Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.125
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33627403

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Dystrophin/genetics , Hydrogen Sulfide/pharmacology , Mitochondria, Muscle/drug effects , Morpholines/pharmacology , Muscle, Skeletal/drug effects , Muscular Dystrophy, Animal/drug therapy , Organophosphorus Compounds/pharmacology , Organothiophosphorus Compounds/pharmacology , Thiones/pharmacology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dystrophin/deficiency , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Humans , Hydrogen Sulfide/metabolism , Locomotion/drug effects , Locomotion/genetics , Male , Mice , Mice, Inbred mdx , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Morpholines/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Organophosphorus Compounds/metabolism , Organothiophosphorus Compounds/metabolism , Prednisone/pharmacology , Sirtuins/genetics , Sirtuins/metabolism , Thiones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Utrophin/deficiency , Utrophin/genetics
2.
Am J Pathol ; 191(4): 730-747, 2021 04.
Article in English | MEDLINE | ID: mdl-33497702

ABSTRACT

Duchenne muscular dystrophy (DMD) is a genetic, degenerative, striated muscle disease exacerbated by chronic inflammation. Mdx mice in the genotypic DMD model poorly represent immune-mediated pathology observed in patients. Improved understanding of innate immunity in dystrophic muscles is required to develop specific anti-inflammatory treatments. Here, inflammation in mdx mice and the more fibrotic utrn+/-;mdx Het model was comprehensively investigated. Unbiased analysis showed that mdx and Het mice contain increased levels of numerous chemokines and cytokines, with further increased in Het mice. Chemokine and chemokine receptor gene expression levels were dramatically increased in 4-week-old dystrophic quadriceps muscles, and to a lesser extent in diaphragm during the early injury phase, and had a small but consistent increase at 8 and 20 weeks. An optimized direct immune cell isolation method prevented loss of up to 90% of macrophages with density-dependent centrifugation previously used for mdx flow cytometry. Het quadriceps contain higher proportions of neutrophils and infiltrating monocytes than mdx, and higher percentages of F4/80Hi, but lower percentages of F4/80Lo cells and patrolling monocytes compared with Het diaphragms. These differences may restrict regenerative potential of dystrophic diaphragms, increasing pathologic severity. Fibrotic and inflammatory gene expression levels are higher in myeloid cells isolated from Het compared with mdx quadriceps, supporting Het mice may represent an improved model for testing therapeutic manipulation of inflammation in DMD.


Subject(s)
Dystrophin/metabolism , Inflammation/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Animals , Inflammation/pathology , Macrophages/metabolism , Mice, Transgenic , Monocytes/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Respiratory Muscles/metabolism , Respiratory Muscles/pathology
3.
NMR Biomed ; 35(3): e4659, 2022 03.
Article in English | MEDLINE | ID: mdl-34841594

ABSTRACT

31 Phosphorus magnetic resonance spectroscopy (31 P-MRS) has been shown to detect altered energetic status (e.g. the ratio of inorganic phosphate to phosphocreatine: Pi/PCr), intracellular acid-base status, and free intracellular magnesium ([Mg2+ ]) in dystrophic muscle compared with unaffected muscle; however, the causes of these differences are not well understood. The purposes of this study were to examine 31 P-MRS indices of energetic status and sarcolemma integrity in young mdx mice compared with wild-type and to evaluate the effects of downhill running to induce muscle damage on 31 P-MRS indices in dystrophic muscle. In vivo 31 P-MRS spectra were acquired from the posterior hindlimb muscles in young (4-10 weeks of age) mdx (C57BL/10ScSn-DMDmdx) and wild-type (C57BL/10ScSnJ) mice using an 11.1-T MR system. The flux of phosphate from PCr to ATP was estimated by 31 P-MRS saturation transfer experiments. Relative concentrations of high-energy phosphates were measured, and intracellular pH and [Mg2+ ] were calculated. 1 H2 O-T2 was measured using single-voxel 1 H-MRS from the gastrocnemius and soleus using a 4.7-T MR system. Downhill treadmill running was performed in a subset of mice. Young mdx mice were characterized by elevated 1 H2 O-T2 (p < 0.01), Pi/PCr (p = 0.02), PCr to ATP flux (p = 0.04) and histological inflammatory markers (p < 0.05) and reduced (p < 0.01) [Mg2+ ] compared with wild-type. Furthermore, 24 h after downhill running, an increase (p = 0.02) in Pi/PCr was observed in mdx and wild-type mice compared with baseline, and a decrease (p < 0.001) in [Mg2+ ] and a lower (p = 0.048) intracellular [H+ ] in damaged muscle regions of mdx mice were observed, consistent with impaired sarcolemma integrity. Overall, our findings demonstrate that 31 P-MRS markers of energetic status and sarcolemma integrity are altered in young mdx compared with wild-type mice, and these indices are exacerbated following downhill running.


Subject(s)
Energy Metabolism , Muscular Dystrophy, Animal/metabolism , Sarcolemma/metabolism , Adenosine Triphosphate/metabolism , Animals , Magnetic Resonance Spectroscopy/methods , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Phosphocreatine/metabolism , Phosphorus , Physical Conditioning, Animal
4.
Exp Cell Res ; 406(2): 112766, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34364881

ABSTRACT

Duchene muscular dystrophy leads to progressive muscle structural and functional decline due to chronic degenerative-regenerative cycles. Enhancing the regenerative capacity of dystrophic muscle provides potential therapeutic options. We previously demonstrated that the circadian clock repressor Rev-erbα inhibited myogenesis and Rev-erbα ablation enhanced muscle regeneration. Here we show that Rev-erbα deficiency in the dystrophin-deficient mdx mice promotes regenerative myogenic response to ameliorate muscle damage. Loss of Rev-erbα in mdx mice improved dystrophic pathology and muscle wasting. Rev-erbα-deficient dystrophic muscle exhibit augmented myogenic response, enhanced neo-myofiber formation and attenuated inflammatory response. In mdx myoblasts devoid of Rev-erbα, myogenic differentiation was augmented together with up-regulation of Wnt signaling and proliferative pathways, suggesting that loss of Rev-erbα inhibition of these processes contributed to the improvement in regenerative myogenesis. Collectively, our findings revealed that the loss of Rev-erbα function protects dystrophic muscle from injury by promoting myogenic repair, and inhibition of its activity may have therapeutic utilities for muscular dystrophy.


Subject(s)
Cell Differentiation , Muscle, Skeletal/cytology , Muscular Dystrophy, Animal/prevention & control , Muscular Dystrophy, Duchenne/prevention & control , Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors , Regeneration , Animals , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/etiology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/etiology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Wnt Signaling Pathway
5.
Mol Ther ; 29(3): 1086-1101, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33221436

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by mutations in the DMD gene. Absence of dystrophin protein leads to progressive degradation of skeletal and cardiac function and leads to premature death. Over the years, zebrafish have been increasingly used for studying DMD and are a powerful tool for drug discovery and therapeutic development. In our study, a birefringence screening assay led to identification of phosphodiesterase 10A (PDE10A) inhibitors that reduced the manifestation of dystrophic muscle phenotype in dystrophin-deficient sapje-like zebrafish larvae. PDE10A has been validated as a therapeutic target by pde10a morpholino-mediated reduction in muscle pathology and improvement in locomotion, muscle, and vascular function as well as long-term survival in sapje-like larvae. PDE10A inhibition in zebrafish and DMD patient-derived myoblasts were also associated with reduction of PITPNA expression that has been previously identified as a protective genetic modifier in two exceptional dystrophin-deficient golden retriever muscular dystrophy (GRMD) dogs that escaped the dystrophic phenotype. The combination of a phenotypic assay and relevant functional assessments in the sapje-like zebrafish enhances the potential for the prospective discovery of DMD therapeutics. Indeed, our results suggest a new application for a PDE10A inhibitor as a potential DMD therapeutic to be investigated in a mouse model of DMD.


Subject(s)
Dystrophin/metabolism , Muscular Dystrophy, Animal/prevention & control , Muscular Dystrophy, Duchenne/prevention & control , Myoblasts/drug effects , Phospholipid Transfer Proteins/antagonists & inhibitors , Phosphoric Diester Hydrolases/chemistry , Pyrazoles/pharmacology , Quinolines/pharmacology , Animals , Dogs , Dystrophin/genetics , Humans , Larva/drug effects , Larva/genetics , Larva/metabolism , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myoblasts/metabolism , Myoblasts/pathology , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Zebrafish
6.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36012334

ABSTRACT

Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.


Subject(s)
Lacticaseibacillus casei , Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Administration, Oral , Animals , Antibodies/therapeutic use , Disease Models, Animal , Humans , Lacticaseibacillus casei/genetics , Mice , Mice, Inbred mdx , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/pathology
7.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216371

ABSTRACT

Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings, we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to treating dystrophic cardiomyopathy.


Subject(s)
Cardiomyopathies/drug therapy , Heart/drug effects , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Protein Kinase C-theta/antagonists & inhibitors , Animals , Cardiomyopathies/metabolism , Dipeptides/pharmacology , Disease Models, Animal , Dystrophin/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Myocardium/metabolism , Phenotype
8.
Am J Physiol Cell Physiol ; 321(1): C94-C103, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33979211

ABSTRACT

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by cell cycle inhibitory proteins such as p16, p21, and p53. When cells enter senescence, they secrete a host of proinflammatory factors known as the senescence-associated secretory phenotype, which has deleterious effects on surrounding cells and tissues. Little is known of the role of senescence in Duchenne muscular dystrophy (DMD), the fatal X-linked neuromuscular disorder typified by chronic inflammation, extracellular matrix remodeling, and a progressive loss in muscle mass and function. Here, we demonstrate using C57-mdx (8-wk-old) and D2-mdx (4-wk-old and 8-wk-old) mice, two mouse models of DMD, that cells displaying canonical markers of senescence are found within the skeletal muscle. Eight-week-old D2-mdx mice, which display severe muscle pathology, had greater numbers of senescent cells associated with areas of inflammation, which were mostly Cdkn1a-positive macrophages, whereas in C57-mdx muscle, senescent populations were endothelial cells and macrophages localized to newly regenerated myofibers. Interestingly, this pattern was similar to cardiotoxin (CTX)-injured wild-type (WT) muscle, which experienced a transient senescent response. Dystrophic muscle demonstrated significant upregulations in senescence pathway genes [Cdkn1a (p21), Cdkn2a (p16INK4A), and Trp53 (p53)], which correlated with the quantity of senescence-associated ß-galactosidase (SA-ß-Gal)-positive cells. These results highlight an underexplored role for cellular senescence in murine dystrophic muscle.


Subject(s)
Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Endothelial Cells/metabolism , Macrophages/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/genetics , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Disease Models, Animal , Dystrophin/deficiency , Dystrophin/genetics , Endothelial Cells/pathology , Gene Expression Regulation , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myofibrils/metabolism , Myofibrils/pathology , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
9.
Hum Mol Genet ; 28(7): 1117-1135, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30535187

ABSTRACT

In healthy adult skeletal muscle fibers microtubules form a three-dimensional grid-like network. In the mdx mouse, a model of Duchenne muscular dystrophy (DMD), microtubules are mostly disordered, without periodicity. These microtubule defects have been linked to the mdx mouse pathology. We now report that increased expression of the beta 6 class V ß-tubulin (tubb6) contributes to the microtubule changes of mdx muscles. Wild-type muscle fibers overexpressing green fluorescent protein (GFP)-tubb6 (but not GFP-tubb5) have disorganized microtubules whereas mdx muscle fibers depleted of tubb6 (but not of tubb5) normalize their microtubules, suggesting that increasing tubb6 is toxic. However, tubb6 increases spontaneously during differentiation of mouse and human muscle cultures. Furthermore, endogenous tubb6 is not uniformly expressed in mdx muscles but is selectively increased in fiber clusters, which we identify as regenerating. Similarly, mdx-based rescued transgenic mice that retain a higher than expected tubb6 level show focal expression of tubb6 in subsets of fibers. Tubb6 is also upregulated in cardiotoxin-induced mouse muscle regeneration, in human myositis and DMD biopsies, and the tubb6 level correlates with that of embryonic myosin heavy chain, a regeneration marker. In conclusion, modulation of a ß-tubulin isotype plays a role in muscle differentiation and regeneration. Increased tubb6 expression and microtubule reorganization are not pathological per se but reflect a return to an earlier developmental stage. However, chronic elevation of tubb6, as occurs in the mdx mouse, may contribute to the repeated cycles of regeneration and to the pathology of the disease.


Subject(s)
Muscle, Skeletal/metabolism , Tubulin/genetics , Tubulin/physiology , Animals , Dystrophin/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Transgenic , Microtubules/metabolism , Microtubules/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Myoblasts , Primary Cell Culture , Regeneration , Transcriptional Activation , Up-Regulation
10.
Nat Mater ; 19(4): 464-473, 2020 04.
Article in English | MEDLINE | ID: mdl-31844279

ABSTRACT

Mutations in the LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A/C, cause Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy and other diseases collectively known as laminopathies. The mechanisms responsible for these diseases remain incompletely understood. Using three mouse models of muscle laminopathies and muscle biopsies from individuals with LMNA-related muscular dystrophy, we found that Lmna mutations reduced nuclear stability and caused transient rupture of the NE in skeletal muscle cells, resulting in DNA damage, DNA damage response activation and reduced cell viability. NE and DNA damage resulted from nuclear migration during skeletal muscle maturation and correlated with disease severity in the mouse models. Reduction of cytoskeletal forces on the myonuclei prevented NE damage and rescued myofibre function and viability in Lmna mutant myofibres, indicating that myofibre dysfunction is the result of mechanically induced NE damage. Taken together, these findings implicate mechanically induced DNA damage as a pathogenic contributor to LMNA skeletal muscle diseases.


Subject(s)
DNA Damage , Lamin Type A , Muscular Dystrophy, Animal , Mutation , Myofibrils , Nuclear Envelope , Animals , Lamin Type A/genetics , Lamin Type A/metabolism , Mice , Mice, Knockout , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Myofibrils/metabolism , Myofibrils/pathology , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Nuclear Envelope/pathology
11.
Am J Pathol ; 190(1): 190-205, 2020 01.
Article in English | MEDLINE | ID: mdl-31726040

ABSTRACT

Duchenne muscular dystrophy (DMD) causes severe disability and death of young men because of progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of a spectrum of dystrophin isoforms expressed from the largest human gene. Although there is evidence for the loss of shorter isoforms having impact in the central nervous system, their role in muscle is unclear. We found that at 8 weeks, the active phase of pathology in dystrophic mice, dystrophin-null mice (mdxßgeo) presented with a mildly exacerbated phenotype but without an earlier onset, increased serum creatine kinase levels, or decreased muscle strength. However, at 12 months, mdxßgeo diaphragm strength was lower, whereas fibrosis increased, compared with mdx. The most striking features of the dystrophin-null phenotype were increased ectopic myofiber calcification and altered macrophage infiltration patterns, particularly the close association of macrophages with calcified fibers. Ectopic calcification had the same temporal pattern of presentation and resolution in mdxßgeo and mdx muscles, despite significant intensity differences across muscle groups. Comparison of the rare dystrophin-null patients against those with mutations affecting full-length dystrophins may provide mechanistic insights for developing more effective treatments for DMD.


Subject(s)
Calcinosis/pathology , Dystrophin/metabolism , Fibrosis/pathology , Macrophages/immunology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Vascular Calcification/pathology , Animals , Calcinosis/immunology , Calcinosis/metabolism , Dystrophin/genetics , Fibrosis/immunology , Fibrosis/metabolism , Inflammation , Macrophages/metabolism , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/metabolism , Vascular Calcification/immunology , Vascular Calcification/metabolism
12.
Exp Cell Res ; 397(1): 112348, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33130178

ABSTRACT

The muscle-intrinsic clock machinery is required for the maintenance of muscle growth, remodeling and function. Our previous studies demonstrated that the essential transcription activator of the molecular clock feed-back loop, Brain and Muscle Arnt-Like 1(Bmal1), plays a critical role in myogenic progenitor behavior to promote and regenerative myogenesis. Using genetic approaches targeting Bmal1 in the DMDmdx (mdx) dystrophic mouse model, here we report that the loss of Bmal1 function significantly accelerated dystrophic disease progression. In contrast to the mild dystrophic changes in mdx mice, the genetic loss-of-function of Bmal1 aggravated muscle damage in this dystrophic disease background, as indicated by persistently elevated creatine kinase levels, increased injury area and reduced muscle grip strength. Mechanistic studies revealed that markedly impaired myogenic progenitor proliferation and myogenic response underlie the defective new myofiber formation in the chronic dystrophic milieu. Taken together, our study identified the function of pro-myogenic clock gene Bmal1 in protecting against dystrophic damage, suggesting the potential for augmenting Bmal1 function to ameliorate dystrophic or degenerative muscle diseases.


Subject(s)
ARNTL Transcription Factors/metabolism , Disease Models, Animal , Muscle Development , Muscle, Skeletal/cytology , Muscular Dystrophy, Animal/prevention & control , Muscular Dystrophy, Duchenne/prevention & control , Regeneration , ARNTL Transcription Factors/genetics , Animals , Male , Mice , Mice, Inbred mdx , Mice, Knockout , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology
13.
Proc Natl Acad Sci U S A ; 115(41): E9745-E9752, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30181262

ABSTRACT

Duchenne muscular dystrophy (DMD) results from mutations in the gene encoding dystrophin which lead to impaired function of skeletal and cardiac muscle, but little is known about the effects of the disease on vascular smooth muscle cells (SMCs). Here we used the mdx mouse model to study the effects of mutant dystrophin on the regulation of cerebral artery and arteriole SMC contractility, focusing on an important Ca2+-signaling pathway composed of type 2 ryanodine receptors (RyR2s) on the sarcoplasmic reticulum (SR) and large-conductance Ca2+-activated K+ (BK) channels on the plasma membrane. Nanoscale superresolution image analysis revealed that RyR2 and BKα were organized into discrete clusters, and that the mean size of RyR2 clusters that colocalized with BKα was larger in SMCs from mdx mice (∼62 RyR2 monomers) than in controls (∼40 RyR2 monomers). We further found that the frequency and signal mass of spontaneous, transient Ca2+-release events through SR RyR2s ("Ca2+ sparks") were greater in SMCs from mdx mice. Patch-clamp electrophysiological recordings indicated a corresponding increase in Ca2+-dependent BK channel activity. Using pressure myography, we found that cerebral pial arteries and parenchymal arterioles from mdx mice failed to develop appreciable spontaneous myogenic tone. Inhibition of RyRs with tetracaine and blocking of BK channels with paxilline restored myogenic tone to control levels, demonstrating that enhanced RyR and BK channel activity is responsible for the diminished pressure-induced constriction of arteries and arterioles from mdx mice. We conclude that increased size of RyR2 protein clusters in SMCs from mdx mice increases Ca2+ spark and BK channel activity, resulting in cerebral microvascular dysfunction.


Subject(s)
Calcium/metabolism , Cerebral Arteries/pathology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Muscle, Smooth, Vascular/pathology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling , Cells, Cultured , Cerebral Arteries/metabolism , Dystrophin/physiology , Homeostasis , Male , Mice , Mice, Inbred mdx , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Nanotechnology , Sarcoplasmic Reticulum/metabolism , Vasoconstriction
14.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298968

ABSTRACT

Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.


Subject(s)
Cardiomyopathies/genetics , Heart/physiopathology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Diseases/genetics , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Disease Models, Animal , Energy Metabolism , Humans , Mice , Mitochondria, Heart/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle, Skeletal/ultrastructure , Muscular Atrophy/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology , Phenotype
15.
FASEB J ; 33(7): 8110-8124, 2019 07.
Article in English | MEDLINE | ID: mdl-30933664

ABSTRACT

The C57BL/10ScSn-Dmdmdx/J (BL10-mdx) mouse has been the most commonly used model for Duchenne muscular dystrophy (DMD) for decades. Their muscle dysfunction and pathology is, however, less severe than in patients with DMD, which complicates preclinical studies. Recent discoveries indicate that disease severity is exacerbated when muscular dystrophy mouse models are generated on a DBA2/J genetic background. Knowledge on the natural history of animal models is pivotal for high-quality preclinical testing. However, for BL10-mdx mice on a DBA2/J background (D2-mdx), limited data are available. We addressed this gap in the natural history knowledge. First, we compared histopathological aspects in skeletal muscles of young D2-mdx, BL10-mdx, and wild-type mice. Pathology was more pronounced in D2-mdx mice and differed in severity between muscles within individuals. Secondly, we subjected D2-mdx mice to a functional test regime for 34 weeks and identified that female D2-mdx mice outperform severely impaired males, making females less useful for functional preclinical studies. Direct comparisons between 10- and 34-wk-old D2-mdx mice revealed that disease pathology ameliorates with age. Heart pathology was progressive, with some features already evident at a young age. This natural history study of the D2-mdx mouse will be instrumental for experimental design of future preclinical studies.-Van Putten, M., Putker, K., Overzier, M., Adamzek, W. A., Pasteuning-Vuhman, S., Plomp, J. J., Aartsma-Rus, A. Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy.


Subject(s)
Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred mdx , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology
16.
FASEB J ; 33(2): 2047-2057, 2019 02.
Article in English | MEDLINE | ID: mdl-30216109

ABSTRACT

In skeletal muscle, extracellular matrix (ECM) remodeling can either support the complete regeneration of injured muscle or facilitate pathologic fibrosis and muscle degeneration. Muscular dystrophy (MD) is a group of genetic disorders that results in a progressive decline in muscle function and is characterized by the abundant deposition of fibrotic tissue. Unlike acute injury, where ECM remodeling is acute and transient, in MD, remodeling persists until fibrosis obstructs the regenerative efforts of diseased muscles. Thus, understanding how ECM is deposited and organized is critical in the context of muscle repair. Connective tissue growth factor (CTGF or CCN2) is a matricellular protein expressed by multiple cell types in response to tissue injury. Although used as a general marker of fibrosis, the cell type-dependent role of CTGF in dystrophic muscle has not been elucidated. To address this question, a conditional Ctgf myofiber and fibroblast-knockout mouse lines were generated and crossed to a dystrophic background. Only myofiber-selective inhibition of CTGF protected δ-sarcoglycan-null ( Sgcd-/-) mice from the dystrophic phenotype, and it did so by affecting collagen organization in a way that allowed for improvements in dystrophic muscle regeneration and function. To confirm that muscle-specific CTGF functions to mediate collagen organization, we generated mice with transgenic muscle-specific overexpression of CTGF. Again, genetic modulation of CTGF in muscle was not sufficient to drive fibrosis, but altered collagen content and organization after injury. Our results show that the myofibers are critical mediators of the deleterious effects associated with CTGF in MD and acutely injured skeletal muscle.-Petrosino, J. M., Leask, A., Accornero, F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle.


Subject(s)
Connective Tissue Growth Factor , Extracellular Matrix , Gene Expression Regulation , Muscle Fibers, Skeletal , Muscular Dystrophy, Animal , Animals , Connective Tissue Growth Factor/biosynthesis , Connective Tissue Growth Factor/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibrosis , Mice , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Sarcoglycans/deficiency
17.
PLoS Genet ; 13(10): e1007070, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29065150

ABSTRACT

Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor ß (TGFß) pathway, osteopontin encoded by the SPP1 gene and latent TGFß binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFß and TGFß-associated pathways. We identified that increased TGFß resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFß and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.


Subject(s)
Genes, Modifier , Latent TGF-beta Binding Proteins/physiology , Muscle, Skeletal/physiology , Muscular Dystrophy, Animal/genetics , Osteopontin/metabolism , Animals , Annexin A1/genetics , Annexin A1/metabolism , Annexin A6/genetics , Annexin A6/metabolism , Female , Gene Expression Regulation , Male , Mice , Mice, Inbred DBA , Mice, Knockout , Muscle, Skeletal/injuries , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Osteopontin/genetics , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Recovery of Function , Sarcolemma/physiology
18.
Am J Physiol Cell Physiol ; 317(1): C48-C57, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30995108

ABSTRACT

Mechanical forces regulate muscle development, hypertrophy, and homeostasis. Force-transmitting structures allow mechanotransduction at the sarcolemma, cytoskeleton, and nuclear envelope. There is growing evidence that Yes-associated protein (YAP) serves as a nuclear relay of mechanical signals and can induce a range of downstream signaling cascades. Dystrophin is a sarcolemma-associated protein, and its absence underlies the pathology in Duchenne muscular dystrophy. We tested the hypothesis that the absence of dystrophin in muscle would result in reduced YAP signaling in response to loading. Following in vivo contractile loading in muscles of healthy (wild-type; WT) mice and mice lacking dystrophin (mdx), we performed Western blots of whole and fractionated muscle homogenates to examine the ratio of phospho (cytoplasmic) YAP to total YAP and nuclear YAP, respectively. We show that in vivo contractile loading induced a robust increase in YAP expression and its nuclear localization in WT muscles. Surprisingly, in mdx muscles, active YAP expression was constitutively elevated and unresponsive to load. Results from qRT-PCR analysis support the hyperactivation of YAP in vivo in mdx muscles, as evidenced by increased gene expression of YAP downstream targets. In vitro assays of isolated myofibers plated on substrates with high stiffness showed YAP nuclear labeling for both genotypes, indicating functional YAP signaling in mdx muscles. We conclude that while YAP signaling can occur in the absence of dystrophin, dystrophic muscles have altered mechanotransduction, whereby constitutively active YAP results in a failure to respond to load, which could be attributed to the increased state of "pre-stress" with increased cytoskeletal and extracellular matrix stiffness.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Dystrophin/deficiency , Mechanotransduction, Cellular , Muscle Contraction , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/genetics , Disease Models, Animal , Dystrophin/genetics , Mice, Inbred mdx , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/physiopathology , Phosphorylation , YAP-Signaling Proteins
19.
Hum Mol Genet ; 26(11): 2018-2033, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28334989

ABSTRACT

Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a dramatic neuromuscular disease in which crippling muscle weakness is evident from birth. Here, we use the dyW mouse model for human MDC1A to trace the onset of the disease during development in utero. We find that myotomal and primary myogenesis proceed normally in homozygous dyW-/- embryos. Fetal dyW-/- muscles display the same number of myofibers as wildtype (WT) muscles, but by E18.5 dyW-/- muscles are significantly smaller and muscle size is not recovered post-natally. These results suggest that fetal dyW-/- myofibers fail to grow at the same rate as WT myofibers. Consistent with this hypothesis between E17.5 and E18.5 dyW-/- muscles display a dramatic drop in the number of Pax7- and myogenin-positive cells relative to WT muscles, suggesting that dyW-/- muscles fail to generate enough muscle cells to sustain fetal myofiber growth. Gene expression analysis of dyW-/- E17.5 muscles identified a significant increase in the expression of the JAK-STAT target gene Pim1 and muscles from 2-day and 3-week old dyW-/- mice demonstrate a dramatic increase in pSTAT3 relative to WT muscles. Interestingly, myotubes lacking integrin α7ß1, a laminin-receptor, also show a significant increase in pSTAT3 levels compared with WT myotubes, indicating that α7ß1 can act as a negative regulator of STAT3 activity. Our data reveal for the first time that dyW-/- mice exhibit a myogenesis defect already in utero. We propose that overactivation of JAK-STAT signaling is part of the mechanism underlying disease onset and progression in dyW-/- mice.


Subject(s)
Muscle Development/physiology , Muscular Dystrophies/metabolism , Animals , Disease Models, Animal , Janus Kinase 1/metabolism , Laminin/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies/embryology , Muscular Dystrophies/genetics , Muscular Dystrophy, Animal/embryology , Muscular Dystrophy, Animal/metabolism , Myogenin/metabolism , PAX7 Transcription Factor/metabolism , Receptors, Laminin , STAT3 Transcription Factor/metabolism , Signal Transduction
20.
Development ; 143(4): 658-69, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26884398

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca(2+) signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development.


Subject(s)
Calcium Signaling , Fetus/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Muscle Development , Muscle, Skeletal/embryology , Muscular Dystrophy, Duchenne/embryology , Muscular Dystrophy, Duchenne/metabolism , Animals , Biomarkers/metabolism , Biopsy , Calcium/metabolism , Calcium Channels/metabolism , Fetus/pathology , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Mice, Inbred mdx , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , PAX7 Transcription Factor/metabolism , Protein Kinase C-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL