Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
Add more filters

Publication year range
1.
Cell Mol Neurobiol ; 43(3): 1335-1353, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35840808

ABSTRACT

Alzheimer's disease (AD) is characterized by the increase of hippocampal Ca2+ influx-induced apoptosis and mitochondrial oxidative stress (OS). The OS is a stimulator of TRPM2, although N-(p-amylcinnamoyl)anthranilic acid (ACA), 2-aminoethyl diphenylborinate (2/APB), and glutathione (GSH) are non-specific antagonists of TRPM2. In the present study, we investigated the protective roles of GSH and TRPM2 antagonist treatments on the amyloid ß42 peptide (Aß)-caused oxidative neurotoxicity and apoptosis in the hippocampus of mice with AD model. After the isolation of hippocampal neurons from the newborn mice, they were divided into five incubation groups as follows: control, ACA, Aß, Aß+ACA, and Aß+GSH. The levels of apoptosis, hippocampus death, cytosolic ROS, cytosolic Zn2+, mitochondrial ROS, caspase-3, caspase-9, lipid peroxidation, and cytosolic Ca2+ were increased in the primary hippocampus cultures by treatments of Aß, although their levels were decreased in the neurons by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2/APB). The Aß-induced decreases of cell viability, cytosolic GSH, reduced GSH, and GSH peroxidase levels were also increased in the groups of Aß+ACA and Aß+GSH by the treatments of ACA and GSH. However, the Aß-caused changes were not observed in the hippocampus of TRPM2-knockout mice. In conclusion, the present data demonstrate that maintaining the activation of TRPM2 is not only important for the quenching OS and neurotoxicity in the hippocampal neurons of mice with experimental AD but also equally critical to the modulation of Aß-induced apoptosis. The possible positive effects of GSH and TRPM2 antagonist treatments on the amyloid-beta (Aß)-induced oxidative toxicity in the hippocampus of mice. The ADP-ribose (ADPR) is produced via the stimulation of PARP-1 in the nucleus of neurons. The NUT9 in the C terminus of TRPM2 channel acts as a key role for the activation of TRPM2. The antagonists of TRPM2 are glutathione (GSH), ACA, and 2/APB in the hippocampus. The Aß incubation-mediated TRPM2 stimulation increases the concentration of cytosolic-free Ca2+ and Zn2+ in the hippocampus. In turn, the increased concentration causes the increase of mitochondrial membrane potential (ΔΨm), which causes the excessive generations of mitochondria ROS and the decrease of cytosolic GSH and GSH peroxidase (GSH-Px). The ROS production and GSH depletion are two main causes in the neurobiology of Alzheimer's disease. However, the effect of Aß was not shown in the hippocampus of TRPM2-knockout mice. The Aß and TRPM2 stimulation-caused overload Ca2+ entry cause apoptosis and cell death via the activations of caspase-3 (Casp/3) and caspase-9 (Casp/9) in the hippocampus. The actions of Aß-induced oxidative toxicity were modulated in the primary hippocampus by the incubations of ACA, GSH, 2/APB, and PARP-1 inhibitors (PJ34 and DPQ). (↑) Increase. (↓) Decrease.


Subject(s)
Alzheimer Disease , TRPM Cation Channels , Rats , Mice , Animals , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Reactive Oxygen Species/metabolism , TRPM Cation Channels/metabolism , Alzheimer Disease/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rats, Wistar , Oxidative Stress , Apoptosis , Glutathione/metabolism , Glutathione/pharmacology , Hippocampus/metabolism , Peroxidases/metabolism , Peroxidases/pharmacology , Mice, Knockout , Calcium/metabolism
2.
Osteoarthritis Cartilage ; 30(12): 1606-1615, 2022 12.
Article in English | MEDLINE | ID: mdl-36096467

ABSTRACT

OBJECTIVE: To explore the association between oxidative stress (OS) and Kashin-Beck disease (KBD). METHODS: Terms associated with "KBD" and "OS" were searched in the six different databases up to October 2021. Stata 14.0 was used to pool the means and standard deviations using random-effect or fixed-effect model. The differentially expressed genes in the articular chondrocytes of KBD were identified, the OS related genes were identified by blasting with the GeneCards. The KEGG pathway and gene ontology enrichment analysis was conducted using STRING. RESULTS: The pooled SMD and 95% CI showed hair selenium (-4.59; -6.99, -2.19), blood selenium (-1.65; -2.86, -0.44) and glutathione peroxidases (-4.15; -6.97, -1.33) levels were decreased in KBD, whereas the malondialdehyde (1.12; 0.60, 1.64), nitric oxide (2.29; 1.31, 3.27), nitric oxide synthase (1.07; 0.81, 1.33) and inducible nitric oxide synthase (1.69; 0.62, 2.77) were increased compared with external controls. Meanwhile, hair selenium (-2.71; -5.32, -0.10) and glutathione peroxidases (-1.00; -1.78, -0.22) in KBD were decreased, whereas the malondialdehyde (1.42; 1.04, 1.80), nitric oxide (3.08; 1.93, 4.22) and inducible nitric oxide synthase (0.81; 0.00, 1.61) were elevated compared with internal controls. Enrichment analysis revealed apoptosis was significantly correlated with KBD. The significant biological processes revealed OS induced the release of cytochrome c from mitochondria. The cellular component of OS located in the mitochondrial outer membrane. CONCLUSIONS: The OS levels in KBD were significantly increased because of selenium deficiency, OS mainly occurred in mitochondrial outer membrane, released of cytochrome c from mitochondria, and induced apoptotic signaling pathway.


Subject(s)
Kashin-Beck Disease , Selenium , Humans , Kashin-Beck Disease/genetics , Kashin-Beck Disease/metabolism , Nitric Oxide Synthase Type II/metabolism , Selenium/metabolism , Computational Biology , Nitric Oxide/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Oxidative Stress , Malondialdehyde/pharmacology , Glutathione/metabolism , Glutathione/pharmacology , Peroxidases/metabolism , Peroxidases/pharmacology
3.
Biochemistry (Mosc) ; 87(2): 141-149, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35508903

ABSTRACT

Chitosan modified with a (2-hydroxy-3-trimethylammonium) propyl group and gallic acid residue, or quaternized chitosan with gallic acid (QCG), was synthesized. Antioxidant properties of the produced QCG have been investigated. Peroxidase in combination with NADH and salicyl hydroxamate (SHAM) caused consumption of oxygen and production of H2O2 in aqueous solution as a result of O2 reduction in the peroxidase-oxidase reactions. The rates of O2 consumption and H2O2 generation were reduced in the presence of QCG. The antioxidant propyl gallate (PG) and superoxide dismutase (SOD) had the same effect, but not the quaternized chitosan (QC) without gallic acid. The effect of chitosan derivatives on the production of reactive oxygen species (ROS) in the cells of pea leaf epidermis and on the cell death detected by the destruction of cell nuclei, was investigated. QCG, QC, and SOD had no effect, while PG decreased the rate of ROS generation in the cells of the epidermis, which was induced by NADH with SHAM or by menadione. QCG and QC prevented destruction of the guard cell nuclei in the pea leaf epidermis that was caused by NADH with SHAM or by KCN. SOD had no effect on the destruction of nuclei, while the effect of PG depended on the inducer of the cell death. Suppression of the destruction of guard cell nuclei by chitosan derivatives was associated not with their antioxidant effect, but with the disruption of the plasma membrane of the cells. The results obtained have shown that QCG exhibits antioxidant properties in solutions, but does not prevent generation of ROS in the plant cells. The mechanism of antioxidant effect of QCG is similar to that of PG and SOD.


Subject(s)
Chitosan , Antioxidants/metabolism , Chitosan/chemistry , Gallic Acid/pharmacology , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , NAD/metabolism , Oxidoreductases/metabolism , Pisum sativum , Peroxidase/metabolism , Peroxidases/metabolism , Peroxidases/pharmacology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
4.
Lett Appl Microbiol ; 75(5): 1286-1292, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35920805

ABSTRACT

Drought stress adversely affects plant growth and productivity. Therefore, the application of plant growth-promoting bacteria is a viable option for combating drought resistance in crops. In this study, 144 bacteria were isolated from the Kutch desert soil in Gujarat. Based on osmotic stress tolerance and PGP properties, two strains, Bacillus tequilensis (KS5B) and Pseudomonas stutzeri (KS5C) were tested for their effect on wheat (Triticum aestivum L.) and brinjal (Solanum melongena L.) under drought stress conditions. Inoculation with osmotic stress-tolerant bacteria showed 15·15-29·27% enhancement in root length of wheat and 15·27-32·59% in brinjal plants. Similarly, the enhancement of shoot length ranged from 14·72 to 37·70% for wheat and 59·39-95·94% for brinjal plants. Furthermore, the inoculated plants showed significant improvement in chlorophyll content and antioxidant properties such as proline, peroxidase and polyphenol oxidase activity compared to the control. Therefore, the bacterial strains identified in this study can be used to mitigate drought stress and enhance plant biomass.


Subject(s)
Solanum melongena , Triticum , Triticum/microbiology , Droughts , Osmotic Pressure , Antioxidants/pharmacology , Bacteria , Chlorophyll , Soil , Proline , Peroxidases/pharmacology , Catechol Oxidase , Plant Roots/microbiology , Stress, Physiological
5.
Am J Physiol Cell Physiol ; 318(6): C1214-C1225, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32348172

ABSTRACT

Reactive oxygen species such as hydrogen peroxide have been implicated in causing metabolic dysfunction such as insulin resistance. Heme groups, either by themselves or when incorporated into proteins, have been shown to scavenge peroxide and demonstrate protective effects in various cell types. Thus, we hypothesized that a metalloporphyrin similar in structure to heme, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), would be a peroxidase mimetic that could defend cells against oxidative stress. After demonstrating that FeTBAP has peroxidase activity with reduced nicotinamide adenine dinucleotide phosphate (NADPH) and NADH as reducing substrates, we determined that FeTBAP partially rescued C2C12 myotubes from peroxide-induced insulin resistance as measured by phosphorylation of AKT (S473) and insulin receptor substrate 1 (IRS-1, Y612). Furthermore, we found that FeTBAP stimulates insulin signaling in myotubes and mouse soleus skeletal muscle to about the same level as insulin for phosphorylation of AKT, IRS-1, and glycogen synthase kinase 3ß (S9). We found that FeTBAP lowers intracellular peroxide levels and protects against carbonyl formation in myotubes exposed to peroxide. Additionally, we found that FeTBAP stimulates glucose transport in myotubes and skeletal muscle to about the same level as insulin. We conclude that a peroxidase mimetic can blunt peroxide-induced insulin resistance and also stimulate insulin signaling and glucose transport, suggesting a possible role of peroxidase activity in regulation of insulin signaling.


Subject(s)
Antioxidants/pharmacology , Biological Mimicry , Hydrogen Peroxide/toxicity , Insulin Resistance , Insulin/pharmacology , Metalloporphyrins/pharmacology , Myoblasts, Skeletal/drug effects , Oxidative Stress/drug effects , Peroxidases/pharmacology , Animals , Cell Line , Glycogen Synthase Kinase 3 beta/metabolism , Hydrogen Peroxide/metabolism , Insulin Receptor Substrate Proteins/metabolism , Mice , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Phosphorylation , Protein Carbonylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
6.
J Neuroinflammation ; 17(1): 329, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33153476

ABSTRACT

BACKGROUND: Neuroinflammation is the major pathogenesis of cerebral ischemia. Microglia are activated and polarized to either the pro-inflammatory M1 phenotype or anti-inflammatory M2 phenotype, which act as a critical mediator of neuroinflammation. Sestrin2 has pro-survival properties against ischemic brain injury. However, whether sestrin2 has an anti-inflammatory function by shifting microglia polarization and its underlying mechanism is unknown. METHODS: Adult male C57BL/6 mice (N = 108) underwent transient middle cerebral artery occlusion (tMCAO) and were treated with exogenous sestrin2. Neurological deficit scores and infarct volume were determined. Cell apoptosis was examined by TUNEL staining and Western blotting. The expression of inflammatory mediators, M1/M2-specific markers, and signaling pathways were detected by reverse transcription-polymerase chain reaction, immunostaining, and Western blotting. To explore the underlying mechanism, primary neurons were subjected to oxygen-glucose deprivation (OGD) and then treated with oxygenated condition medium of BV2 cells incubated with different doses of sestrin2. RESULTS: Sestrin2 attenuated the neurological deficits, infarction volume, and cell apoptosis after tMCAO compared to those in the control (p < 0.05). Sestrin2 had an anti-inflammatory effect and could suppress M1 microglia polarization and promote M2 microglia polarization. Condition medium from BV2 cells cultured with sestrin2 reduced neuronal apoptosis after OGD in vitro. Furthermore, we demonstrated that sestrin2 drives microglia to the M2 phenotype by inhibiting the mammalian target of rapamycin (mTOR) signaling pathway and restoring autophagic flux. CONCLUSIONS: Sestrin2 exhibited neuroprotection by shifting microglia polarization from the M1 to M2 phenotype in ischemic mouse brain, which may be due to suppression of the mTOR signaling pathway and the restoration of autophagic flux.


Subject(s)
Autophagy/drug effects , Brain Ischemia/drug therapy , Cell Polarity/drug effects , Inflammation/drug therapy , Microglia/drug effects , Peroxidases/pharmacology , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy/physiology , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Line , Cell Polarity/physiology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Inflammation/metabolism , Inflammation/pathology , Mice , Microglia/metabolism , Microglia/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Peroxidases/therapeutic use , Signal Transduction/drug effects
7.
Cytokine ; 108: 1-8, 2018 08.
Article in English | MEDLINE | ID: mdl-29554571

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by the unicellular protozoan parasite of genus Leishmania. Tryparedoxin (TXN) is a low molecular mass dithiol protein belonging to oxidoreductases super-family; which function in concert with tryparedoxin peroxidase (TXNPx) as a system in protozoan parasites including Leishmania. Leishmanial hydroperoxides detoxification cascade uses trypanothione as electron donor to reduce hydroperoxide inside the macrophages during infection. However, the mechanism by which tryparedoxin can contribute in progression of visceral leishmaniasis (VL) and its impact on host's cellular immune response during infection in Indian VL patient is unknown. In this study, we purified a ∼17 kDa recombinant cytosolic tryparedoxin (cTXN) protein of Leishmania donovani (rLdcTXN) and investigated its immunological responses in peripheral blood monocytes (PBMC) isolated from VL patients. The protein significantly enhanced the promastigotes count after 96 h of culture showing a direct correlation with parasite growth. Furthermore, stimulation of PBMC isolated from VL patients with rLdcTXN resulted in up-regulation of IL-4 and IL-10 production whereas IL-12 and IFN-γ was significantly down-regulated suggesting a pivotal role of cTXN in provoking the immune suppression during VL. Our study demonstrates the importance of cTXN protein which can potentially modulate the outcome of disease through suppressing host protective Th1 response in VL patients.


Subject(s)
Host-Parasite Interactions/immunology , Leishmania donovani/enzymology , Leishmaniasis, Visceral/immunology , Peroxidases/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Cells, Cultured , Humans , Immunity, Cellular , India , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-12/immunology , Interleukin-4/immunology , Leukocytes, Mononuclear/immunology , Peroxidases/pharmacology , Protozoan Proteins/pharmacology , Th2 Cells/immunology , Young Adult
8.
J Periodontal Res ; 53(3): 457-466, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29516514

ABSTRACT

BACKGROUND AND OBJECTIVE: Little is known about the initiation of dysbiosis in oral biofilms, a topic of prime importance for understanding the etiology of, and preventing, periodontitis. The aim of this study was to evaluate the effect of different concentrations of crevicular and salivary peroxidase and catalase on dysbiosis in multispecies biofilms in vitro. MATERIAL AND METHODS: The spotting technique was used to identify the effect of different concentrations of myeloperoxidase, lactoperoxidase, erythrocyte catalase, and horseradish peroxidase in salivary and crevicular fluid on the inhibitory effect of commensals on pathobiont growth. Vitality-quantitative real-time PCR was performed to quantify the dysbiotic effect of the peroxidases (adjusted to concentrations found in periodontal health, gingivitis, and periodontitis) on multispecies microbial communities. RESULTS: Agar plate and multispecies ecology experiments showed that production of hydrogen peroxide (H2 O2 ) by commensal bacteria decreases pathobiont growth and colonization. Peroxidases at concentrations found in crevicular fluid and saliva neutralized this inhibitory effect. In multispecies communities, myeloperoxidase, at the crevicular fluid concentrations found in periodontitis, resulted in a 1-3 Log increase in pathobionts when compared with the crevicular fluid concentrations found in periodontal health. The effect of salivary lactoperoxidase and salivary myeloperoxidase concentrations was, in general, similar to the effect of crevicular myeloperoxidase concentrations. CONCLUSIONS: Commensal species suppress pathobionts by producing H2 O2 . Catalase and peroxidases, at clinically relevant concentrations, can neutralize this effect and thereby can contribute to dysbiosis by allowing the outgrowth of pathobionts.


Subject(s)
Bacteria/drug effects , Biofilms/drug effects , Dysbiosis/ethnology , Peroxidases/metabolism , Peroxidases/pharmacology , Bacteria/classification , Bacteria/metabolism , Bioreactors , Catalase/analysis , Erythrocytes/metabolism , Gingival Crevicular Fluid/chemistry , Gingival Crevicular Fluid/enzymology , Gingivitis/complications , Gingivitis/microbiology , Horseradish Peroxidase/analysis , Humans , Hydrogen Peroxide/metabolism , Lactoperoxidase/metabolism , Lactoperoxidase/pharmacology , Microbiota , Periodontitis/complications , Periodontitis/microbiology , Peroxidase/metabolism , Peroxidase/pharmacology , Saliva/chemistry , Saliva/enzymology
9.
J Am Acad Dermatol ; 72(1): 105-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25440437

ABSTRACT

BACKGROUND: Lignin peroxidase is a cosmetic skin-lightening alternative that breaks down plant cell walls and melanin. OBJECTIVE: This research examined the topical efficacy of lignin peroxidase in pigment lightening. METHODS: Sixty women aged 18 to 65 years with mild to moderate facial dyspigmentation were enrolled for 12 weeks in 2 cohorts. Cohort 1 applied lignin peroxidase to 1 randomized side of the face and nothing to the opposite side. Cohort 2 applied lignin peroxidase to 1 facial side and generic hydroquinone to the other. Investigator, subject, and dermospectrophotometer measurements were obtained. RESULTS: In cohort 1, improved skin texture (P < .001), roughness (P < .001), and overall appearance (P = .002) was noted at week 2 with lignin peroxidase versus no treatment. By week 12, there was a decrease in spot size with lignin peroxidase versus no treatment (P = .014). This was confirmed by a statistically significant reduction in melanin scores with the dermospectrophotometer on lignin peroxidase-treated side at weeks 4, 8, and 12 (P = .003) and a similar reduction in Melasma Area Severity Index score. Cohort 2 demonstrated parity between lignin peroxidase and hydroquinone, but lignin peroxidase was statistically superior in skin texture and roughness. LIMITATIONS: The sample size was limited. CONCLUSIONS: Lignin peroxidase might be an over-the-counter skin-lightening preparation with efficacy parity to hydroquinone.


Subject(s)
Hydroquinones/therapeutic use , Hyperpigmentation/drug therapy , Peroxidases/therapeutic use , Skin Lightening Preparations/therapeutic use , Adolescent , Adult , Aged , Face , Female , Humans , Hydroquinones/pharmacology , Middle Aged , Peroxidases/pharmacology , Single-Blind Method , Skin Lightening Preparations/pharmacology , Skin Pigmentation/drug effects , Young Adult
10.
J Antimicrob Chemother ; 69(4): 1005-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24335485

ABSTRACT

OBJECTIVES: Artemisinin and artemisinin semi-synthetic derivatives (collectively known as endoperoxides) are first-line antimalarials for the treatment of uncomplicated and severe malaria. Endoperoxides display very fast killing rates and are generally recalcitrant to parasite resistance development. These key pharmacodynamic features are a result of a complex mechanism of action, the details of which lack consensus. Here, we report on the primary physiological events leading to parasite death. METHODS: Parasite mitochondrial (ΔΨm) and plasma membrane (ΔΨp) electrochemical potentials were measured using real-time single-cell imaging following exposure to pharmacologically relevant concentrations of endoperoxides (artemisinin, dihydroartemisinin, artesunate and the synthetic tetraoxane RKA182). In addition, mitochondrial electron transport chain components NADH:quinone oxidoreductase (alternative complex I), bc1 (complex III) and cytochrome oxidase (complex IV) were investigated to determine their functional sensitivity to the various endoperoxides. RESULTS: Parasite exposure to endoperoxides resulted in rapid depolarization of parasite ΔΨm and ΔΨp. The rate of depolarization was decreased in the presence of a reactive oxygen species (ROS) scavenger and Fe(3+) chelators. Depolarization of ΔΨm by endoperoxides is not believed to be through the inhibition of mitochondrial electron transport chain components, owing to the lack of significant inhibition when assayed directly. CONCLUSIONS: The depolarization of ΔΨm and ΔΨp is shown to be mediated via the generation of ROS that are initiated by iron bioactivation of endoperoxides and/or catalysed by iron-dependent oxidative stress. These data are discussed in the context of current hypotheses concerning the mode of action of endoperoxides.


Subject(s)
Artemisinins/pharmacology , Membrane Potentials/drug effects , Peroxidases/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Reactive Oxygen Species/metabolism , Cell Membrane/drug effects , Cell Membrane/physiology , Cell Survival/drug effects , Electron Transport/drug effects , Iron/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/physiology , Oxidative Stress
11.
Int J Biol Macromol ; 258(Pt 2): 129098, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161020

ABSTRACT

Bacterial infection often leads to failed wound healing, causing one-third of death cases globally. However, antibacterial nanomaterials and natural enzymes face limitations including low antibacterial efficiency, lack of catalytic performance, low safety, and instability. Therefore, a new Fe/N-doped chitosan-chelated carbon dot-based nanozyme CS@Fe-N CDs was developed, which showed multiple advantages such as highly efficient antibacterial activity, excellent peroxidase-like activity, high stability, and high biocompatibility, shortening the wound healing time. The ultra-small (6.14 ± 3.38 nm) CS@Fe-N CDs nanozyme accelerated the H2O2 to ·OH conversion, exhibiting excellent antibacterial performance against Staphylococcus aureus. The antibacterial activity was increased by over 2000-fold after catalysis. The CS@Fe-N CDs nanozyme also displayed outstanding peroxidase activity (Vmax/Km = 1.77 × 10-6/s), 8.8-fold higher than horseradish peroxidase. Additionally, the CS@Fe-N CDs nanozyme exhibited high stability at broad pH values (pH 1-12) and temperature ranges (20-90 °C). In vitro evaluation of cell toxicity proved that the CS@Fe-N CDs nanozyme had negligible cytotoxicity. In vivo, wound healing experiments demonstrated that the CS@Fe-N CDs could shorten the healing time of rat wounds by at least 4 days, and even had a better curative effect than penicillin. In conclusion, this therapeutic platform provides an effective antibacterial and biologically safe healing strategy for skin wounds.


Subject(s)
Chitosan , Rats , Animals , Chitosan/pharmacology , Carbon/pharmacology , Hydrogen Peroxide/pharmacology , Anti-Bacterial Agents/pharmacology , Wound Healing , Antioxidants/pharmacology , Peroxidases/pharmacology , Peroxidase/pharmacology
12.
Vet Res Commun ; 48(1): 507-517, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38051451

ABSTRACT

The increasing frequency of methicillin-resistant (MR) staphylococci in humans and animals need special attention for their difficult treatment and zoonotic character, therefore novel antimicrobial compounds on a natural base against antibiotic-resistant bacteria are requested. Currently, bacteriocins/enterocins present a new promising way to overcome this problem, both in prevention and treatment. Therefore, the preventive and medicinal effect of dipeptide enterocin EntA/P was evaluated against MR Staphylococcus epidermidis SEP3/Tr2a strain in a rabbit model, testing their influence on growth performance, glutathione-peroxidase (GPx) enzyme activity, phagocytic activity (PA), secretory (s)IgA, and jejunal morphometry (JM). Eighty-eight rabbits (aged 35 days, meat line M91, both sexes) were divided into experimental groups S (SEP3/Tr2a strain; 1.0 × 105 CFU/mL; dose 500µL/animal/day for 7 days, between days 14 and 21 to simulate the pathogen attack), E (EntA/P; 50 µL/animal/day, 25,600 AU/mL in two intervals, for preventive effect between days 0 and 14; for medicinal effect between days 28 and 42), E + S (EntA/P + SEP3/Tr2a; preventive effect; SEP3/Tr2a + EntA/P; medicinal effect) and control group (C; without additives). Higher body weight was recorded in all experimental groups (p < 0.001) compared to control data. The negative influence/attack of the SEP3Tra2 strain on the intestinal immunity and environment was reflected as decreased GPx activity, worse JM parameters and higher sIgA concentration in infected rabbits. These results suggest the promising preventive use of EntA/P to improve the immunity and growth of rabbits, as well as its therapeutic potential and protective role against staphylococcal infections in rabbit breeding.


Subject(s)
Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Male , Female , Rabbits , Animals , Staphylococcus epidermidis , Methicillin Resistance , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriocins/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Glutathione/pharmacology , Glutathione/therapeutic use , Peroxidases/pharmacology , Peroxidases/therapeutic use , Immunoglobulin A/pharmacology , Immunoglobulin A/therapeutic use
13.
Sci Rep ; 14(1): 425, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172210

ABSTRACT

Triple-negative breast cancer (TNBC) is a difficult-to-treat, aggressive cancer type. TNBC is often associated with the cellular program of epithelial-mesenchymal transition (EMT) that confers drug resistance and metastasis. EMT and reverse mesenchymal-epithelial transition (MET) programs are regulated by several signaling pathways which converge on a group of transcription factors, EMT- TFs. Therapy approaches could rely on the EMT reversal to sensitise mesenchymal tumours to compounds effective against epithelial cancers. Here, we show that the antimalarial ROS-generating compound artesunate (ART) exhibits higher cytotoxicity in epithelial than mesenchymal breast cancer cell lines. Ectopic expression of EMT-TF ZEB1 in epithelial or ZEB1 depletion in mesenchymal cells, respectively, reduced or increased ART-generated ROS levels, DNA damage and apoptotic cell death. In epithelial cells, ZEB1 enhanced expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 8 (GPX8) implicated in ROS scavenging. Although SOD2 or GPX8 levels were unaffected in mesenchymal cells in response to ZEB1 depletion, stable ZEB1 knockdown enhanced total ROS. Receptor tyrosine kinase AXL maintains a mesenchymal phenotype and is overexpressed in TNBC. The clinically-relevant AXL inhibitor TP-0903 induced MET and synergised with ART to generate ROS, DNA damage and apoptosis in TNBC cells. TP-0903 reduced the expression of GPX8 and SOD2. Thus, TP-0903 and ZEB1 knockdown sensitised TNBC cells to ART, likely via different pathways. Synergistic interactions between TP-0903 and ART indicate that combination approaches involving these compounds can have therapeutic prospects for TNBC treatment.


Subject(s)
Antimalarials , Triple Negative Breast Neoplasms , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artesunate/pharmacology , Artesunate/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Reactive Oxygen Species/pharmacology , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Peroxidases/pharmacology
14.
J Proteomics ; 294: 105072, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38218428

ABSTRACT

Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive­oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive­oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.


Subject(s)
Cyclohexenes , Glycine max , Proteomics , Terpenes , Proteomics/methods , Actins/metabolism , Plant Roots/metabolism , Salt Stress , Peroxidases/analysis , Peroxidases/metabolism , Peroxidases/pharmacology , Reactive Oxygen Species/metabolism , Nuclear Proteins/metabolism , Glutathione Peroxidase/metabolism , Protein Kinases/metabolism , Dynamins/analysis , Dynamins/metabolism , Dynamins/pharmacology , Hydrolases/analysis , Hydrolases/metabolism , Hydrolases/pharmacology , GTP Phosphohydrolases/metabolism , Oxygen/metabolism , Stress, Physiological , Gene Expression Regulation, Plant , Plant Proteins/metabolism
15.
Acta Biochim Biophys Sin (Shanghai) ; 45(8): 649-55, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23761431

ABSTRACT

A novel antiviral protein, designated as Stellarmedin A, was purified from Stellaria media (L.) Vill. (Caryophyllaceae) by using ammonium sulfate precipitation, cation-exchange chromatography system. Gel electrophoresis analysis showed that Stellarmedin A is a highly basic glycoprotein with a molecular weight of 35.1 kDa and an isoelectric point of ∼8.7. The N-terminal 14-amino acid sequence, MGNTGVLTGERNDR, is similar to those of other plant peroxidases. This protein inhibited herpes simplex virus type 2 (HSV-2) replication in vitro with an IC50 of 13.18 µg/ml and a therapeutic index exceeding 75.9. It was demonstrated that Stellarmedin A affects the initial stage of HSV-2 infection and is able to inhibit the proliferation of promyelocytic leukemia HL-60 and colon carcinoma LoVo cells with an IC50 of 9.09 and 12.32 µM, respectively. Moreover, Stellarmedin A has a peroxidase activity of 36.6 µmol/min/mg protein, when guaiacol was used as substrate. To our knowledge, this is the first report about an anti-HSV-2 protein with antiproliferative and peroxidase activities from S. media.


Subject(s)
Antiviral Agents/isolation & purification , Cell Proliferation/drug effects , Herpesvirus 2, Human/drug effects , Peroxidases/metabolism , Plant Proteins/isolation & purification , Stellaria/metabolism , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , Molecular Sequence Data , Peroxidases/chemistry , Peroxidases/isolation & purification , Peroxidases/pharmacology , Plant Proteins/chemistry , Plant Proteins/pharmacology , Vero Cells
16.
Front Cell Infect Microbiol ; 13: 1287418, 2023.
Article in English | MEDLINE | ID: mdl-38239502

ABSTRACT

Introduction: The fungal G protein-coupled receptors Ste2 and Ste3 are vital in mediating directional hyphal growth of the agricultural pathogen Fusarium graminearum towards wheat plants. This chemotropism is induced by a catalytic product of peroxidases secreted by the wheat. Currently, the identity of this product, and the substrate it is generated from, are not known. Methods and results: We provide evidence that a peroxidase substrate is derived from F. graminearum conidia and report a simple method to extract and purify the FgSte2-activating ligand for analyses by mass spectrometry. The mass spectra arising from t he ligand extract are characteristic of a 400 Da carbohydrate moiety. Consistent with this type of molecule, glycosidase treatment of F. graminearum conidia prior to peroxidase treatment significantly reduced the amount of ligand extracted. Interestingly, availability of the peroxidase substrate appears to depend on the presence of both FgSte2 and FgSte3, as knockout of one or the other reduces the chemotropism-inducing effect of the extracts. Conclusions: While further characterization is necessary, identification of the F. graminearum-derived peroxidase substrate and the FgSte2-activating ligand will unearth deeper insights into the intricate mechanisms that underlie fungal pathogenesis in cereal crops, unveiling novel avenues for inhibitory interventions.


Subject(s)
Fusarium , Peroxidase , Ligands , Peroxidases/pharmacology , Plant Diseases/microbiology
17.
Int J Radiat Biol ; 99(9): 1413-1423, 2023.
Article in English | MEDLINE | ID: mdl-36731458

ABSTRACT

PURPOSE: A field experiment was performed to investigate the impact of low-dose gamma rays on growth parameters and bioactive compounds of white radish. MATERIALS AND METHODS: White radish seeds were irradiated by gamma rays dose levels (10, 20, 40 and 80 Gy) beside control. Physiological and biochemical markers were done to follow the effect of gamma rays on white radish. RESULTS: The results revealed that gamma rays increased growth parameters with increasing irradiation to a dose of 40 Gy. The maximum increments were found at 14.64 (cm), 48.30 (cm), 20.84 (cm) and 5.51 (cm) for leaves number, leaves length, roots length and roots diameter, respectively, with a dose of 40 Gy. By increasing the irradiation dose to 80 Gy, the results showed reduction in all parameters studied. Ascorbic acid gave the maximum increase with the dose of 40 Gy, while phenols, flavonoids, antioxidant activity, peroxidase, and polyphenol oxidase showed the highest increase with the dose 80 of Gy in radish leaves. Similar trend was observed for the radish roots. Furthermore, the protein and isoenzyme profiles of peroxidase and polyphenol oxidase changed and induced alteration by different irradiation dose levels. CONCLUSION: Gamma rays can be a useful tool for increasing the growth and biochemical content of white radish plants and perhaps other food crops.


Subject(s)
Raphanus , Raphanus/chemistry , Gamma Rays , Antioxidants/pharmacology , Biomarkers , Peroxidases/pharmacology
18.
Plant Signal Behav ; 18(1): 2163349, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36645912

ABSTRACT

Planting Elymus nutans artificial grassland to replace degraded Artemisia baimaensis grassland on the Qinghai Tibetan plateau (QTP) can effectively alleviate local grass-livestock imbalance. However, it is unknown whether the allelopathy of natural grassland plant A. baimaensis on E. nutans affects grassland establishment. Accordingly, we examined the effects of varying concentrations of aqueous extracts of A. baimaensis litter on the seed germination and early seedling growth of E. nutans, and the effects of A. baimaensis volatile organic compounds (VOCs) on the growth parameters and physiological characteristics of E. nutans. The results indicate that the aqueous extract inhibited the force, percentage, and index of germination of E. nutans and affected early seedling growth, particularly at high concentrations. Further, the VOCs significantly reduced the aboveground and root biomass of E. nutans and increased malondialdehyde concentrations. Additionally, these VOCs altered the antioxidant enzyme activities and increased the superoxide dismutase, peroxidase, ascorbic acid peroxidase, soluble sugar, and proline content but significantly decreased glutathione reductase levels. Our results indicate that the allelopathy of A. baimaensis significantly inhibited the germination and seedling growth of E. nutans . Thus, the leaching of A. baimaensis may produce allelochemicals in the soil that inhibit the germination of E. nutans seeds. Moreover, the VOCs of A. baimaensis may disrupt the growth process, resulting in a decrease in biomass and a disruption of the physiological metabolism of seedlings under field conditions.


Subject(s)
Artemisia , Elymus , Elymus/metabolism , Grassland , Allelopathy , Seedlings , Germination , Plants , Seeds , Peroxidases/metabolism , Peroxidases/pharmacology
19.
Biomater Sci ; 11(8): 2898-2911, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36883448

ABSTRACT

Since nanozymes were proposed, their applications have become more and more extensive. As a research hotspot in recent years, MoS2 also shows many enzyme-like properties. However, as a novel peroxidase, MoS2 has the disadvantage of a low maximum reaction rate. In this study, the MoS2/PDA@Cu nanozyme was synthesized by a wet chemical method. The modification of PDA on the surface of MoS2 achieved the uniform growth of small-sized Cu Nps. The obtained MoS2/PDA@Cu nanozyme displayed excellent peroxidase-like activity and antibacterial properties. The minimum inhibitory concentration (MIC) of the MoS2/PDA@Cu nanozyme against S. aureus reached 25 µg mL-1. Furthermore, it showed a more pronounced inhibitory effect on bacterial growth with the addition of H2O2. The maximum reaction rate (Vmax) of the MoS2/PDA@Cu nanozyme is 29.33 × 10-8 M s-1, which is significantly higher as compared to that of HRP. It also exhibited excellent biocompatibility, hemocompatibility and potential anticancer properties. When the concentration of the nanozyme was 160 µg mL-1, the viabilities of 4T1 cells and Hep G2 cells were 45.07% and 32.35%, respectively. This work indicates that surface regulation and electronic transmission control are good strategies for improving peroxidase-like activity.


Subject(s)
Molybdenum , Peroxidase , Molybdenum/chemistry , Staphylococcus aureus , Hydrogen Peroxide/pharmacology , Peroxidases/pharmacology , Coloring Agents/pharmacology , Anti-Bacterial Agents/chemistry
20.
Acta Biomater ; 167: 449-462, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37270076

ABSTRACT

During the past few years, bacterial infection and oxidative stress have become important issues for wound healing. However, the emergence of numerous drug-resistant superbugs has had a serious impact on the treatment of infected wounds. Presently, the development of new nanomaterials has become one of the most important approaches to the treatment of drug-resistant bacterial infections. Herein, coordination polymer copper-gallic acid (Cu-GA) nanorods with multi-enzyme activity is successfully prepared for efficient wound treatment of bacterial infection, which can effectively promote wound healing. Cu-GA can be efficiently prepared by a simple solution method and had good physiological stability. Interestingly, Cu-GA shows enhanced multienzyme activity (peroxidase, glutathione peroxidase, and superoxide dismutase), which can produce a large number of reactive oxygen species (ROS) under acidic conditions while scavenging ROS under neutral conditions. In acidic environment, Cu-GA possesses POD (peroxidase)-like and glutathione peroxidase (GSH-Px)-like catalytic activities that is capable of killing bacteria; but in neutral environment, Cu-GA exhibits superoxide dismutase (SOD)-like catalytic activity that can scavenge ROS and promote wound healing. In vivo studies show that Cu-GA can promote wound infection healing and have good biosafety. Cu-GA contributes to the healing of infected wounds by inhibiting bacterial growth, scavenging reactive oxygen species, and promoting angiogenesis. STATEMENT OF SIGNIFICANCE: Cu-GA-coordinated polymer nanozymes with multienzyme activity were successfully prepared for efficient wound treatment of bacterial infection, which could effectively promote wound healing. Interestingly, Cu-GA exhibited enhanced multienzyme activity (peroxidase, glutathione peroxidase, and superoxide dismutase), which could produce a large number of reactive oxygen species (ROS) under acidic conditions and scavenge ROS under neutral conditions. In vitro and in vivo studies demonstrated that Cu-GA was capable of killing bacteria, controlling inflammation, and promoting angiogenesis.


Subject(s)
Bacterial Infections , Copper , Humans , Copper/pharmacology , Gallic Acid/pharmacology , Reactive Oxygen Species , Disinfection , Superoxide Dismutase/pharmacology , Wound Healing , Peroxidases/pharmacology , Peroxidase , Glutathione Peroxidase/pharmacology , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL