Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(2): 443-455.e12, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576450

ABSTRACT

Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.


Subject(s)
Anemia, Hemolytic, Congenital/pathology , Black People/genetics , Hydrops Fetalis/pathology , Ion Channels/genetics , Malaria/pathology , Alleles , Anemia, Hemolytic, Congenital/genetics , Animals , Dehydration , Disease Models, Animal , Erythrocytes/cytology , Erythrocytes/metabolism , Gene Deletion , Genotype , Humans , Hydrops Fetalis/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/deficiency , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Ion Channels/chemistry , Malaria/genetics , Malaria/parasitology , Malaria/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plasmodium berghei/growth & development , Plasmodium berghei/pathogenicity , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
2.
PLoS Pathog ; 17(11): e1010114, 2021 11.
Article in English | MEDLINE | ID: mdl-34843584

ABSTRACT

Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease.


Subject(s)
Lung/parasitology , Malaria/complications , Membrane Proteins/deficiency , Plasmodium berghei/pathogenicity , Protozoan Proteins/metabolism , Respiratory Distress Syndrome/prevention & control , Animals , Disease Progression , Female , Lung/metabolism , Lung/pathology , Malaria/parasitology , Male , Mice , Mice, Inbred C57BL , Protozoan Proteins/genetics , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/parasitology , Respiratory Distress Syndrome/pathology
3.
PLoS Pathog ; 17(2): e1009353, 2021 02.
Article in English | MEDLINE | ID: mdl-33626094

ABSTRACT

Repeated blood meals provide essential nutrients for mosquito egg development and routes for pathogen transmission. The target of rapamycin, the TOR pathway, is essential for vitellogenesis. However, its influence on pathogen transmission remains to be elucidated. Here, we show that rapamycin, an inhibitor of the TOR pathway, effectively suppresses Plasmodium berghei infection in Anopheles stephensi. An. stephensi injected with rapamycin or feeding on rapamycin-treated mice showed increased resistance to P. berghei infection. Exposing An. stephensi to a rapamycin-coated surface not only decreased the numbers of both oocysts and sporozoites but also impaired mosquito survival and fecundity. Transcriptome analysis revealed that the inhibitory effect of rapamycin on parasite infection was through the enhanced activation of immune responses, especially the NF-κB transcription factor REL2, a regulator of the immune pathway and complement system. Knockdown of REL2 in rapamycin-treated mosquitoes abrogated the induction of the complement-like proteins TEP1 and SPCLIP1 and abolished rapamycin-mediated refractoriness to Plasmodium infection. Together, these findings demonstrate a key role of the TOR pathway in regulating mosquito immune responses, thereby influencing vector competence.


Subject(s)
Anopheles/drug effects , Immunity, Innate/immunology , Malaria/drug therapy , Mosquito Vectors/drug effects , Plasmodium berghei/pathogenicity , Sirolimus/pharmacology , Animals , Anopheles/immunology , Anopheles/parasitology , Female , Gene Expression Profiling , Immunity, Innate/drug effects , Immunosuppressive Agents/pharmacology , Malaria/immunology , Malaria/parasitology , Malaria/transmission , Mice , Mice, Inbred BALB C , Mosquito Vectors/immunology , Mosquito Vectors/parasitology , Oocysts/drug effects , Oocysts/growth & development , Oocysts/immunology , Sporozoites/drug effects , Sporozoites/growth & development , Sporozoites/immunology
4.
Proc Natl Acad Sci U S A ; 116(20): 9979-9988, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31028144

ABSTRACT

Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αß-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αß-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.


Subject(s)
Intraepithelial Lymphocytes/physiology , Liver/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/pathogenicity , Sporozoites/pathogenicity , Animals , Liver/parasitology , Male , Mice , Mice, Inbred C57BL , Sporozoites/growth & development
5.
Proc Natl Acad Sci U S A ; 116(8): 3183-3192, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723152

ABSTRACT

The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.


Subject(s)
Genome, Protozoan/genetics , Heterochromatin/genetics , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Animals , Centromere/genetics , Gene Expression Regulation/genetics , Genomics , Humans , Malaria, Falciparum/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Plasmodium falciparum/pathogenicity , Plasmodium knowlesi/genetics , Plasmodium knowlesi/pathogenicity , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Telomere/genetics , Toxoplasma/genetics , Toxoplasma/pathogenicity
6.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628522

ABSTRACT

The sole currently approved malaria vaccine targets the circumsporozoite protein-the protein that densely coats the surface of sporozoites, the parasite stage deposited in the skin of the mammalian host by infected mosquitoes. However, this vaccine only confers moderate protection against clinical diseases in children, impelling a continuous search for novel candidates. In this work, we studied the importance of the membrane-associated erythrocyte binding-like protein (MAEBL) for infection by Plasmodium sporozoites. Using transgenic parasites and live imaging in mice, we show that the absence of MAEBL reduces Plasmodium berghei hemolymph sporozoite infectivity to mice. Moreover, we found that maebl knockout (maebl-) sporozoites display reduced adhesion, including to cultured hepatocytes, which could contribute to the defects in multiple biological processes, such as in gliding motility, hepatocyte wounding, and invasion. The maebl- defective phenotypes in mosquito salivary gland and liver infection were reverted by genetic complementation. Using a parasite line expressing a C-terminal myc-tagged MAEBL, we found that MAEBL levels peak in midgut and hemolymph parasites but drop after sporozoite entry into the salivary glands, where the labeling was found to be heterogeneous among sporozoites. MAEBL was found associated, not only with micronemes, but also with the surface of mature sporozoites. Overall, our data provide further insight into the role of MAEBL in sporozoite infectivity and may contribute to the design of future immune interventions.


Subject(s)
Plasmodium berghei , Protozoan Proteins , Receptors, Cell Surface , Animals , Culicidae , Erythrocytes/metabolism , Membrane Proteins/metabolism , Mice , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Protozoan Proteins/metabolism , Receptors, Cell Surface/metabolism , Sporozoites/metabolism
7.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162991

ABSTRACT

Malaria parasites require multiple phosphorylation and dephosphorylation steps to drive signaling pathways for proper differentiation and transformation. Several protein phosphatases, including protein phosphatase 1 (PP1), one of the main dephosphorylation enzymes, have been shown to be indispensable for the Plasmodium life cycle. The catalytic subunit of PP1 (PP1c) participates in cellular processes via dynamic interactions with a vast number of binding partners that contribute to its diversity of action. In this study, we used Plasmodium berghei transgenic parasite strains stably expressing PP1c or its inhibitor 2 (I2) tagged with mCherry, combined with the mCherry affinity pulldown of proteins from asexual and sexual stages, followed by mass spectrometry analyses. Mapped proteins were used to identify interactomes and to cluster functionally related proteins. Our findings confirm previously known physical interactions of PP1c and reveal enrichment of common biological processes linked to cellular component assembly in both schizonts and gametocytes to biosynthetic processes/translation in schizonts and to protein transport exclusively in gametocytes. Further, our analysis of PP1c and I2 interactomes revealed that nuclear export mediator factor and peptidyl-prolyl cis-trans isomerase, suggested to be essential in P. falciparum, could be potential targets of the complex PP1c/I2 in both asexual and sexual stages. Our study emphasizes the adaptability of Plasmodium PP1 and provides a fundamental study of the protein interaction landscapes involved in a myriad of events in Plasmodium, suggesting why it is crucial to the parasite and a source for alternative therapeutic strategies.


Subject(s)
Malaria/parasitology , Plasmodium berghei/physiology , Protein Phosphatase 1/metabolism , Proteins/metabolism , Proteomics/methods , Animals , Binding Sites , Chromatography, Liquid , Life Cycle Stages , Male , Mice , Organisms, Genetically Modified , Plasmodium berghei/pathogenicity , Protein Domains , Protein Interaction Maps , Protein Phosphatase 1/genetics , Proteins/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Tandem Mass Spectrometry
8.
Infect Immun ; 89(10): e0002421, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34251290

ABSTRACT

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a severe complication of malaria that occurs despite effective antimalarial treatment. Currently, noninvasive imaging procedures such as chest X-rays are used to assess edema in established MA-ARDS, but earlier detection methods are needed to reduce morbidity and mortality. The early stages of MA-ARDS are characterized by the infiltration of leukocytes, in particular monocytes/macrophages; thus, monitoring of immune infiltrates may provide a useful indicator of early pathology. In this study, Plasmodium berghei ANKA-infected C57BL/6 mice, a rodent model of MA-ARDS, were longitudinally imaged using the 18-kDa translocator protein (TSPO) imaging agent [18F]FEPPA as a marker of macrophage accumulation during the development of pathology and in response to combined artesunate and chloroquine diphosphate (ART+CQ) therapy. [18F]FEPPA uptake was compared to blood parasitemia levels and to levels of pulmonary immune cell infiltrates by using flow cytometry. Infected animals showed rapid increases in lung retention of [18F]FEPPA, correlating well with increases in blood parasitemia and pulmonary accumulation of interstitial inflammatory macrophages and major histocompatibility complex class II (MHC-II)-positive alveolar macrophages. Treatment with ART+CQ abrogated this increase in parasitemia and significantly reduced both lung uptake of [18F]FEPPA and levels of macrophage infiltrates. We conclude that retention of [18F]FEPPA in the lungs is well correlated with changes in blood parasitemia and levels of lung-associated macrophages during disease progression and in response to ART+CQ therapy. With further development, TSPO biomarkers may have the potential to accurately assess the early onset of MA-ARDS.


Subject(s)
Biomarkers/metabolism , Lung/metabolism , Malaria/metabolism , Pneumonia/metabolism , Animals , Disease Models, Animal , Leukocytes/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Plasmodium berghei/pathogenicity , Positron-Emission Tomography/methods , Respiratory Distress Syndrome/metabolism
9.
Drug Chem Toxicol ; 44(1): 47-57, 2021 Jan.
Article in English | MEDLINE | ID: mdl-30486696

ABSTRACT

Malaria is a parasitic disease that has defied many treatment plans. This study was carried out to investigate the host mitochondrial response to malarial infection and selected antimalarial chemotherapy using murine models. The effects of artesunate (ART) and proguanil (PRG) on mitochondrial Permeability Transition (mPT), mitochondrial ATPase (mATPase), level of malondialdehyde (MDA) and activities of antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), Xanthine oxidase (XO), glutathione S-transferase (GST) and reduced glutathione (GSH) were estimated in Plasmodium berghei-infected mice treated with ART and PRG. Besides, apoptotic markers, such as caspases 3, 9 and DNA fragmentation were estimated. Unparasitised (NORMAL) and parasitized but untreated (PU) animals were used as controls. The mPT pore opening fold of 9 (ART), 3 (PRG), and 4 (PU) were observed relative to calcium (23) for in vivo study. In vitro, graded concentrations (20, 40, 80 and 160 µg/mL) of ART gave mPT induction folds of 1, 21, 23 and 25, respectively, relative to calcium (9) while PRG did not have effect in the absence of calcium. In vivo, ART significantly (p < 0.001) enhanced mATPase activity than PRG. The PRG and ART increased the MDA levels in vivo. Oral administration of ART and PRG altered antioxidant enzymes status, Caspases 3 and 9 were significantly activated in PRG-treated groups; there was significant increase in DNA fragmentation in PU and PRG groups compared with the normal control. The results obtained showed that malaria parasite and antimalarial drugs cause mitochondrial-mediated apoptosis.


Subject(s)
Antimalarials/toxicity , Apoptosis/drug effects , Artesunate/toxicity , Chemical and Drug Induced Liver Injury/etiology , Malaria/drug therapy , Mitochondria, Liver/drug effects , Plasmodium berghei/drug effects , Proguanil/toxicity , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , DNA Damage , Disease Models, Animal , Lipid Peroxidation/drug effects , Malaria/metabolism , Malaria/parasitology , Malaria/pathology , Male , Mice , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Mitochondrial Permeability Transition Pore/metabolism , Oxidative Stress/drug effects , Plasmodium berghei/pathogenicity
10.
Infect Immun ; 88(2)2020 01 22.
Article in English | MEDLINE | ID: mdl-31792077

ABSTRACT

We used a genome-wide screen in N-ethyl-N-nitrosourea (ENU)-mutagenized mice to identify genes in which recessive loss-of-function mutations protect against pathological neuroinflammation. We identified an R367Q mutation in the ZBTB7B (ThPOK) protein in which homozygosity causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Zbtb7bR367Q homozygous mice show a defect in the lymphoid compartment expressed as severe reduction in the number of single-positive CD4 T cells in the thymus and in the periphery, reduced brain infiltration of proinflammatory leukocytes in P. berghei ANKA-infected mice, and reduced production of proinflammatory cytokines by primary T cells ex vivo and in vivo Dampening of proinflammatory immune responses in Zbtb7bR367Q mice is concomitant to increased susceptibility to infection with avirulent (Mycobacterium bovis BCG) and virulent (Mycobacterium tuberculosis H37Rv) mycobacteria. The R367Q mutation maps to the first DNA-binding zinc finger domain of ThPOK and causes loss of base contact by R367 in the major groove of the DNA, which is predicted to impair DNA binding. Global immunoprecipitation of ThPOK-containing chromatin complexes coupled to DNA sequencing (ChIP-seq) identified transcriptional networks and candidate genes likely to play key roles in CD4+ CD8+ T cell development and in the expression of lineage-specific functions of these cells. This study highlights ThPOK as a global regulator of immune function in which alterations may affect normal responses to infectious and inflammatory stimuli.


Subject(s)
DNA-Binding Proteins/genetics , Malaria, Cerebral/genetics , Transcription Factors/genetics , Tuberculosis, Pulmonary/genetics , Animals , Brain/microbiology , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/microbiology , Cytokines/genetics , Female , Inflammation/genetics , Inflammation/microbiology , Malaria, Cerebral/microbiology , Male , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/pathogenicity , Plasmodium berghei/pathogenicity , Tuberculosis, Pulmonary/microbiology , Virulence/genetics
11.
Immunology ; 159(2): 193-204, 2020 02.
Article in English | MEDLINE | ID: mdl-31631339

ABSTRACT

Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/deficiency , Brain/immunology , Dendritic Cells/immunology , Malaria, Cerebral/prevention & control , Plasmodium berghei/pathogenicity , Repressor Proteins/deficiency , T-Lymphocytes, Cytotoxic/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Blood-Brain Barrier/immunology , Blood-Brain Barrier/parasitology , Brain/metabolism , Brain/parasitology , Cells, Cultured , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Disease Models, Animal , Female , Granzymes/immunology , Granzymes/metabolism , Host-Parasite Interactions , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Malaria, Cerebral/immunology , Malaria, Cerebral/metabolism , Malaria, Cerebral/parasitology , Mice, Inbred C57BL , Mice, Knockout , Plasmodium berghei/immunology , Repressor Proteins/genetics , Spleen/immunology , Spleen/metabolism , Spleen/parasitology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/parasitology
12.
PLoS Pathog ; 14(2): e1006899, 2018 02.
Article in English | MEDLINE | ID: mdl-29489896

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) increased susceptibility to Plasmodium berghei infection, decreased the abundance of gut microbiota and changed their spatial distribution. This outcome resulted from a change in the structural integrity of the peritrophic matrix (PM), which is a chitinous and proteinaceous barrier that lines the midgut lumen. Reduction of microbiota in dsLD mosquitoes due to the upregulation of immune effectors led to dysregulation of PM genes and PM fragmentation. Elimination of gut microbiota in antibiotic treated mosquitoes (Abx) led to PM loss and increased vectorial competence. Recolonization of Abx mosquitoes with indigenous Enterobacter sp. restored PM integrity and decreased mosquito vectorial capacity. Silencing PGRP-LD in mosquitoes without PM didn't influence their vector competence. Our results indicate that PGPR-LD protects the gut microbiota by preventing hyper-immunity, which in turn promotes PM structurally integrity. The intact PM plays a key role in limiting P. berghei infection.


Subject(s)
Anopheles/parasitology , Carrier Proteins/physiology , Chitin/metabolism , Gastrointestinal Microbiome/physiology , Host-Parasite Interactions , Malaria , Animals , Anopheles/genetics , Carrier Proteins/genetics , Gene Knockdown Techniques , Genetic Predisposition to Disease , Homeostasis/physiology , Host-Parasite Interactions/genetics , Insect Vectors/parasitology , Malaria/genetics , Malaria/microbiology , Malaria/parasitology , Malaria/transmission , Mice , Mice, Inbred BALB C , Plasmodium berghei/pathogenicity , Plasmodium berghei/physiology
13.
Cell Microbiol ; 21(7): e13028, 2019 07.
Article in English | MEDLINE | ID: mdl-30941868

ABSTRACT

The Plasmodium subtilisin-like serine protease SUB1 is expressed in hepatic and both asexual and sexual blood parasite stages. SUB1 is required for egress of invasive forms of the parasite from both erythrocytes and hepatocytes, but its subcellular localisation, function, and potential substrates in the sexual stages are unknown. Here, we have characterised the expression profile and subcellular localisation of SUB1 in Plasmodium berghei sexual stages. We show that the protease is selectively expressed in mature male gametocytes and localises to secretory organelles known to be involved in gamete egress, called male osmiophilic bodies. We have investigated PbSUB1 function in the sexual stages by generating P. berghei transgenic lines deficient in PbSUB1 expression or enzyme activity in gametocytes. Our results demonstrate that PbSUB1 plays a role in male gamete egress. We also show for the first time that the PbSUB1 substrate PbSERA3 is expressed in gametocytes and processed by PbSUB1 upon gametocyte activation. Taken together, our results strongly suggest that PbSUB1 is not only a promising drug target for asexual stages but could also be an attractive malaria transmission-blocking target.


Subject(s)
Malaria/genetics , Plasmodium berghei/genetics , Serine Endopeptidases/genetics , Subtilisins/genetics , Animals , Erythrocytes/parasitology , Germ Cells/parasitology , Hepatocytes/parasitology , Malaria/parasitology , Male , Organelles/parasitology , Plasmodium berghei/pathogenicity , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity
14.
Cell Microbiol ; 21(10): e13088, 2019 10.
Article in English | MEDLINE | ID: mdl-31364224

ABSTRACT

Intracellular Plasmodium parasites develop inside a parasitophorous vacuole (PV), a specialised compartment enclosed by a membrane (PVM) that contains proteins of both host and parasite origin. Although exported protein 1 (EXP1) is one of the earliest described parasitic PVM proteins, its function throughout the Plasmodium life cycle remains insufficiently understood. Here, we show that whereas the N-terminus of Plasmodium berghei EXP1 (PbEXP1) is essential for parasite survival in the blood, parasites lacking PbEXP1's entire C-terminal (CT) domain replicate normally in the blood but cause less severe pathology than their wild-type counterparts. Moreover, truncation of PbEXP1's CT domain not only impairs parasite development in the mosquito but also abrogates PbEXP1 localization to the PVM of intrahepatic parasites, severely limiting their replication and preventing their egress into the blood. Our findings highlight the importance of EXP1 during the Plasmodium life cycle and identify this protein as a promising target for antiplasmodial intervention.


Subject(s)
Culicidae/parasitology , Liver/parasitology , Plasmodium berghei/genetics , Protein Domains/genetics , Protozoan Proteins/genetics , Animals , Cell Line, Tumor , Erythrocytes/parasitology , Female , Humans , Intracellular Membranes/metabolism , Intracellular Membranes/parasitology , Life Cycle Stages/genetics , Liver/metabolism , Mice , Mice, Inbred C57BL , Plasmodium berghei/growth & development , Plasmodium berghei/pathogenicity , Protozoan Proteins/metabolism , Vacuoles/metabolism , Vacuoles/parasitology
15.
Cell Microbiol ; 21(7): e13021, 2019 07.
Article in English | MEDLINE | ID: mdl-30835870

ABSTRACT

Protozoan pathogens secrete nanosized particles called extracellular vesicles (EVs) to facilitate their survival and chronic infection. Here, we show the inhibition by Plasmodium berghei NK65 blood stage-derived EVs of the proliferative response of CD4+ T cells in response to antigen presentation. Importantly, these results were confirmed in vivo by the capacity of EVs to diminish the ovalbumin-specific delayed type hypersensitivity response. We identified two proteins associated with EVs, the histamine releasing factor (HRF) and the elongation factor 1α (EF-1α) that were found to have immunosuppressive activities. Interestingly, in contrast to WT parasites, EVs from genetically HRF- and EF-1α-deficient parasites failed to inhibit T cell responses in vitro and in vivo. At the level of T cells, we demonstrated that EVs from WT parasites dephosphorylate key molecules (PLCγ1, Akt, and ERK) of the T cell receptor signalling cascade. Remarkably, immunisation with EF-1α alone or in combination with HRF conferred a long-lasting antiparasite protection and immune memory. In conclusion, we identified a new mechanism by which P. berghei-derived EVs exert their immunosuppressive functions by altering T cell responses. The identification of two highly conserved immune suppressive factors offers new conceptual strategies to overcome EV-mediated immune suppression in malaria-infected individuals.


Subject(s)
Biomarkers, Tumor/genetics , Extracellular Vesicles/immunology , Malaria/genetics , Peptide Elongation Factor 1/genetics , Animals , Antigen Presentation/immunology , Antigens/genetics , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , Cell Proliferation/genetics , Extracellular Vesicles/genetics , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Malaria/parasitology , Malaria/pathology , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Tumor Protein, Translationally-Controlled 1
16.
Cell Microbiol ; 21(5): e12999, 2019 05.
Article in English | MEDLINE | ID: mdl-30597708

ABSTRACT

Ferlins mediate calcium-dependent vesicular fusion. Although conserved throughout eukaryotic evolution, their function in unicellular organisms including apicomplexan parasites is largely unknown. Here, we define a crucial role for a ferlin-like protein (FLP) in host-to-vector transmission of the rodent malaria parasite Plasmodium berghei. Infection of the mosquito vectors requires the formation of free gametes and their fertilisation in the mosquito midgut. Mature gametes will only emerge upon secretion of factors that stimulate the disruption of the red blood cell membrane and the parasitophorous vacuole membrane. Genetic depletion of FLP in sexual stages leads to a complete life cycle arrest in the mosquito. Although mature gametes form normally, mutants lacking FLP remain trapped in the red blood cell. The egress defect is rescued by detergent-mediated membrane lysis. In agreement with ferlin vesicular localisation, HA-tagged FLP labels intracellular speckles, which relocalise to the cell periphery during gamete maturation. Our data define FLP as a novel critical factor for Plasmodium fertilisation and transmission and suggest an evolutionarily conserved example of ferlin-mediated exocytosis.


Subject(s)
Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Germ Cells/metabolism , Malaria/transmission , Plasmodium berghei/growth & development , Protozoan Proteins/metabolism , Animals , Culicidae/parasitology , Detergents/pharmacology , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/genetics , Erythrocyte Membrane/parasitology , Erythrocytes/drug effects , Erythrocytes/parasitology , Exocytosis/genetics , Female , Germ Cells/cytology , Germ Cells/growth & development , Germ Cells/ultrastructure , Host-Pathogen Interactions , Life Cycle Stages/genetics , Malaria/genetics , Malaria/metabolism , Malaria/parasitology , Mice , Mice, Inbred C57BL , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Protein Domains/genetics , Protozoan Proteins/genetics
17.
Bioorg Med Chem Lett ; 30(17): 127348, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738996

ABSTRACT

Antimalarial candidates possessing novel mechanisms of action are needed to control drug resistant Plasmodium falciparum. We were drawn to Malaria Box compound 1 (MMV665831) by virtue of its excellent in vitro potency, and twelve analogs were prepared to probe its structure-activity relationship. Modulation of the diethyl amino group was fruitful, producing compound 25, which was twice as potent as 1 against cultured parasites. Efforts were made to modify the phenolic Mannich base functionality of 1, to prevent formation of a reactive quinone methide. Homologated analog 28 had reduced potency relative to 1, but still inhibited growth with EC50 ≤ 200 nM. Thus, the antimalarial activity of 1 does not derive from quinone methide formation. Chemical stability studies on dimethyl analog 2 showed remarkable hydrolytic stability of both the phenolic Mannich base and ethyl ester moieties, and 1 was evaluated for in vivo efficacy in P. berghei-infected mice (40 mg/kg, oral). Unfortunately, no reduction in parasitemia was seen relative to control. These results are discussed in the context of measured plasma and hepatocyte stabilities, with reference to structurally-related, orally-efficacious antimalarials.


Subject(s)
Antimalarials/pharmacology , Mannich Bases/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Antimalarials/therapeutic use , Disease Models, Animal , Malaria/drug therapy , Malaria/parasitology , Mannich Bases/pharmacology , Mannich Bases/therapeutic use , Mice , Plasmodium berghei/pathogenicity
18.
J Proteome Res ; 18(9): 3404-3418, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31335145

ABSTRACT

The pre-erythrocytic liver stage of the malaria parasite, comprising sporozoites and the liver stages into which they develop, remains one of the least understood parts of the lifecycle, in part owing to the low numbers of parasites. Nonetheless, it is recognized as an important target for antimalarial drugs and vaccines. Here we provide the first proteomic analysis of merosomes, which define the final phase of the liver stage and are responsible for initiating the blood stage of infection. We identify a total of 1879 parasite proteins, and a core set of 1188 proteins quantitatively detected in every biological replicate, providing an extensive picture of the protein repertoire of this stage. This unique data set will allow us to explore key questions about the biology of merosomes and hepatic merozoites.


Subject(s)
Liver/parasitology , Malaria/diagnosis , Plasmodium berghei/isolation & purification , Proteomics , Animals , Anopheles/parasitology , Erythrocytes/parasitology , Hepatocytes/parasitology , Humans , Life Cycle Stages/genetics , Malaria/blood , Malaria/genetics , Malaria/parasitology , Merozoites/isolation & purification , Merozoites/pathogenicity , Mice , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity
19.
J Proteome Res ; 18(5): 1970-1993, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30931571

ABSTRACT

Artemisinin resistance has inevitably emerged in several malaria-endemic areas and led to an incremental clinical failure rate for artemisinin-based combination therapy (ACT), which is strongly recommended by the World Health Organization (WHO). Genetically resilient malaria parasites have evolved antimalarial drug-evasion mechanisms; meanwhile, the metabolic cross-talk between the malaria parasites and the host is of significance during the invasion. The intention of this work, therefore, is to propose a feasible method to discover the systematic metabolic phenotypes of mice invaded with artemisinin-sensitive or -resistant Plasmodium berghei K173 when compared with healthy mice. Biological samples, including plasma, liver, spleen, and kidney, of mice collected after euthanasia at day 7 were subjected to 1H nuclear magnetic resonance spectroscopy. Multivariable data analysis was utilized to estimate the metabolic characteristics of these samples from uninfected and infected mice. In contrast with healthy mice, both sensitive and resistant malaria-parasite-infected models displayed distinct metabolic profiles. Parasite invasion significantly changed the glycolysis, Kreb's cycle, and amino acid metabolism in plasma and tissues. Decreased N, N-dimethylglycine and glycine levels in plasma from the artemisinin-sensitive P. berghei-infected group and increased lactate, lipid, and aspartate in the artemisinin-resistant P. berghei-infected group were observed, respectively. In the liver, the artemisinin-sensitive group up-regulated the glutamate level and down-regulated glutamine. Artemisinin-resistant parasite exposure decreased ethanol and allantoin levels. The levels of myo-inositol and valine in the spleen were increased due to artemisinin-sensitive P. berghei infection, together with decreased trimethylamine N-oxide, phosphocholine, ß-glucose, and acetoacetic acid. In the artemisinin-resistant group, the spleen showed a remarkably increased phosphocholine content along with decreased dimethylglycine and arginine levels. In the kidney, artemisinin-sensitive P. berghei K173 caused increased lysine, glutamate, creatine, and 2-hydroxybutyrate as well as decreased ethanol. Artemisinin-resistant P. berghei led to low glycerophosphorylcholine and high acetate, betaine, and hypoxanthine. Mutual and specific altered metabolites and, accordingly, metabolic pathways induced by the infection of artemisinin-sensitive or -resistant P. berghei were therefore screened out. This should be considered a preliminary study to establish a direct relationship with the host metabolic background and artemisinin resistance.


Subject(s)
Host-Parasite Interactions , Kidney/metabolism , Liver/metabolism , Malaria/blood , Metabolome , Plasmodium berghei/pathogenicity , Spleen/metabolism , Animals , Antimalarials/pharmacology , Artemisinins/pharmacology , Disease Models, Animal , Drug Resistance , Kidney/parasitology , Liver/parasitology , Magnetic Resonance Spectroscopy , Malaria/drug therapy , Malaria/parasitology , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred ICR , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Principal Component Analysis , Spleen/parasitology
20.
IUBMB Life ; 71(9): 1293-1301, 2019 09.
Article in English | MEDLINE | ID: mdl-30865364

ABSTRACT

Proliferative cell nuclear antigen (PCNA) is the processivity factor for various DNA polymerases and it functions in response to DNA damage in eukaryotic system. Plasmodium falciparum contains two PCNAs, while PCNA1 has been attributed to DNA replication, the role of PCNA2 has been assigned to DNA damage response in erythrocytic developmental stages. Although a recent transposon mediated knockout strategy qualified pcna2 as a nonessential gene in Plasmodium berghei, a conventional homologous recombination-based knockout strategy has not been employed for this gene yet. Moreover, the cellular dynamics of PCNA2 in extraerythrocytic stages still remain elusive in Plasmodium. We attempted multiple times to knock out PbPCNA2 from the parasite genome using homologous recombination strategy without much success. However, we were able to generate PbPCNA2-GFP tagged transgenic parasites confirming that the pcna2 locus is amenable to genetic manipulation. The GFP-tagged parasites showed similar growth phenotype, compared to wild-type parasites, in both erythrocytic and sporogonic cycle, suggesting that tagging had no effect on parasite physiology. PbPCNA2 expression was also observed during the sporogonic cycle in midgut oocyst and salivary gland sporozoites. The PbPCNA2 expression was upregulated in the presence of DNA damaging agents like hydroxyurea and methyl methanesulphonate. Our inability to knock out PCNA2 suggested its essentiality in the parasite development and elevated expression during DNA damaging condition hint at a critical role of the protein in parasite physiology. © 2019 IUBMB Life, 71(9):1293-1301, 2019.


Subject(s)
DNA Damage/genetics , Plasmodium berghei/genetics , Proliferating Cell Nuclear Antigen/genetics , Protozoan Proteins/genetics , Animals , DNA Replication/genetics , DNA-Directed DNA Polymerase/genetics , Gene Expression Regulation/genetics , Gene Knockout Techniques , Genome/genetics , Humans , Plasmodium berghei/pathogenicity , Plasmodium falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL