Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.371
Filter
Add more filters

Publication year range
1.
Mol Cell ; 73(5): 1075-1082.e4, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849388

ABSTRACT

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.


Subject(s)
Antibodies/metabolism , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Oligonucleotide Array Sequence Analysis/methods , Oligopeptides/metabolism , Protein Array Analysis/methods , Antibody Affinity , Antibody Specificity , Automation, Laboratory , Binding Sites, Antibody , Catalysis , DNA Mutational Analysis/instrumentation , High-Throughput Nucleotide Sequencing/instrumentation , Kinetics , Mutation , O(6)-Methylguanine-DNA Methyltransferase/genetics , Oligonucleotide Array Sequence Analysis/instrumentation , Oligopeptides/genetics , Protein Array Analysis/instrumentation , Protein Binding , Protein Engineering , Workflow
2.
Proc Natl Acad Sci U S A ; 119(11): e2116218119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35259021

ABSTRACT

SignificanceWe directly visualize DNA translocation and lesion recognition by the O6-alkylguanine DNA alkyltransferase (AGT). Our data show bidirectional movement of AGT monomers and clusters on undamaged DNA that depended on Zn2+ occupancy of AGT. A role of cooperative AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Our data support preferential cluster formation by AGT at alkyl lesions, suggesting a role of these clusters in stabilizing lesion-bound complexes. From our data, we derive a new model for the lesion search and repair mechanism of AGT.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , DNA Repair , DNA/chemistry , DNA/genetics , Single Molecule Imaging , DNA/metabolism , DNA, Single-Stranded , Humans , Ions , Models, Molecular , O(6)-Methylguanine-DNA Methyltransferase/chemistry , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Protein Multimerization , Single Molecule Imaging/methods , Structure-Activity Relationship , Zinc/chemistry
3.
J Am Chem Soc ; 146(27): 18241-18252, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38815248

ABSTRACT

Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.


Subject(s)
Brain Neoplasms , Drug Resistance, Neoplasm , Humans , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Repair/drug effects , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/antagonists & inhibitors , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/therapeutic use
4.
Cancer Sci ; 115(10): 3403-3414, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39101880

ABSTRACT

This study investigated the role of O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation hierarchy and heterogeneity in grade 2-3 gliomas, focusing on variations in chemotherapy benefits and resection dependency. A cohort of 668 newly diagnosed grade 2-3 gliomas, with comprehensive clinical, radiological, and molecular data, formed the basis of this analysis. The extent of resection was categorized into gross total resection (GTR ≥100%), subtotal resection (STR >90%), and partial resection (PR ≤90%). MGMTp methylation levels were examined using quantitative pyrosequencing. Our findings highlighted the critical role of GTR in improving the prognosis for astrocytomas (IDH1/2-mutant and 1p/19q non-codeleted), contrasting with its lesser significance for oligodendrogliomas (IDH1/2 mutation and 1p/19q codeletion). Oligodendrogliomas demonstrated the highest average MGMTp methylation levels (median: 28%), with a predominant percentage of methylated cases (average methylation levels >20%). Astrocytomas were more common in the low-methylated group (10%-20%), while IDH wild-type gliomas were mostly unmethylated (<10%). Spatial distribution analysis revealed a decrement in frontal lobe involvement from methylated, low-methylated to unmethylated cases (72.8%, 59.3%, and 47.8%, respectively). In contrast, low-methylated and unmethylated cases were more likely to invade the temporal-insular region (19.7%, 34.3%, and 40.4%, respectively). Astrocytomas with intermediate MGMTp methylation were notably associated with temporal-insular involvement, potentially indicating a moderate response to temozolomide and underscoring the importance of aggressive resection strategies. In conclusion, our study elucidates the complex interplay of MGMTp methylation hierarchy and heterogeneity among grade 2-3 gliomas, providing insights into why astrocytomas and IDH wild-type lower-grade glioma might derive less benefit from chemotherapy.


Subject(s)
Brain Neoplasms , DNA Methylation , Glioma , Neoplasm Grading , Promoter Regions, Genetic , Humans , Promoter Regions, Genetic/genetics , Male , Female , Middle Aged , Glioma/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Adult , Aged , Isocitrate Dehydrogenase/genetics , Mutation , Oligodendroglioma/genetics , Oligodendroglioma/pathology , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Prognosis , World Health Organization , DNA Repair Enzymes/genetics , Tumor Suppressor Proteins/genetics , Young Adult , Astrocytoma/genetics , Astrocytoma/pathology , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism
5.
Anal Chem ; 96(11): 4487-4494, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38451469

ABSTRACT

O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.


Subject(s)
Carbocyanines , DNA, Catalytic , Guanine/analogs & derivatives , Quantum Dots , Humans , DNA, Catalytic/metabolism , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA/chemistry , Demethylation
6.
Biochem Biophys Res Commun ; 695: 149418, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38176171

ABSTRACT

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.


Subject(s)
Brain Neoplasms , Glioma , Temozolomide , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Modification Methylases/pharmacology , DNA Modification Methylases/therapeutic use , DNA Repair Enzymes/genetics , Drug Resistance, Neoplasm , Glioma/drug therapy , Glioma/genetics , Methionine/pharmacology , Mice, Nude , O(6)-Methylguanine-DNA Methyltransferase , Racemethionine/pharmacology , Temozolomide/therapeutic use , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics
7.
Pharmacol Res ; 199: 106990, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984506

ABSTRACT

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Subject(s)
Glioblastoma , Polyphosphates , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Nucleosides/pharmacology , Nucleosides/therapeutic use , Caspases , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use , Nucleotides , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/pharmacology , O(6)-Methylguanine-DNA Methyltransferase/therapeutic use , Deoxyguanosine/pharmacology , Deoxyguanosine/therapeutic use , DNA , Drug Resistance, Neoplasm
8.
J Neurooncol ; 166(1): 155-165, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150062

ABSTRACT

OBJECTIVES: This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS: We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS: The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION: Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.


Subject(s)
Brain Neoplasms , Glioma , Humans , DNA Methylation , Glioma/diagnostic imaging , Glioma/genetics , Glioma/drug therapy , DNA Repair Enzymes/genetics , O(6)-Methylguanine-DNA Methyltransferase/genetics , DNA Modification Methylases/genetics , Promoter Regions, Genetic , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Tumor Suppressor Proteins/genetics
9.
J Neurooncol ; 166(1): 129-142, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224404

ABSTRACT

BACKGROUND: Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS: Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS: We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION: dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.


Subject(s)
Brain Neoplasms , Glioma , Guanine , Humans , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Dacarbazine/pharmacology , DNA/genetics , DNA/metabolism , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Guanine/analogs & derivatives , O(6)-Methylguanine-DNA Methyltransferase/genetics , Temozolomide/pharmacology
10.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277015

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Temozolomide/pharmacology , Temozolomide/therapeutic use , Dacarbazine/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , O(6)-Methylguanine-DNA Methyltransferase/genetics , Retrospective Studies , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Methylation , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Methylation , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
11.
Org Biomol Chem ; 22(14): 2749-2753, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38502038

ABSTRACT

Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O6-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT. Our fluorescence probe covalently labelled the MGMT active site C145, producing a 18-fold increase in fluorescence. Compared to previous fluorescent probes derived from a substrate-based inhibitor, our probe had improved binding and reaction rate. Overall, our chloromethyl triazole-based fluorescence MGMT probe is a promising tool for measuring MGMT activity to predict temozolomide resistance.


Subject(s)
Antineoplastic Agents , Guanine/analogs & derivatives , Temozolomide , O(6)-Methylguanine-DNA Methyltransferase/genetics , DNA , Antineoplastic Agents, Alkylating/pharmacology
12.
J Chem Inf Model ; 64(8): 3411-3429, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38511939

ABSTRACT

Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.


Subject(s)
DNA Repair , Molecular Docking Simulation , Molecular Dynamics Simulation , O(6)-Methylguanine-DNA Methyltransferase , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/chemistry , O(6)-Methylguanine-DNA Methyltransferase/antagonists & inhibitors , Humans , Quantum Theory , Drug Resistance, Neoplasm/drug effects , Nitrosourea Compounds/chemistry , Nitrosourea Compounds/pharmacology , Nitrosourea Compounds/metabolism
13.
Nucleic Acids Res ; 50(11): 6313-6331, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35648484

ABSTRACT

Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.


Subject(s)
Dacarbazine , Parthanatos , Alkylating Agents , DNA , DNA Repair , Dacarbazine/pharmacology , Epigenesis, Genetic , Guanine/analogs & derivatives , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , Temozolomide/pharmacology
14.
Neurosurg Rev ; 47(1): 285, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907038

ABSTRACT

To evaluate the utility of magnetic resonance imaging (MRI) histogram parameters in predicting O(6)-methylguanine-DNA methyltransferase promoter (pMGMT) methylation status in IDH-wildtype glioblastoma (GBM). From November 2021 to July 2023, forty-six IDH-wildtype GBM patients with known pMGMT methylation status (25 unmethylated and 21 methylated) were enrolled in this retrospective study. Conventional MRI signs (including location, across the midline, margin, necrosis/cystic changes, hemorrhage, and enhancement pattern) were assessed and recorded. Histogram parameters were extracted and calculated by Firevoxel software based on contrast-enhanced T1-weighted images (CET1). Differences and diagnostic performance of conventional MRI signs and histogram parameters between the pMGMT-unmethylated and pMGMT-methylated groups were analyzed and compared. No differences were observed in the conventional MRI signs between pMGMT-unmethylated and pMGMT-methylated groups (all p > 0.05). Compared with the pMGMT-methylated group, pMGMT-unmethylated showed a higher minimum, mean, Perc.01, Perc.05, Perc.10, Perc.25, Perc.50, and coefficient of variation (CV) (all p < 0.05). Among all significant CET1 histogram parameters, minimum achieved the best distinguishing performance, with an area under the curve of 0.836. CET1 histogram parameters could provide additional value in predicting pMGMT methylation status in patients with IDH-wildtype GBM, with minimum being the most promising parameter.


Subject(s)
Brain Neoplasms , DNA Methylation , Glioblastoma , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Promoter Regions, Genetic , Humans , Glioblastoma/genetics , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Magnetic Resonance Imaging/methods , Male , Female , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Middle Aged , Promoter Regions, Genetic/genetics , Adult , DNA Methylation/genetics , Aged , Isocitrate Dehydrogenase/genetics , Retrospective Studies , O(6)-Methylguanine-DNA Methyltransferase/genetics
15.
Genomics ; 115(3): 110616, 2023 05.
Article in English | MEDLINE | ID: mdl-36948276

ABSTRACT

Identifying genetic factors affecting the regulation of the O-6-Methylguanine-DNA Methyltransferase (MGMT) gene and estimating the genetic contribution of the MGMT gene through within-pair correlation in monozygotic twin pairs is of particular importance in various types of cancer such as glioblastoma. We used gene expression data in whole blood from 448 monozygotic twins from the Middle Age Danish Twins (MADT) study to investigate genetic regulation of the MGMT gene by performing a genome-wide association study (GWAS) of the variation in MGMT expression. Additionally, we estimated within-pair dependence measures of the expression values looking for the genetic influence of significant identified genes. We identified 243 single nucleotide polymorphisms (SNPs) significantly (p < 5e-8) associated with expression of MGMT, all located on chromosome 10 near the MGMT gene. Of the 243 SNPs, 7 are novel cis-eQTLs. By further looking into the suggestively significant SNPs (increasing cutoff to p = 1e-6), we identified 11 suggestive trans-eQTLs located on chromosome 17. These variants were in or proximal to a total of seven genes, which may regulate MGMT expression. The within-pair correlation of the expression of MGMT, TRIM37, and SEPT4 provided the upper bound genetic influence of these genes. Overall, identifying cis- or trans-acting genetic variations regulating the MGMT gene can pave the way for a better understanding of the MGMT gene function and ultimately in understanding the patient's sensitivity to therapeutic alkylating agents.


Subject(s)
Glioblastoma , Twins, Monozygotic , Middle Aged , Humans , Genome-Wide Association Study , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Gene Expression , Denmark , Glioblastoma/genetics , Glioblastoma/metabolism , DNA Methylation , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , DNA Modification Methylases , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism
16.
J Biol Phys ; 50(1): 71-87, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38150168

ABSTRACT

Methyl damage to DNA bases is common in the cell nucleus. O6-alkylguanine-DNA alkyl transferase (AGT) may be a promising candidate for direct damage reversal in methylated DNA (mDNA) at the O6 point of the guanine. Indeed, atomic-level investigations in the contact region of AGT-DNA complex can provide an in-depth understanding of their binding mechanism, allowing to evaluate the silico-drug nature of AGT and its utility in removing methyl damage in DNA. In this study, molecular dynamics (MD) simulation was utilized to examine the flipping of methylated nucleotide, the binding mechanism between mDNA and AGT, and the comparison of binding strength prior and post methyl transfer to AGT. The study reveals that methylation at the O6 atom of guanine weakens the hydrogen bond (H-bond) between guanine and cytosine, permitting for the flipping of such nucleotide. The formation of a H-bond between the base pair of methylated nucleotide (i.e., cytosine) and the intercalated arginine of AGT also forces the nucleotide to rotate. Following that, electrostatics and van der Waals contacts as well as hydrogen bonding contribute to form the complex of DNA and protein. The stronger binding of AGT with DNA before methyl transfer creates the suitable condition to transfer methyl adduct from DNA to AGT.


Subject(s)
DNA Repair , O(6)-Methylguanine-DNA Methyltransferase , O(6)-Methylguanine-DNA Methyltransferase/chemistry , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Nucleotides/chemistry , DNA/chemistry , Guanine/chemistry , Guanine/metabolism , Cytosine
17.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612480

ABSTRACT

The aim of this study was to investigate gene expression alterations associated with overall survival (OS) in glioblastoma (GBM). Using the Nanostring nCounter platform, we identified four genes (COL1A2, IGFBP3, NGFR, and WIF1) that achieved statistical significance when comparing GBM with non-neoplastic brain tissue. The four genes were included in a multivariate Cox Proportional Hazard model, along with age, extent of resection, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation, to create a unique glioblastoma prognostic index (GPI). The GPI score inversely correlated with survival: patient with a high GPI had a median OS of 7.5 months (18-month OS = 9.7%) whereas patients with a low GPI had a median OS of 20.1 months (18-month OS = 54.5%; log rank p-value = 0.004). The GPI score was then validated in 188 GBM patients from The Cancer Genome Atlas (TCGA) from a national data base; similarly, patients with a high GPI had a median OS of 10.5 months (18-month OS = 12.4%) versus 16.9 months (18-month OS = 41.5%) for low GPI (log rank p-value = 0.0003). We conclude that this novel mRNA-based prognostic index could be useful in classifying GBM patients into risk groups and refine prognosis estimates to better inform treatment decisions or stratification into clinical trials.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Genes, Regulator , Databases, Factual , O(6)-Methylguanine-DNA Methyltransferase , Gene Expression
18.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203783

ABSTRACT

The O-6-methylguanine-DNA methyltransferase (MGMT) gene is a critical guardian of genomic integrity. MGMT methylation in diffuse gliomas serves as an important determinant of patients' prognostic outcomes, more specifically in glioblastomas (GBMs). In GBMs, the absence of MGMT methylation, known as MGMT promoter unmethylation, often translates into a more challenging clinical scenario, tending to present resistance to chemotherapy and a worse prognosis. A pyrosequencing (PSQ) technique was used to analyze MGMT methylation status at different cut-offs (5%, 9%, and 11%) in a sample of 78 patients diagnosed with IDH-wildtype grade 4 GBM. A retrospective analysis was provided to collect clinicopathological and prognostic data. A statistical analysis was used to establish an association between methylation status and treatment response (TR) and disease-specific survival (DSS). The patients with methylated MGMT status experienced progressive disease rates of 84.6%, 80%, and 78.4% at the respective cut-offs of 5%, 9%, and 11%. The number was considerably higher when considering unmethylated patients, as all patients (100%), regardless of the cut-off, presented progressive disease. Regarding disease-specific survival (DSS), the Hazard Ratio (HR) was HR = 0.74 (0.45-1.24; p = 0.251); HR = 0.82 (0.51-1.33; p = 0.425); and HR = 0.79 (0.49-1.29; p = 0.350), respectively. Our study concludes that there is an association between MGMT unmethylation and worse TR and DSS. The 9% cut-off demonstrated a greater potential for patient survival as a function of time, which may shed light on the future need for standardization of MGMT methylation positivity parameters in PSQ.


Subject(s)
Glioblastoma , Guanine , Isocitrate Dehydrogenase , Humans , DNA , Glioblastoma/genetics , Guanine/analogs & derivatives , High-Throughput Nucleotide Sequencing , Isocitrate Dehydrogenase/genetics , Methylation , O(6)-Methylguanine-DNA Methyltransferase/genetics , Retrospective Studies
19.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125763

ABSTRACT

In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Humans , DNA Repair/drug effects , DNA Breaks, Double-Stranded/drug effects , Alkylation , Temozolomide/pharmacology , DNA/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Animals , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/genetics
20.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612892

ABSTRACT

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM, and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein expression levels may offer additional insights into the mechanistic understanding of MGMT but, currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection aims to identify the most informative features to build accurate and interpretable prediction models. This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter methylation status and serum protein expression in patients with GBM. Our method provides promising results, reducing dimensionality (by more than 95%) when employed on two large-scale proteomic datasets (7k SomaScan® panel and CPTAC) for all our analyses. The computational results indicate that the proposed approach provides 14 shared serum biomarkers that may be helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given further validation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Proteomics , Temozolomide/therapeutic use , Blood Proteins , Brain Neoplasms/genetics , O(6)-Methylguanine-DNA Methyltransferase , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL