred C57BL , Models, Animal , Receptors, CXCR4/genetics
4.
Nat Immunol ; 16(12): 1253-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26390156

ABSTRACT

The key molecular mechanisms that control signaling via T cell antigen receptors (TCRs) remain to be fully elucidated. Here we found that Nrdp1, a ring finger-type E3 ligase, mediated Lys33 (K33)-linked polyubiquitination of the signaling kinase Zap70 and promoted the dephosphorylation of Zap70 by the acidic phosphatase-like proteins Sts1 and Sts2 and thereby terminated early TCR signaling in CD8(+) T cells. Nrdp1 deficiency significantly promoted the activation of naive CD8(+) T cells but not that of naive CD4(+) T cells after engagement of the TCR. Nrdp1 interacted with Zap70 and with Sts1 and Sts2 and connected K33 linkage of Zap70 to Sts1- and Sts2-mediated dephosphorylation. Our study suggests that Nrdp1 terminates early TCR signaling by inactivating Zap70 and provides new mechanistic insights into the non-proteolytic regulation of TCR signaling by E3 ligases.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carrier Proteins/immunology , Lymphocyte Activation/immunology , Lysine/immunology , ZAP-70 Protein-Tyrosine Kinase/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Lymphocyte Activation/genetics , Lysine/genetics , Lysine/metabolism , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Phosphorylation/immunology , Polyubiquitin/immunology , Polyubiquitin/metabolism , Protein Binding/immunology , RNA Interference , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics , Transcriptome/immunology , Ubiquitin-Protein Ligases , Ubiquitination/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism
5.
Genes Dev ; 32(2): 112-126, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29440259

ABSTRACT

Stem cell fate is orchestrated by core transcription factors (TFs) and epigenetic modifications. Although regulatory genes that control cell type specification are identified, the transcriptional circuit and the cross-talk among regulatory factors during cell fate decisions remain poorly understood. To identify the "time-lapse" TF networks during B-lineage commitment, we used multipotent progenitors harboring a tamoxifen-inducible form of Id3, an in vitro system in which virtually all cells became B cells within 6 d by simply withdrawing 4-hydroxytamoxifen (4-OHT). Transcriptome and epigenome analysis at multiple time points revealed that ∼10%-30% of differentially expressed genes were virtually controlled by the core TFs, including E2A, EBF1, and PAX5. Strikingly, we found unexpected transcriptional priming before the onset of the key TF program. Inhibition of the immediate early genes such as Nr4a2, Klf4, and Egr1 severely impaired the generation of B cells. Integration of multiple data sets, including transcriptome, protein interactome, and epigenome profiles, identified three representative transcriptional circuits. Single-cell RNA sequencing (RNA-seq) analysis of lymphoid progenitors in bone marrow strongly supported the three-step TF network model during specification of multipotent progenitors toward B-cell lineage in vivo. Thus, our findings will provide a blueprint for studying the normal and neoplastic development of B lymphocytes.


Subject(s)
B-Lymphocytes/metabolism , Multipotent Stem Cells/metabolism , Transcription, Genetic , Animals , Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Lineage/genetics , Cells, Cultured , Epigenesis, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Histone Code , Kruppel-Like Factor 4 , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , PAX5 Transcription Factor/physiology , Single-Cell Analysis , Trans-Activators/physiology , Transcriptome
6.
Nat Immunol ; 14(6): 584-92, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23624556

ABSTRACT

Interleukin 17 (IL-17)-committed γδ T cells (γδT17 cells) participate in many immune responses, but their developmental requirements and subset specific functions remain poorly understood. Here we report that a commonly used CD45.1(+) congenic C57BL/6 mouse substrain is characterized by selective deficiency in Vγ4(+) γδT17 cells. This trait was due to a spontaneous mutation in the gene encoding the transcription factor Sox13 that caused an intrinsic defect in development of those cells in the neonatal thymus. The γδT17 cells migrated from skin to lymph nodes at low rates. In a model of psoriasis-like dermatitis, the Vγ4(+) γδT17 cell subset expanded considerably in lymph nodes and homed to inflamed skin. Sox13-mutant mice were protected from psoriasis-like skin changes, which identified a role for Sox13-dependent γδT17 cells in this inflammatory condition.


Subject(s)
Autoantigens/immunology , Dermatitis/immunology , Interleukin-17/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Animals , Animals, Newborn , Autoantigens/genetics , Autoantigens/metabolism , Cells, Cultured , Dermatitis/genetics , Dermatitis/metabolism , Flow Cytometry , Interleukin-17/genetics , Interleukin-17/metabolism , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Inbred NOD , Mice, Knockout , Mutation , Psoriasis/genetics , Psoriasis/immunology , Psoriasis/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/pathology
7.
Immunity ; 43(1): 200-9, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26163370

ABSTRACT

Targeted mutagenesis in mice is a powerful tool for functional analysis of genes. However, genetic variation between embryonic stem cells (ESCs) used for targeting (previously almost exclusively 129-derived) and recipient strains (often C57BL/6J) typically results in congenic mice in which the targeted gene is flanked by ESC-derived passenger DNA potentially containing mutations. Comparative genomic analysis of 129 and C57BL/6J mouse strains revealed indels and single nucleotide polymorphisms resulting in alternative or aberrant amino acid sequences in 1,084 genes in the 129-strain genome. Annotating these passenger mutations to the reported genetically modified congenic mice that were generated using 129-strain ESCs revealed that nearly all these mice possess multiple passenger mutations potentially influencing the phenotypic outcome. We illustrated this phenotypic interference of 129-derived passenger mutations with several case studies and developed a Me-PaMuFind-It web tool to estimate the number and possible effect of passenger mutations in transgenic mice of interest.


Subject(s)
Genetic Variation/genetics , Genome/genetics , Mice, Inbred C57BL/genetics , Amino Acid Sequence/genetics , Animals , Caspases/genetics , Caspases, Initiator , Chromosome Mapping , Comparative Genomic Hybridization , Connexins/genetics , Genotype , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 8/genetics , Mice , Mice, Congenic/genetics , Mice, Knockout , Mutation/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide
8.
J Immunol ; 208(9): 2098-2108, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35387839

ABSTRACT

Several studies have shown an enhanced metabolism in the CD4+ T cells of lupus patients and lupus-prone mice. Little is known about the metabolism of B cells in lupus. In this study, we compared the metabolism of B cells between lupus-prone B6.Sle1.Sle2.Sle3 triple-congenic mice and C57BL/6 controls at steady state relative to autoantibody production, as well as during T cell-dependent (TD) and T cell-independent (TI) immunizations. Starting before the onset of autoimmunity, B cells from triple-congenic mice showed an elevated glycolysis and mitochondrial respiration, which were normalized in vivo by inhibiting glycolysis with a 2-deoxy-d-glucose (2DG) treatment. 2DG greatly reduced the production of TI-Ag-specific Abs, but showed minimal effect with TD-Ags. In contrast, the inhibition of glutaminolysis with 6-diazo-5-oxo-l-norleucine had a greater effect on TD than TI-Ag-specific Abs in both strains. Analysis of the TI and TD responses in purified B cells in vitro suggests, however, that the glutaminolysis requirement is not B cell-intrinsic. Thus, B cells have a greater requirement for glycolysis in TI than TD responses, as inferred from pharmacological interventions. B cells from lupus-prone and control mice have different intrinsic metabolic requirements or different responses toward 2DG and 6-diazo-5-oxo-l-norleucine, which mirrors our previous results obtained with follicular Th cells. Overall, these results predict that targeting glucose metabolism may provide an effective therapeutic approach for systemic autoimmunity by eliminating both autoreactive follicular Th and B cells, although it may also impair TI responses.


Subject(s)
B-Lymphocytes , Diazooxonorleucine , Animals , Glycolysis , Humans , Mice , Mice, Congenic , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer
9.
J Immunol ; 208(4): 898-909, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35039332

ABSTRACT

Type 1 diabetes is an autoimmune disease characterized by pancreatic ß cell destruction. It is a complex genetic trait driven by >30 genetic loci with parallels between humans and mice. The NOD mouse spontaneously develops autoimmune diabetes and is widely used to identify insulin-dependent diabetes (Idd) genetic loci linked to diabetes susceptibility. Although many Idd loci have been extensively studied, the impact of the Idd2 locus on autoimmune diabetes susceptibility remains to be defined. To address this, we generated a NOD congenic mouse bearing B10 resistance alleles on chromosome 9 in a locus coinciding with part of the Idd2 locus and found that NOD.B10-Idd2 congenic mice are highly resistant to diabetes. Bone marrow chimera and adoptive transfer experiments showed that the B10 protective alleles provide resistance in an immune cell-intrinsic manner. Although no T cell-intrinsic differences between NOD and NOD.B10-Idd2 mice were observed, we found that the Idd2 resistance alleles limit the formation of spontaneous and induced germinal centers. Comparison of B cell and dendritic cell transcriptome profiles from NOD and NOD.B10-Idd2 mice reveal that resistance alleles at the Idd2 locus affect the expression of specific MHC molecules, a result confirmed by flow cytometry. Altogether, these data demonstrate that resistance alleles at the Idd2 locus impair germinal center formation and influence MHC expression, both of which likely contribute to reduced diabetes incidence.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/metabolism , Genetic Loci , Genetic Predisposition to Disease , Major Histocompatibility Complex/genetics , Alleles , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Diabetes Mellitus, Type 1/diagnosis , Disease Models, Animal , Disease Resistance/genetics , Genetic Variation , Glucose Tolerance Test , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Mice , Mice, Congenic , Mice, Inbred NOD , Mice, Knockout , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Immunogenetics ; 75(1): 27-37, 2023 02.
Article in English | MEDLINE | ID: mdl-36097289

ABSTRACT

We previously reported that nonobese diabetic (NOD) congenic mice (NOD.c3c4 mice) developed an autoimmune biliary disease (ABD) with similarities to human primary biliary cholangitis (PBC), including anti-mitochondrial antibodies and organ-specific biliary lymphocytic infiltrates. We narrowed the possible contributory regions in a novel NOD.Abd3 congenic mouse to a B10 congenic region on chromosome 1 ("Abd3") and a mutated Pkhd1 gene (Pkhd1del36-67) upstream from Abd3, and we showed via backcrossing studies that the NOD genetic background was necessary for disease. Here, we show that NOD.Abd3 mice develop anti-PDC-E2 autoantibodies at high levels, and that placing the chromosome 1 interval onto a scid background eliminates disease, demonstrating the critical role of the adaptive immune system in pathogenesis. While the NOD genetic background is essential for disease, it was still unclear which of the two regions in the Abd3 locus were necessary and sufficient for disease. Here, using a classic recombinant breeding approach, we prove that the mutated Pkhd1del36-67 alone, on the NOD background, causes ABD. Further characterization of the mutant sequence demonstrated that the Pkhd1 gene is disrupted by an ETnII-beta retrotransposon inserted in intron 35 in an anti-sense orientation. Homozygous Pkhd1 mutations significantly affect viability, with the offspring skewed away from a Mendelian distribution towards NOD Pkhd1 homozygous or heterozygous genotypes. Cell-specific abnormalities, on a susceptible genetic background, can therefore induce an organ-specific autoimmunity directed to the affected cells. Future work will aim to characterize how mutant Pkhd1 can cause such an autoimmune response.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus , Mice , Animals , Humans , Mice, Inbred NOD , Autoantibodies/genetics , Mice, Congenic , Genetic Background , Diabetes Mellitus, Type 1/genetics , Mice, Inbred C57BL , Receptors, Cell Surface/genetics
11.
Blood ; 137(21): 2907-2919, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33619534

ABSTRACT

Mitochondria of hematopoietic stem cells (HSCs) play crucial roles in regulating cell fate and preserving HSC functionality and survival. However, the mechanism underlying HSC regulation remains poorly understood. Here, we identify transcription factor TWIST1 as a novel regulator of HSC maintenance through modulation of mitochondrial function. We demonstrate that Twist1 deletion results in significantly decreased lymphoid-biased HSC frequency, markedly reduced HSC dormancy and self-renewal capacity, and skewed myeloid differentiation in steady-state hematopoiesis. Twist1-deficient HSCs are more compromised in tolerance of irradiation- and 5-fluorouracil-induced stresses and exhibit typical phenotypes of senescence. Mechanistically, Twist1 deletion induces transactivation of voltage-gated calcium channel (VGCC) Cacna1b, which exhausts lymphoid-biased HSCs, impairs genotoxic hematopoietic recovery, and enhances mitochondrial calcium levels, metabolic activity, and reactive oxygen species production. Suppression of VGCC by a calcium channel blocker largely rescues the phenotypic and functional defects in Twist1-deleted HSCs under both steady-state and stress conditions. Collectively, our data, for the first time, characterize TWIST1 as a critical regulator of HSC function acting through the CACNA1B/Ca2+/mitochondria axis and highlight the importance of Ca2+ in HSC maintenance. These observations provide new insights into the mechanisms for the control of HSC fate.


Subject(s)
Calcium Channels, N-Type/physiology , Hematopoietic Stem Cells/cytology , Twist-Related Protein 1/physiology , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Calcium Channel Blockers/pharmacology , Calcium Signaling , Cell Cycle , Cell Self Renewal , DNA Damage , Fluorouracil/pharmacology , Fluorouracil/toxicity , Gene Expression Regulation , Gene Ontology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Myelopoiesis , RNA, Messenger/biosynthesis , Radiation Injuries, Experimental/prevention & control , Reactive Oxygen Species/metabolism , Twist-Related Protein 1/deficiency , Twist-Related Protein 1/genetics
12.
J Immunol ; 207(11): 2710-2719, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34740959

ABSTRACT

The single-nucleotide polymorphism (SNP) rs3184504 is broadly associated with increased risk for multiple autoimmune and cardiovascular diseases. Although the allele is uniquely enriched in European descent, the mechanism for the widespread selective sweep is not clear. In this study, we find the rs3184504*T allele had a strong association with reduced mortality in a human sepsis cohort. The rs3184504*T allele associates with a loss-of-function amino acid change (p.R262W) in the adaptor protein SH2B3, a likely causal variant. To better understand the role of SH2B3 in sepsis, we used mouse modeling and challenged SH2B3-deficient mice with a polymicrobial cecal-ligation puncture (CLP) procedure. We found SH2B3 deficiency improved survival and morbidity with less organ damage and earlier bacterial clearance compared with control mice. The peritoneal infiltrating cells exhibited augmented phagocytosis in Sh2b3 -/- mice with enriched recruitment of Ly6Chi inflammatory monocytes despite equivalent or reduced chemokine expression. Rapid cycling of monocytes and progenitors occurred uniquely in the Sh2b3 -/- mice following CLP, suggesting augmented myelopoiesis. To model the hypomorphic autoimmune risk allele, we created a novel knockin mouse harboring a similar point mutation in the murine pleckstrin homology domain of SH2B3. At baseline, phenotypic changes suggested a hypomorphic allele. In the CLP model, homozygous knockin mice displayed improved mortality and morbidity compared with wild-type or heterozygous mice. Collectively, these data suggest that hypomorphic SH2B3 improves the sepsis response and that balancing selection likely contributed to the relative frequency of the autoimmune risk variant.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Sepsis/immunology , Adaptor Proteins, Signal Transducing/genetics , Adult , Animals , Disease Models, Animal , Humans , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Polymorphism, Single Nucleotide/genetics , Sepsis/genetics
13.
J Immunol ; 206(12): 2839-2851, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34117106

ABSTRACT

Neonatal and infant immune responses are characterized by a limited capability to generate protective Ab titers and memory B cells as seen in adults. Multiple studies support an immature or even impaired character of umbilical cord blood (UCB) B cells themselves. In this study, we provide a comprehensive molecular and functional comparison of B cell subsets from UCB and adult peripheral blood. Most UCB B cells have a mature, naive B cell phenotype as seen in adults. The UCB Ig repertoire is highly variable but interindividually conserved, as BCR clonotypes are frequently shared between neonates. Furthermore, UCB B cells show a distinct transcriptional program that confers accelerated responsiveness to stimulation and facilitated IgA class switching. Stimulation drives extensive differentiation into Ab-secreting cells, presumably limiting memory B cell formation. Humanized mice suggest that the distinctness of UCB versus adult B cells is already reflected by the developmental program of hematopoietic precursors, arguing for a layered B-1/B-2 lineage system as in mice, albeit our findings suggest only partial comparability to murine B-1 cells. Our study shows that UCB B cells are not immature or impaired but differ from their adult mature counterpart in a conserved BCR repertoire, efficient IgA class switching, and accelerated, likely transient response dynamics.


Subject(s)
B-Lymphocytes/immunology , Fetal Blood/immunology , Immunoglobulins/immunology , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Mice , Mice, Congenic , Mice, Inbred NOD , Receptors, Antigen, B-Cell/immunology
14.
J Immunol ; 207(1): 5-14, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34135064

ABSTRACT

Pathogen-derived peptides are loaded on MHC class II (MHCII) and presented to CD4+ T cells for their activation. Peptide loading of MHCII occurs in specialized endosomal compartments and is controlled by the nonclassical MHCII molecules H2-M and H2-O, which are both constitutive αß heterodimers. H2-M catalyzes MHCII peptide loading, whereas H2-O modulates H2-M activity by acting as an MHCII mimic. Recently, we discovered that the H2-Ob allele inherited by retrovirus-resistant I/LnJ mice results in nonfunctional H2-O. I/LnJ H2-O binds to but does not inhibit H2-M. Compared with H2-Oß from virus-susceptible mice, H2-Oß from I/LnJ mice has four unique amino acid substitutions, three in the Ig domain and one in the cytoplasmic tail. In this study we show that the three amino acids in the Ig domain of I/LnJ Oß are critical for the H2-O inhibitory activity of H2-M. Unexpectedly, we found that MHCII presentation was significantly different in Ag-presenting cells from two closely related mouse strains, B6J and B6N, which carry identical alleles of MHCII, H2-O, and H2-M. Using a positional cloning approach, we have identified two loci, polymorphic between B6J and B6N, that mediate the difference in MHCII presentation. Collectively, these studies reveal extra complexity in MHCII/H2-M/H-2O interactions that likely involve yet to be identified modulators of the pathway.


Subject(s)
Histocompatibility Antigens Class II/genetics , Immunoglobulins/genetics , Polymorphism, Genetic/genetics , Animals , Histocompatibility Antigens Class II/immunology , Immunoglobulins/immunology , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout
15.
Histochem Cell Biol ; 157(2): 205-216, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34993640

ABSTRACT

Collagen XIX is a nonfibrillar collagen that localizes in restricted tissues at very low amounts. A previous study on Col19a1 null mice revealed that collagen XIX is involved in esophageal muscle physiology and morphogenesis. Here, we use histological analysis to show that mice with a Col19a1 mutant lacking the NC3 domain and seven collagen triplets display abnormal transition of smooth to striated muscle in the abdominal segment of esophagus, and a widened esophagus with age. With two newly prepared antibodies, we analyzed the expression of collagen XIX in the mouse esophagus and show that collagen XIX colocalizes with α-smooth muscle actin. By immunoelectron microscopy, we confirmed the localization of collagen XIX in esophageal smooth muscle cells. Col19a1 mutant mice contained reduced levels of mutated Col19a1 mRNA. Interestingly, hepatocyte growth factor, which has an important role in esophageal striated muscle development, was reduced in the esophagus of the Col19a1 mutant mice. These findings suggest that collagen XIX may be critical for the function of esophageal smooth muscle cells as a scaffold for anteroposterior migration of esophagus-striated muscle cells.


Subject(s)
Esophagus/immunology , Fibril-Associated Collagens/genetics , Muscle, Smooth/immunology , Animals , Antibodies/immunology , Cells, Cultured , Fibril-Associated Collagens/deficiency , Fibril-Associated Collagens/immunology , Humans , Mice , Mice, Congenic , Mice, Knockout , Mutation , RNA, Messenger/genetics , RNA, Messenger/immunology
16.
Immunity ; 39(1): 184-95, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23890071

ABSTRACT

The study of T cell memory and the target of vaccine design have focused on memory subsumed by T cells bearing the αß T cell receptor. Alternatively, γδ T cells are thought to provide rapid immunity, particularly at mucosal borders. Here, we have shown that a distinct subset of mucosal γδ T cells mounts an immune response to oral Listeria monocytogenes (Lm) infection and leads to the development of multifunctional memory T cells capable of simultaneously producing interferon-γ and interleukin-17A in the murine intestinal mucosa. Challenge infection with oral Lm, but not oral Salmonella or intravenous Lm, induced rapid expansion of memory γδ T cells, suggesting contextual specificity to the priming pathogen. Importantly, memory γδ T cells were able to provide enhanced protection against infection. These findings illustrate that γδ T cells play a role with hallmarks of adaptive immunity in the intestinal mucosa.


Subject(s)
Immunologic Memory/immunology , Intestines/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Adaptive Immunity/immunology , Amino Acid Sequence , Animals , Cells, Cultured , Female , Flow Cytometry , Host-Pathogen Interactions/immunology , Hyaluronan Receptors/immunology , Hyaluronan Receptors/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Listeria monocytogenes/immunology , Listeria monocytogenes/physiology , Listeriosis/immunology , Listeriosis/metabolism , Mice , Mice, Congenic , Mice, Inbred BALB C , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
17.
Bioorg Med Chem ; 53: 116533, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34863065

ABSTRACT

Glioblastoma (GBM) is the most aggressive and treatment-refractory malignant adult brain cancer. After standard of care therapy, the overall median survival for GBM is only ∼6 months with a 5-year survival <10%. Although some patients initially respond to the DNA alkylating agent temozolomide (TMZ), unfortunately most patients become resistant to therapy and brain tumors eventually recur. We previously found that knockout of BRG1 or treatment with PFI-3, a small molecule inhibitor of the BRG1 bromodomain, enhances sensitivity of GBM cells to temozolomide in vitro and in vivo GBM animal models. Those results demonstrated that the BRG1 catalytic subunit of the SWI/SNF chromatin remodeling complex appears to play a critical role in regulating TMZ-sensitivity. In the present study we designed and synthesized Structurally Related Analogs of PFI-3 (SRAPs) and tested their bioactivity in vitro. Among of the SRAPs, 9f and 11d show better efficacy than PFI-3 in sensitizing GBM cells to the antiproliferative and cell death inducing effects of temozolomide in vitro, as well as enhancing the inhibitor effect of temozolomide on the growth of subcutaneous GBM tumors.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Azabicyclo Compounds/pharmacology , DNA Helicases/antagonists & inhibitors , Glioblastoma/drug therapy , Nuclear Proteins/antagonists & inhibitors , Pyridines/pharmacology , Temozolomide/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents, Alkylating/chemistry , Azabicyclo Compounds/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , DNA Helicases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Congenic , Mice, Inbred NOD , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , Pyridines/chemistry , Structure-Activity Relationship , Temozolomide/chemistry , Transcription Factors/metabolism
18.
J Immunol ; 204(7): 1982-1987, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32122998

ABSTRACT

GFP is frequently used as a marker for tracking donor cells adoptively transplanted into recipient animals. The human ubiquitin C promoter (UBC)-driven-GFP transgenic mouse is a commonly used source of donor cells for this purpose. This mouse was initially generated in the C57BL/6 inbred strain and has been backcrossed into the BALB/cBy strain for over 11 generations. Both the C57BL/6 inbred and BALB/cBy congenic UBC-GFP lines are commercially available and have been widely distributed. These UBC-GFP lines can be a convenient resource for tracking donor cells in both syngenic MHC-matched and in allogenic MHC-mismatched studies as C57BL/6 (H-2b) and BALB/cBy (H-2d) have disparate MHC haplotypes. In this report, we surprisingly discover that the UBC-GFP BALB/cBy congenic mice still retain the H-2b MHC haplotype of their original C57BL/6 founder, suggesting that the UBC-GFP transgene integration site is closely linked to the MHC locus on chromosome 17. Using linear amplification-mediated PCR, we successfully map the UBC-GFP transgene to the MHC locus. This study highlights the importance and urgency of mapping the transgene integration site of transgenic mouse strains used in biomedical research. Furthermore, this study raises the possibility of alternative interpretations of previous studies using congenic UBC-GFP mice and focuses attention on the necessity for rigor and reproducibility in scientific research.


Subject(s)
Chromosomes/genetics , Green Fluorescent Proteins/genetics , Major Histocompatibility Complex/genetics , Mutagenesis, Insertional/genetics , Transgenes/genetics , Ubiquitin C/genetics , Animals , Haplotypes/genetics , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic/genetics , Reproducibility of Results
19.
Exp Cell Res ; 398(1): 112390, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33227314

ABSTRACT

Although surgical treatment cures >90% of differentiated thyroid cancer (DTC) patients, the remaining patients, including advanced DTC cases, have poor clinical outcomes. These patients with inoperable disease have only two choices of radioactive iodine therapy and tyrosine kinase inhibitors such as lenvatinib, which have a high incidence of treatment-related adverse events and can only prolong progression free survival by approximately 5-15 months. In this study, we investigated the antitumor effects of combination therapy with lenvatinib and radiation (CTLR) for DTC. CTLR synergistically inhibited cell replication and colony formation in vitro and tumor growth in nude mice without apparent toxicities and suppressed the expression of proliferation marker (Ki-67). CTLR also induced apoptosis and G2/M phase cell cycle arrest. Moreover, quantitative analysis of the intracellular uptake of lenvatinib using liquid chromatography and mass spectrometry demonstrated that intracellular uptake of lenvatinib was significantly increased 48 h following irradiation. These data suggest that increased membrane permeability caused by irradiation increases the intracellular concentration of levatinib, contributing to the synergistic effect. This mechanism-based potential of combination therapy suggests a powerful new therapeutic strategy for advanced thyroid cancer with fewer side effects and might be a milestone for developing a regimen in clinical practice.


Subject(s)
Antineoplastic Agents/pharmacology , Gamma Rays , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Thyroid Neoplasms/therapy , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Combined Modality Therapy , Female , Humans , Mice , Mice, Congenic , Mice, Nude , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Thyroid Neoplasms/pathology , Tumor Cells, Cultured
20.
Nature ; 535(7613): 561-5, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27383793

ABSTRACT

Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Subject(s)
Aging/genetics , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation/genetics , Metabolism/genetics , Mitochondria/genetics , Mitochondria/metabolism , Aging/physiology , Animals , Female , Genome, Mitochondrial/genetics , Haplotypes , Insulin/metabolism , Longevity/genetics , Male , Metabolism/physiology , Metabolomics , Mice , Mice, Congenic , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Obesity/genetics , Obesity/metabolism , Phenotype , Proteomics , Reactive Oxygen Species/metabolism , Telomere Shortening , Transcriptome , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL