Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
Add more filters

Publication year range
1.
Ecotoxicol Environ Saf ; 282: 116716, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39018734

ABSTRACT

Anaerobic methane oxidation (AOM) can drive soil arsenate reduction, a process known as methane-dependent arsenate reduction (M-AsR), which is a critical driver of arsenic (As) release in soil. Low molecular weight organic acids (LMWOAs), an important component of rice root exudates, have an unclear influence and mechanism on the M-AsR process. To narrow this knowledge gap, three typical LMWOAs-citric acid, oxalic acid, and acetic acid-were selected and added to As-contaminated paddy soils, followed by the injection of 13CH4 and incubation under anaerobic conditions. The results showed that LMWOAs inhibited the M-AsR process and reduced the As(III) concentration in soil porewater by 35.1-65.7 % after 14 days of incubation. Among the LMWOAs, acetic acid exhibited the strongest inhibition, followed by oxalic and citric acid. Moreover, LMWOAs significantly altered the concentrations of ferrous iron and dissolved organic carbon in the soil porewater, consequently impacting the release of As in the soil. The results of qPCR and sequencing analysis indicated that LMWOAs inhibited the M-AsR process by simultaneously suppressing microbes associated with ANME-2d and arrA. Our findings provide a theoretical basis for modulating the M-AsR process and enhance our understanding of the biogeochemical cycling of As in paddy soils under rhizosphere conditions.


Subject(s)
Arsenates , Methane , Oryza , Oxalic Acid , Oxidation-Reduction , Soil Microbiology , Soil Pollutants , Soil , Soil Pollutants/chemistry , Methane/chemistry , Arsenates/chemistry , Oxalic Acid/chemistry , Soil/chemistry , Acetic Acid/chemistry , Citric Acid/chemistry , Molecular Weight
2.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970698

ABSTRACT

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Subject(s)
Charcoal , Metals, Heavy , Soil Pollutants , Soil , Charcoal/chemistry , Soil Pollutants/chemistry , Metals, Heavy/chemistry , Soil/chemistry , Molecular Weight , Hydrogen-Ion Concentration , Cadmium/chemistry , Tartrates/chemistry , Malates/chemistry , Citric Acid/chemistry , Environmental Restoration and Remediation/methods , Oxalic Acid/chemistry , Adsorption , Oryza/chemistry
3.
Georgian Med News ; (349): 25-30, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963196

ABSTRACT

Antioxidants are widely used in medicine due to their ability to bind free radicals - active biomolecules that destroy the genetic apparatus of cells and the structure of their membranes, which makes it possible to reduce the intensity of oxidative processes in the body. In a living organism, free radicals are involved in various processes, but their activity is controlled by antioxidants. The purpose of this work was to conduct a series of studies to identify the antioxidant activity of new synthesized compounds of a series of oxalic acid diamides in the brain and liver tissue of white rats in vivo and in vitro experiments, as well as to determine their potential pharmacological properties. The studies were conducted on outbred white male rats, weighing 180-200 g, kept on a normal diet. After autopsy, the brain and liver were isolated, washed with saline, cleared of blood vessels, and homogenized in Tris-HCl buffer (pH-7.4) (in vitro). The research results showed significant antioxidant activity (AOA) of all compounds with varying effectiveness. The most pronounced activity was demonstrated by compound SV-425 in both brain and liver tissues. Compound SV-427 demonstrated the least activity, with levels in brain tissue and liver tissue. In addition, all physicochemical descriptors of the studied compounds comply with Lipinski's rule of five to identify new molecules for the treatment of oxidative stress. From the data obtained, it can be concluded that the studied compounds have antioxidant properties, helping to protect cells from oxidative stress. This is important for the prevention and treatment of diseases associated with increased levels of free radicals.


Subject(s)
Antioxidants , Brain , Lipid Peroxidation , Liver , Oxalic Acid , Animals , Brain/metabolism , Brain/drug effects , Liver/metabolism , Liver/drug effects , Male , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Free Radicals/metabolism , Lipid Peroxidation/drug effects , Oxalic Acid/chemistry , Oxalic Acid/metabolism , Oxalic Acid/pharmacology , Diamide/pharmacology , Diamide/chemistry , Oxidative Stress/drug effects , Oxidation-Reduction/drug effects
4.
Appl Microbiol Biotechnol ; 107(23): 7331-7346, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37736792

ABSTRACT

In the context of e-waste recycling by fungal bioleaching, nickel and cobalt precipitate as toxic metals by oxalic acid, whereas organic acids, such as citric, act as a high-performance chelating agent in dissolving these metals. Oxalic acid elimination requires an excess and uneconomical carbon source concentration in culture media. To resolve this issue, a novel and straightforward systems metabolic engineering method was devised to switch metabolic flux from oxalic acid to citric acid. In this technique, the genome-scale metabolic model of Aspergillus niger was applied to predicting flux variability and key reactions through the calculation of multiple optimal solutions for cellular regulation. Accordingly, BRENDA regulators and a novel molecular docking-oriented approach were defined a regulatory medium for this end. Then, ligands were evaluated in fungal culture to assess their impact on organic acid production for bioleaching of copper and nickel from waste telecommunication printed circuit boards. The protein structure of oxaloacetate hydrolase was modeled based on homology modeling for molecular docking. Metformin, glutathione, and sodium fluoride were found to be effective as inhibitors of oxalic acid production, enabling the production of 8100 ppm citric acid by controlling cellular metabolism. Indirect bioleaching demonstrated that nickel did not precipitate, and the bioleaching efficiency of copper and nickel increased from 40% and 24% to 61% and 100%, respectively. Bioleaching efficiency was evaluated qualitatively by FE-SEM, EDX, mapping, and XRD analysis. KEY POINTS: • A regulatory-systemic procedure for controlling cellular metabolism was introduced • Metformin inhibited oxalic acid, leading to 8100 ppm citric acid production • Bioleaching of copper and nickel in TPCBs improved by 21% and 76.


Subject(s)
Aspergillus niger , Metformin , Aspergillus niger/metabolism , Copper/metabolism , Nickel , Molecular Docking Simulation , Oxalic Acid/chemistry , Oxalic Acid/metabolism , Citric Acid/metabolism , Metformin/metabolism
5.
Ecotoxicol Environ Saf ; 266: 115593, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37856985

ABSTRACT

Vermicompost is a promising amendment for immobilization of cadmium (Cd) in soils; however, its effectiveness can be influenced by rhizosphere environment conditions, such as pH and the presence of low-molecular-weight organic acids (LMWOAs). In this study, a batch experiment was conducted to examine the characteristics of Cd adsorption by vermicompost at different pH (pH = 3, 5, and 7) and after the addition of different LMWOAs (oxalic acid; citric acid; malic acid). Furthermore, a series of morphology and structural analyses were conducted to elucidate the mechanisms of observed effects. The results showed that the adsorption capacity of vermicompost for Cd increased as pH increased, and chemisorption dominated the adsorption process. Changes in pH altered adsorption performance by affecting the -OH groups of alcohol/phenol and the -CH2 groups of aliphatics. Further, the addition of oxalic acid promoted Cd adsorption, and the effect was concentration dependent. Modifying the verimicompost surface with more adsorption sites might be the main reason. Conversely, citric acid and malic acid showed the ability to inhibit Cd adsorption by vermicompost. Citric acid caused a blocking effect by covering flocculent substances on the vermicompost surface while reducing surface adsorption sites by dissolving mineral components such as iron oxides. However, the action of malic acid did not appear to be related to changes in morphology or the structure of vermicompost. Overall, the results of this study partially explain the limited effectiveness of Cd immobilization within the rhizosphere by vermicompost, and provide theoretical support for regulating rhizosphere environments to improve the effectiveness of vermicompost immobilization of Cd.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Adsorption , Rhizosphere , Soil/chemistry , Organic Chemicals , Oxalic Acid/chemistry , Citric Acid/chemistry , Hydrogen-Ion Concentration , Soil Pollutants/analysis
6.
Environ Sci Technol ; 56(24): 17753-17762, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36445928

ABSTRACT

Hydroxyl radical-dominated oxidation in catalytic ozonation is, in particular, important in water treatment scenarios for removing organic contaminants, but the mechanism about ozone-based radical oxidation processes is still unclear. Here, we prepared a series of transitional metal (Co, Mn, Ni) single-atom catalysts (SACs) anchored on graphitic carbon nitride to accelerate ozone decomposition and produce highly reactive ·OH for oxidative destruction of a water pollutant, oxalic acid (OA). We experimentally observed that, depending on the metal type, OA oxidation occurred dominantly either in the bulk phase, which was the case for the Mn catalyst, or via a combination of the bulk phase and surface reaction, which was the case for the Co catalyst. We further performed density functional theory simulations and in situ X-ray absorption spectroscopy to propose that the ozone activation pathway differs depending on the oxygen binding energy of metal, primarily due to differential adsorption of O3 onto metal sites and differential coordination configuration of a key intermediate species, *OO, which is collectively responsible for the observed differences in oxidation mechanisms and kinetics.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Hydroxyl Radical/chemistry , Oxidation-Reduction , Metals , Catalysis , Oxalic Acid/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
7.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144561

ABSTRACT

A batch experiment was conducted to examine the behavior of nitrate, organic ligands, and phosphate in the co-presence of biochar and three common low-molecular-weight organic acids (LMWOAs). The results show that citrate, oxalate, and malate ions competed with nitrate ion for the available adsorption sites on the biochar surfaces. The removal rate of LMWOA ligands by the biochar via adsorption grew with increasing solution pH. The adsorbed divalent organic ligands created negatively charged sites to allow binding of cationic metal nitrate complexes. A higher degree of biochar surface protonation does not necessarily enhance nitrate adsorption. More acidic conditions formed under a higher dose of LMWOAs tended to make organic ligands predominantly in monovalent forms and failed to create negatively charged sites to bind cationic metal nitrate complexes. This could adversely affect nitrate removal efficiency in the investigated systems. LMWOAs caused significant release of phosphate from the biochar. The phosphate in the malic acid treatment tended to decrease over time, while the opposite was observed in the citric- and oxalic-acid treatments. This was caused by re-immobilization of phosphate in the former due to the marked increase in solution pH over time.


Subject(s)
Nitrates , Phosphates , Adsorption , Charcoal/chemistry , Citric Acid/chemistry , Malates/chemistry , Nitrates/chemistry , Organic Chemicals/chemistry , Oxalic Acid/chemistry , Phosphates/chemistry
8.
Chem Pharm Bull (Tokyo) ; 69(9): 877-885, 2021.
Article in English | MEDLINE | ID: mdl-34470952

ABSTRACT

The aim of this study was to evaluate the effect of three coformers and five disintegrants in the granulation formulation on the dissociation of cocrystal during the granulation process by monitoring wet granulation with probe-type low-frequency Raman (LF-Raman) spectroscopy. As model cocrystals, paracetamol (APAP)-oxalic acid (OXA), APAP-maleic acid (MLA), and APAP-trimethylglycine (TMG) were used. The monitoring of the granulation recipe containing cocrystals during wet granulation was performed over time with high-performance LF-Raman spectrometry and the dissociation rate was calculated from the results of multivariate analysis of LF-Raman spectra. The dissociation rate decreased in the order of APAP-TMG, APAP-OXA, and APAP-MLA, showing the same order as observed in Powder X-ray diffraction measurements. Furthermore, to compare the effect of disintegrants on the dissociation rate of APAP-OXA, LF-Raman monitoring was performed for the granulation recipes containing five typical disintegrants (two low-substitution hydroxypropyl cellulose (HPC), cornstarch (CSW), carmellose sodium (CMC), and crospovidone (CRP)). The dissociation rate of APAP-OXA decreased in the order of CSW, HPCs, CMC, and CRP. This difference in the dissociation rate of APAP-OXA was thought to be due to the disintegration mechanism of the disintegrants and the water absorption ratio, which was expected to affect the water behavior on the disintegrant surface during wet granulation. These results suggested that probe-type LF-Raman spectroscopy is useful to monitor the dissociation behavior of cocrystals during wet granulation and can compare the relative stability of cocrystal during wet granulation between different formulations.


Subject(s)
Acetaminophen/chemistry , Glycine/chemistry , Maleates/chemistry , Oxalic Acid/chemistry , Crystallography, X-Ray , Glycine/analogs & derivatives , Models, Molecular , Spectrum Analysis, Raman
9.
Wilderness Environ Med ; 32(1): 98-101, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33518496

ABSTRACT

Star fruit (Averrhoa carambola) is a popular fruit in many tropical countries, including Sri Lanka. It is rich in oxalic acid, which is nephrotoxic in higher concentrations. The development of both acute (AKI) and chronic kidney injury after oxalate nephropathy is often underrecognized. Here we discuss the risk factors, clinical features, treatment, and outcomes of 4 patients who developed AKI after star fruit ingestion. Baseline clinical characteristics, the amount of star fruit ingested, clinical presentation, investigation, and outcome of the patients (ages 28, 50, 54, and 55 y; all male) were traced. More common symptoms of acute star fruit intoxication were nausea, vomiting, and abdominal and back pain, followed by low urine output and high serum creatinine over hours to days. Urinary analysis of all patients demonstrated oxalate crystals. Histopathologic examination of renal tissues of all 4 patients revealed acute tubular damage with calcium oxalate crystals, interstitial edema, and inflammatory cellular infiltration. The presence of calcium oxalate crystals was further confirmed with the brilliant birefringence seen under polarized light. Two patients needed intermittent hemodialysis over a week owing to oliguria and uremia. The other 2 patients did not require hemodialysis and had improvement of renal function with supportive treatment. All had high renal function on discharge but were back to normal within a month. This study highlights AKI as a serious complication of star fruit ingestion. The type and quantity of star fruit ingested and some patient factors may play a role in the pathogenesis of AKI. Public education about this serious uncommon complication is important.


Subject(s)
Acute Kidney Injury/etiology , Averrhoa/chemistry , Fruit/chemistry , Adult , Humans , Male , Middle Aged , Oxalic Acid/chemistry , Renal Dialysis , Retrospective Studies
10.
Biopolymers ; 111(5): e23351, 2020 May.
Article in English | MEDLINE | ID: mdl-32163593

ABSTRACT

Chitin displays a highly rigid structure due to the vast intra- and intermolecular hydrogen bonding, thus hindering its dissolution and deacetylation using most solvents. Deep eutectic solvents (DESs) are special and environmentally friendly solvents composed of a hydrogen bond acceptor and a hydrogen bond donor. This allows them to dissolve chitin by disturbing its natural hydrogen bonding while establishing new bonds, hence turning the polymer more susceptible to solvents. Therefore, four distinct DESs (choline chloride-lactic acid ([Ch]Cl:LA), choline chloride:oxalic acid ([Ch]Cl:OA), choline chloride:urea ([Ch]Cl:U) and betaine-glycerol (Bet:G)) were applied in chitin dissolution, being the most performant ones further applied in its homogenous N-deacetylation with NaOH. In this work, a milder and more biocompatible approach was carried out by using 30 wt% NaOH at 80°C, instead of the typical ≥40 wt% NaOH at temperatures ≥100°C. Herein, the reaction process took up to 18 hours, being the results analyzed through ATR-FTIR. Chitin was converted into chitosan with a 70-80% degree of deacetylation (DDA) in a short period while using homogenous conditions. These promising results provide the first proof of concept of the ability of Bet:G and [Ch]Cl:LA-based DESs to be used as a greener approach for the chitin homogeneous N-deacetylation.


Subject(s)
Chitin/chemistry , Solvents/chemistry , Chitin/metabolism , Chitosan/chemistry , Chitosan/metabolism , Choline/chemistry , Glycerol/chemistry , Hydrogen Bonding , Oxalic Acid/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Urea/chemistry
11.
Bioorg Chem ; 100: 103872, 2020 07.
Article in English | MEDLINE | ID: mdl-32348934

ABSTRACT

As human serum albumin (HSA) being the most abundant blood protein involved in the role of transport of molecules (drugs), we have designed HSA binding organic charge transfer complex between 2-hydroxypyridine (donor) and oxalic acid (acceptor) showing antimicrobial activities. The type of interactions between HSA and synthesized complex at the molecular level was studied through fluorescence spectroscopy. Binding constant along with the type of quenching mechanism was shown through the Stern Volmer equation. Molecular docking tool also justifies the binding results obtained from fluorescence by providing different interactions, FEB, hydrogen bonding and H-bonding surfaces. Antimicrobial activity was screened against three bacteria - Escheichia coli, Bacteria subtilis and Staphylococus aureus strain and three fungi - Aspergillus Niger, Candida Albicans and Fusarium Oxysporun using disc diffusion method. The characterization of the complex was done through different techniques (FTIR, UV-vis spectroscopy, TGA-DTA). Job's method along with single crystal XRD provides 2:1 stoichiometry and O⋯H-O type of H-bonding between acceptor and donor molecule. Physical parameters (KCT, εCT, ID, ΔG°, µEN, f and RN) were also calculated for the synthesized complex. Theoretical computational data (DFT and Hirshfeld surface) have also been calculated for the complex.


Subject(s)
Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Oxalic Acid/chemistry , Pyridones/chemistry , Serum Albumin, Human/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Binding Sites , Crystallography, X-Ray , Fungi/drug effects , Humans , Hydrogen Bonding , Molecular Docking Simulation , Mycoses/drug therapy , Oxalic Acid/metabolism , Oxalic Acid/pharmacology , Protein Binding , Pyridones/metabolism , Pyridones/pharmacology , Serum Albumin, Human/metabolism
12.
Ecotoxicol Environ Saf ; 201: 110873, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32544750

ABSTRACT

Batch experiments were conducted to examine the differential effects of biochar pyrolysis temperature and low-molecular-weight organic acids on the reduction of As(V) and Cr(VI) driven by Pennisetum hydridum biochar. The results showed that pyrolysis temperature significantly affected the reducing strength of the biochar. Biochar produced at 500 °C had a stronger electron-donating capacity than did the biochars produced at 300 and 700 °C. In the co-presence of the biochar and a low-molecular-weight organic acid, arsenic and chromium behaved differently. Oxalic acid and malic acid tended to have better effects on enhancing biochar-driven Cr(VI) reduction, as compared to citric acid while the opposite was observed for biochar-driven As(V) reduction. Biochar produced at 300 °C was more favourable for Cr(VI) reduction, as compared to the higher-temperature biochars while the opposite was observed for As(V) reduction in the presence of low-molecular-weight organic acids. This may make the lower-temperature biochar ideal for remediating contaminated soils containing both As(V) and Cr(VI) since it could maximize Cr(VI) reduction while minimizing As(V) reduction.


Subject(s)
Arsenates/metabolism , Charcoal/chemistry , Chromium/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Citric Acid/chemistry , Malates/chemistry , Molecular Weight , Oxalic Acid/chemistry , Pyrolysis , Temperature
13.
Drug Dev Ind Pharm ; 46(2): 179-187, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31937148

ABSTRACT

Spray freeze drying (SFD) produces suitable particles for the pharmaceutical formulation of dry powders used in dry powder inhalers (DPIs). However, SFD particles have large specific surface area and are partially made up of amorphous solids; this state is hygroscopic and would lead to changes in physicochemical properties by humidity when the particles are stored over the long-term or under high humidity conditions such as in the lungs. This study focused on the application of SFD with a cocrystal technique which can add humidity resistance to the active pharmaceutical ingredients (APIs), and the investigation of the physicochemical properties under high humidity conditions. Cocrystal samples containing theophylline anhydrate (THA) and oxalic acid (OXA) in a molar ratio of 2:1 were prepared by SFD. The crystalline structure, thermal behavior, solid-state, hygroscopicity, stability, and aerodynamic properties were evaluated. Simultaneous in situ measurement by near-infrared and Raman (NIR-Raman) spectroscopy was performed to analyze the humidification process. The SFD sample had a porous particle and an optimal aerodynamic particle size (3.03 µm) although the geometric particle diameter was 7.20 µm. In addition, the sample formed the THAOXA cocrystal with partial coamorphous. The hydration capacity and pseudopolymorphic transformation rate of the SFD sample were much lower than those of THA under conditions of 96.4% relative humidity and 40.0°C temperature because of the cocrystal formation. The reasons were discussed based on the crystalline structure and energy. The SFD technology for cocrystallization would enable the pharmaceutical preparation of DPI products under environmentally friendly conditions.


Subject(s)
Crystallization/methods , Dry Powder Inhalers/methods , Freeze Drying/methods , Oxalic Acid/chemistry , Powders/chemistry , Theophylline/chemistry , Administration, Inhalation , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Humidity , Particle Size
14.
Molecules ; 25(22)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203114

ABSTRACT

In this work, low-pressure synthesis of carbon spheres from resorcinol and formaldehyde using an autoclave is presented. The influence of reaction time and process temperature as well as the effect of potassium oxalate, an activator, on the morphology and CO2 adsorption properties was studied. The properties of materials produced at pressureless (atmospheric) conditions were compared with those synthesized under higher pressures. The results of this work show that enhanced pressure treatment is not necessary to produce high-quality carbon spheres, and the morphology and porosity of the spheres produced without an activation step at pressureless conditions are not significantly different from those obtained at higher pressures. In addition, CO2 uptake was not affected by elevated pressure synthesis. It was also demonstrated that addition of the activator (potassium oxalate) had much more effect on key properties than the applied pressure treatment. The use of potassium oxalate as an activator caused non-uniform size distribution of spherical particles. Simultaneously higher values of surface area and total pore volumes were reached. A pressure treatment of the carbon materials in the autoclave significantly enhanced the CO2 uptake at 25 °C, but had no effect on it at 0 °C.


Subject(s)
Carbon Dioxide/chemistry , Carbon/chemistry , Pressure , Adsorption , Nitrogen/chemistry , Oxalic Acid/chemistry , Porosity , Thermogravimetry , X-Ray Diffraction
15.
Molecules ; 25(16)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824192

ABSTRACT

The use of renewable local raw materials to produce fuels is an important step toward optimal environmentally friendly energy consumption. In addition, the use of these sources together with fossil fuels paves the way to an easier transition from fossil to renewable fuels. The use of simple organic acids as hydrogen donors is another alternative way to produce fuel. The present work reports the use of oxalic acid as a hydrogen donor for the catalytic hydrodesulfurization of atmospheric gas oil and the deoxygenation of rapeseed oil at 350 °C. For this process, one commercial NiW/SiO2-Al2O3 solid and two NiW/modified phonolite catalysts were used, namely Ni (5%) W (10%)/phonolite treated with HCl, and Ni (5%) W (10%)/phonolite treated with oxalic acid. The fresh phonolite catalysts were characterized by Hg porosimetry and N2 physisorption, ammonia temperature programmed desorption (NH3-TPD), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The sulfided metal phonolite catalysts were characterized by XRD and XRF. Hydrodesulfurization led to a decrease in sulfur content from 1 to 0.5 wt% for the phonolite catalysts and to 0.8 wt% when the commercial catalyst was used. Deoxygenation led to the production of 15 and 65 wt% paraffin for phonolite and commercial solids, respectively. The results demonstrate the potential of using oxalic acid as a hydrogen donor in hydrotreating reactions.


Subject(s)
Gasoline/analysis , Hydrogen/chemistry , Oxalic Acid/chemistry , Oxygen/chemistry , Rapeseed Oil/chemistry , Sulfur/isolation & purification , Catalysis , Oil and Gas Fields , Sulfur/chemistry
16.
Molecules ; 25(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824503

ABSTRACT

In this study, Li3V2(PO4)3 (LVP) powders are prepared by a solution synthesis method. The effects of two reducing agents on crystal structure and morphology and electrochemical properties are investigated. Preliminary studies on reducing agents such as oxalic acid and citric acid, are used to reduce the vanadium (V) precursor. The oxalic acid-assisted synthesis induces smaller particles (30 nm) compared with the citric acid-assisted synthesis (70 nm). The LVP powders obtained by the oxalic acid exhibit a higher specific capacity (124 mAh g-1 at 1C) and better cycling performance (122 mAh g-1 following 50 cycles at 1C rate) than those for the citric acid. This is due to their higher electronic conductivity caused by carbon coating and downsizing the particles. The charge-discharge plateaus obtained from cyclic voltammetry are in good agreement with galvanostatic cycling profiles.


Subject(s)
Citric Acid/chemistry , Electric Power Supplies , Lithium/chemistry , Nanocomposites/chemistry , Oxalic Acid/chemistry , Reducing Agents/chemistry , Vanadium Compounds/chemistry , Electric Conductivity , Electrodes
17.
Mol Pharm ; 16(4): 1732-1741, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30835128

ABSTRACT

Understanding of the structure-mechanical properties relationship in organic crystals can potentially facilitate the design of crystals with desired mechanical properties through crystal engineering. To understand and predict crystal mechanical properties, including tableting behavior, a number of computational methods have been developed to analyze crystal structure. These include visualization, attachment energy calculation, topological analysis, energy framework, and elasticity tensor calculation. However, different methods often lead to conflicting predictions. There is a need for a computational tool kit for predicting crystal mechanical properties from crystal structures. Using α-oxalic acid anhydrous (OAA) and dihydrate (OAD) as a model system, we have systematically compared their predictive accuracy of the mechanical properties, experimentally determined using powder compaction and nanoindentation. We have found that crystal plasticity can be accurately predicted based on energy framework combined with topological analysis and DFT calculated elasticity tensor. Although very useful in characterizing crystal packing features, structure visualization, topology analysis, and attachment energy calculations alone are insufficient for accurately identifying the slip planes and predicting mechanical properties and tableting behavior of organic crystals.


Subject(s)
Chemistry, Pharmaceutical , Computational Chemistry , Drug Compounding , Oxalic Acid/chemistry , Powders/chemistry , Crystallization , Models, Molecular , Tensile Strength
18.
Mol Pharm ; 16(1): 41-48, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30359037

ABSTRACT

In an earlier investigation, ketoconazole (KTZ)-organic acid coamorphous systems were prepared, wherein, in the solid-state, there was ionic and/or hydrogen bonding interactions between the drug and the acid ( Fung , M. ; Berzins , K. ; Suryanarayanan , R. Mol. Pharmaceutics , 2018 , 15 ( 5 ), 1862 -1869 ). While the coamorphous systems accelerated KTZ dissolution, the organic acids were not effective in maintaining supersaturation, and drug precipitation was observed. Ternary drug-polymer-acid amorphous solid dispersions (ASDs) were prepared with KTZ, polyvinylpyrrolidone (PVP), and each oxalic (OXA), tartaric (TAR), citric (CIT), or succinic (SUC) acid. When compared with amorphous KTZ, solid dispersions of KTZ-PVP exhibited a moderate reduction in molecular mobility and small improvement in dissolution performance. The incorporation of acid (OXA, TAR, or CIT) in PVP-KTZ solid dispersion led to orders of magnitude increase in α-relaxation times and decrease in the crystallization propensity. These ternary ASDs were stable while crystallization of the cocrystal was observed in the SUC system. Moreover, the addition of acids also dramatically improved the dissolution performance of KTZ, a result attributed to KTZ-acid interactions.


Subject(s)
Acids/chemistry , Ketoconazole/chemistry , Organic Chemicals/chemistry , Crystallization , Drug Stability , Microscopy, Electron, Scanning , Molecular Structure , Oxalic Acid/chemistry , Povidone/chemistry , Succinic Acid/chemistry , Tartrates/chemistry , X-Ray Diffraction
19.
Mol Pharm ; 16(7): 3167-3177, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31117742

ABSTRACT

Our objective is to mechanistically understand the implications of processing-induced lattice disorder on  the stability of pharmaceutical cocrystals. Caffeine-oxalic acid (CAFOXA) and dicalcium phosphate anhydrate (DCPA) were the model cocrystal (drug) and excipient, respectively. Cocrystal-excipient mixtures were milled for short times (≤2 min) and stored at room temperature (RT)/75% RH. Milling-induced lattice disorder was quantified using powder X-ray diffractometry and gravimetric water sorption. Milling for even 10 s resulted in measurable disorder and an attendant tendency of the solid to sorb water. This was followed by  cocrystal-excipient interaction leading to dissociation. The proposed mechanism of cocrystal dissociation entails the following sequence: sorption of water by disordered regions, dissolution of CAFOXA and DCPA in the sorbed water, followed by proton transfer from the coformer (oxalic acid) to DCPA, and the formation of hydrates of caffeine and calcium oxalate. As such, CAFOXA is a robust cocrystal, stable even under elevated humidity conditions (RT/98% RH). However, in a drug product environment, routine pharmaceutical processing steps such as milling and compaction have the potential to induce sufficient disorder to render it unstable.


Subject(s)
Chemistry, Pharmaceutical/methods , Crystallization/methods , Drug Compounding/methods , Drug Liberation , Water/chemistry , Absorption, Physicochemical , Caffeine/chemistry , Calcium Phosphates/chemistry , Calorimetry, Differential Scanning , Drug Stability , Excipients/chemistry , Humidity , Oxalic Acid/chemistry , Powders/chemistry , Solubility , Thermogravimetry , X-Ray Diffraction
20.
Ecotoxicol Environ Saf ; 174: 401-407, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30851537

ABSTRACT

The contamination of soil by copper (Cu) and lead (Pb) is a serious concern because of its high health risk via the food chain. Oxalic acid-activated phosphate rock (APR) and bone meal (BM) were applied to Cu and Pb co-contaminated soil to investigate their efficacy in the immobilization of Cu and Pb. APR and BM were applied into the contaminated soil (158.8 mg/kg total Pb and 573.2 mg/kg Cu) at four levels of dosages (0.1%, 0.5%, 2%, and 4%) and incubated for one year. The results demonstrated that the acid exchangeable Pb fraction in the soil treated with APR and BM decreased compared to the control, while there was no noticeable change in the acid-exchangeable Cu fraction in the soil treated with either APR or BM. Meanwhile, the application of BM and APR increased the fraction of residual Cu and Pb in the polluted soils. Moreover, the addition of either APR or BM at the dose of 4% decreased the concentrations of CaCl2-extractable Cu and Pb in the amended soil, and the percentages of that reduction in the APR amended soils were 56% and 91% and in BM amended soils were 67% and 64%, respectively. The immobilization of Cu and Pb by APR and BM might be induced by the increased soil pH and soluble P contents in the amended soils. In general, BM is more effective than APR on the immobilization of Cu in polluted soil, while APR had greater efficiency than BM on the immobilization of Pb when the levels of amendments were above 2%.


Subject(s)
Metals, Heavy/analysis , Minerals/chemistry , Mining , Oxalic Acid/chemistry , Phosphates/chemistry , Soil Pollutants/analysis , Soil/chemistry , Biological Products/chemistry , China , Copper/analysis , Lead/analysis , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL