Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 720
Filter
Add more filters

Publication year range
1.
Cell ; 169(1): 35-46.e19, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340348

ABSTRACT

Paralytic polio once afflicted almost half a million children each year. The attenuated oral polio vaccine (OPV) has enabled world-wide vaccination efforts, which resulted in nearly complete control of the disease. However, poliovirus eradication is hampered globally by epidemics of vaccine-derived polio. Here, we describe a combined theoretical and experimental strategy that describes the molecular events leading from OPV to virulent strains. We discover that similar evolutionary events occur in most epidemics. The mutations and the evolutionary trajectories driving these epidemics are replicated using a simple cell-based experimental setup where the rate of evolution is intentionally accelerated. Furthermore, mutations accumulating during epidemics increase the replication fitness of the virus in cell culture and increase virulence in an animal model. Our study uncovers the evolutionary strategies by which vaccine strains become pathogenic and provides a powerful framework for rational design of safer vaccine strains and for forecasting virulence of viruses. VIDEO ABSTRACT.


Subject(s)
Poliomyelitis/virology , Poliovirus Vaccine, Oral/adverse effects , Poliovirus Vaccine, Oral/genetics , Poliovirus/pathogenicity , Animals , Biological Evolution , Mice , Phylogeny , Poliomyelitis/prevention & control , Poliovirus/genetics , Poliovirus Vaccine, Oral/classification , Poliovirus Vaccine, Oral/immunology
2.
Nature ; 619(7968): 135-142, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37316671

ABSTRACT

Vaccination with Sabin, a live attenuated oral polio vaccine (OPV), results in robust intestinal and humoral immunity and has been key to controlling poliomyelitis. As with any RNA virus, OPV evolves rapidly to lose attenuating determinants critical to the reacquisition of virulence1-3 resulting in vaccine-derived, virulent poliovirus variants. Circulation of these variants within underimmunized populations leads to further evolution of circulating, vaccine-derived poliovirus with higher transmission capacity, representing a significant risk of polio re-emergence. A new type 2 OPV (nOPV2), with promising clinical data on genetic stability and immunogenicity, recently received authorization from the World Health Organization for use in response to circulating, vaccine-derived poliovirus outbreaks. Here we report the development of two additional live attenuated vaccine candidates against type 1 and 3 polioviruses. The candidates were generated by replacing the capsid coding region of nOPV2 with that from Sabin 1 or 3. These chimeric viruses show growth phenotypes similar to nOPV2 and immunogenicity comparable to their parental Sabin strains, but are more attenuated. Our experiments in mice and deep sequencing analysis confirmed that the candidates remain attenuated and preserve all the documented nOPV2 characteristics concerning genetic stability following accelerated virus evolution. Importantly, these vaccine candidates are highly immunogenic in mice as monovalent and multivalent formulations and may contribute to poliovirus eradication.


Subject(s)
Poliomyelitis , Poliovirus Vaccine, Oral , Poliovirus , Vaccines, Attenuated , Animals , Mice , Disease Models, Animal , Poliomyelitis/immunology , Poliomyelitis/prevention & control , Poliomyelitis/virology , Poliovirus/classification , Poliovirus/genetics , Poliovirus/immunology , Poliovirus Vaccine, Oral/chemistry , Poliovirus Vaccine, Oral/genetics , Poliovirus Vaccine, Oral/immunology , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Disease Eradication
3.
J Infect Dis ; 230(3): 736-740, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38195177

ABSTRACT

This study assesses poliovirus type 1 (PV1) immunity in children to inform the contribution of mucosal immunity in and prevention of poliovirus circulation. A community-based study was conducted in periurban Karachi, Pakistan. Randomly selected children (0-15 years of age) received oral poliovirus vaccine (OPV) challenge dose. Blood and stool samples were collected at several time points and evaluated for polio-neutralizing antibodies and serotype-specific poliovirus, respectively. Eighty-one of 589 (14%) children excreted PV1 7 days post-OPV challenge; 70 of 81 (86%) were seropositive at baseline. Twelve of 610 (2%) were asymptomatic wild poliovirus type 1 (WPV1) excretors. Most poliovirus excretors had humoral immunity, suggesting mucosal immunity in these children likely waned or never developed. Without mucosal immunity, they are susceptible to poliovirus infection, shedding, and transmission. Asymptomatic WPV1 excretion suggests undetected poliovirus circulation within the community.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Feces , Immunity, Mucosal , Poliomyelitis , Poliovirus Vaccine, Oral , Poliovirus , Humans , Pakistan/epidemiology , Poliovirus/immunology , Infant , Poliomyelitis/immunology , Poliomyelitis/prevention & control , Poliomyelitis/epidemiology , Poliomyelitis/virology , Child, Preschool , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adolescent , Poliovirus Vaccine, Oral/immunology , Poliovirus Vaccine, Oral/administration & dosage , Female , Male , Child , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Feces/virology , Infant, Newborn , Virus Shedding
4.
BMC Infect Dis ; 24(1): 535, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807038

ABSTRACT

BACKGROUND: To assess the immunogenicity of the current primary polio vaccination schedule in China and compare it with alternative schedules using Sabin or Salk-strain IPV (sIPV, wIPV). METHODS: A cross-sectional investigation was conducted at four sites in Chongqing, China, healthy infants aged 60-89 days were conveniently recruited and divided into four groups according to their received primary polio vaccination schedules (2sIPV + bOPV, 2wIPV + bOPV, 3sIPV, and 3wIPV). The sero-protection and neutralizing antibody titers against poliovirus serotypes (type 1, 2, and 3) were compared after the last dose. RESULTS: There were 408 infants completed the protocol. The observed seropositivity was more than 96% against poliovirus types 1, 2, and 3 in all groups. IPV-only groups induced higher antibody titers(GMT) against poliovirus type 2 (Median:192, QR: 96-384, P<0.05) than the "2IPV + bOPV" group. While the "2IPV + bOPV" group induced significantly higher antibody titers against poliovirus type 1 (Median:2048, QR: 768-2048, P<0.05)and type 3 (Median:2048, QR: 512-2048, P<0.05) than the IPV-only group. CONCLUSIONS: Our findings have proved that the two doses of IPV with one dose of bOPV is currently the best polio routine immunization schedule in China.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Immunization Schedule , Poliomyelitis , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral , Poliovirus , Humans , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliomyelitis/prevention & control , Poliomyelitis/immunology , Infant , Poliovirus Vaccine, Oral/immunology , Poliovirus Vaccine, Oral/administration & dosage , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross-Sectional Studies , China , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Poliovirus/immunology , Immunogenicity, Vaccine , Vaccination
5.
Lancet ; 397(10268): 27-38, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33308427

ABSTRACT

BACKGROUND: Continued emergence and spread of circulating vaccine-derived type 2 polioviruses and vaccine-associated paralytic poliomyelitis from Sabin oral poliovirus vaccines (OPVs) has stimulated development of two novel type 2 OPV candidates (OPV2-c1 and OPV2-c2) designed to have similar immunogenicity, improved genetic stability, and less potential to reacquire neurovirulence. We aimed to assess safety and immunogenicity of the two novel OPV candidates compared with a monovalent Sabin OPV in children and infants. METHODS: We did two single-centre, multi-site, partly-masked, randomised trials in healthy cohorts of children (aged 1-4 years) and infants (aged 18-22 weeks) in Panama: a control phase 4 study with monovalent Sabin OPV2 before global cessation of monovalent OPV2 use, and a phase 2 study with low and high doses of two novel OPV2 candidates. All participants received one OPV2 vaccination and subsets received two doses 28 days apart. Parents reported solicited and unsolicited adverse events. Type 2 poliovirus neutralising antibodies were measured at days 0, 7, 28, and 56, and stool viral shedding was assessed up to 28 days post-vaccination. Primary objectives were to assess safety in all participants and non-inferiority of novel OPV2 day 28 seroprotection versus monovalent OPV2 in infants (non-inferiority margin 10%). These studies were registered with ClinicalTrials.gov, NCT02521974 and NCT03554798. FINDINGS: The control study took place between Oct 23, 2015, and April 29, 2016, and the subsequent phase 2 study between Sept 19, 2018, and Sept 30, 2019. 150 children (50 in the control study and 100 of 129 assessed for eligibility in the novel OPV2 study) and 684 infants (110 of 114 assessed for eligibility in the control study and 574 of 684 assessed for eligibility in the novel OPV2 study) were enrolled and received at least one study vaccination. Vaccinations were safe and well tolerated with no causally associated serious adverse events or important medical events in any group. Solicited and unsolicited adverse events were overwhelmingly mild or moderate irrespective of vaccine or dose. Nearly all children were seroprotected at baseline, indicating high baseline immunity. In children, the seroprotection rate 28 days after one dose was 100% for monovalent OPV2 and both novel OPV2 candidates. In infants at day 28, 91 (94% [95% CI 87-98]) of 97 were seroprotected after receiving monovalent OPV2, 134 (94% [88-97]) of 143 after high-dose novel OPV2-c1, 122 (93% [87-97]) of 131 after low-dose novel OPV2-c1, 138 (95% [90-98]) of 146 after high-dose novel OPV2-c2, and 115 (91% [84-95]) of 127 after low-dose novel OPV2-c2. Non-inferiority was shown for low-dose and high-dose novel OPV2-c1 and high-dose novel OPV2-c2 despite monovalent OPV2 recipients having higher baseline immunity. INTERPRETATION: Both novel OPV2 candidates were safe, well tolerated, and immunogenic in children and infants. Novel OPV2 could be an important addition to our resources against poliovirus given the current epidemiological situation. FUNDING: Fighting Infectious Diseases in Emerging Countries and Bill & Melinda Gates Foundation.


Subject(s)
Patient Safety , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Child, Preschool , Female , Humans , Immunization Schedule , Infant , Male , Panama , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Vaccination , Virus Shedding/immunology
6.
Lancet ; 397(10268): 39-50, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33308429

ABSTRACT

BACKGROUND: Two novel type 2 oral poliovirus vaccine (OPV2) candidates, novel OPV2-c1 and novel OPV2-c2, designed to be more genetically stable than the licensed Sabin monovalent OPV2, have been developed to respond to ongoing polio outbreaks due to circulating vaccine-derived type 2 polioviruses. METHODS: We did two randomised studies at two centres in Belgium. The first was a phase 4 historical control study of monovalent OPV2 in Antwerp, done before global withdrawal of OPV2, and the second was a phase 2 study in Antwerp and Ghent with novel OPV2-c1 and novel OPV2-c2. Eligible participants were healthy adults aged 18-50 years with documented history of at least three polio vaccinations, including OPV in the phase 4 study and either OPV or inactivated poliovirus vaccine (IPV) in the novel OPV2 phase 2 study, with no dose within 12 months of study start. In the historical control trial, participants were randomly assigned to either one dose or two doses of monovalent OPV2. In the novel OPV2 trial, participants with previous OPV vaccinations were randomly assigned to either one or two doses of novel OPV2-c1 or to one or two doses of novel OPV2-c2. IPV-vaccinated participants were randomly assigned to receive two doses of either novel OPV2-c1, novel OPV2-c2, or placebo. Vaccine administrators were unmasked to treatment; medical staff performing safety and reactogenicity assessments or blood draws for immunogenicity assessments were masked. Participants received the first vaccine dose on day 0, and a second dose on day 28 if assigned to receive a second dose. Primary objectives were assessments and comparisons of safety up to 28 days after each dose, including solicited adverse events and serious adverse events, and immunogenicity (seroprotection rates on day 28 after the first vaccine dose) between monovalent OPV2 and the two novel OPV2 candidates. Primary immunogenicity analyses were done in the per-protocol population. Safety was assessed in the total vaccinated population-ie, all participants who received at least one dose of their assigned vaccine. The phase 4 control study is registered with EudraCT (2015-003325-33) and the phase 2 novel OPV2 study is registered with EudraCT (2018-001684-22) and ClinicalTrials.gov (NCT04544787). FINDINGS: In the historical control study, between Jan 25 and March 18, 2016, 100 volunteers were enrolled and randomly assigned to receive one or two doses of monovalent OPV2 (n=50 in each group). In the novel OPV2 study, between Oct 15, 2018, and Feb 27, 2019, 200 previously OPV-vaccinated volunteers were assigned to the four groups to receive one or two doses of novel OPV2-c1 or novel OPV2-c2 (n=50 per group); a further 50 participants, previously vaccinated with IPV, were assigned to novel OPV2-c1 (n=17), novel OPV2-c2 (n=16), or placebo (n=17). All participants received the first dose of assigned vaccine or placebo and were included in the total vaccinated population. All vaccines appeared safe; no definitely vaccine-related withdrawals or serious adverse events were reported. After first doses in previously OPV-vaccinated participants, 62 (62%) of 100 monovalent OPV2 recipients, 71 (71%) of 100 recipients of novel OPV2-c1, and 74 (74%) of 100 recipients of novel OPV2-c2 reported solicited systemic adverse events, four (monovalent OPV2), three (novel OPV2-c1), and two (novel OPV2-c2) of which were considered severe. In IPV-vaccinated participants, solicited adverse events occurred in 16 (94%) of 17 who received novel OPV2-c1 (including one severe) and 13 (81%) of 16 who received novel OPV2-c2 (including one severe), compared with 15 (88%) of 17 placebo recipients (including two severe). In previously OPV-vaccinated participants, 286 (97%) of 296 were seropositive at baseline; after one dose, 100% of novel OPV2 vaccinees and 97 (97%) of monovalent OPV2 vaccinees were seropositive. INTERPRETATION: Novel OPV2 candidates were as safe, well tolerated, and immunogenic as monovalent OPV2 in previously OPV-vaccinated and IPV-vaccinated adults. These data supported the further assessment of the vaccine candidates in children and infants. FUNDING: University of Antwerp and Bill & Melinda Gates Foundation.


Subject(s)
Immunogenicity, Vaccine , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/adverse effects , Poliovirus Vaccine, Oral/immunology , Poliovirus , Adult , Belgium , Female , Humans , Male , Middle Aged , Poliovirus/genetics , Poliovirus/immunology , Poliovirus Vaccine, Oral/administration & dosage , Vaccination
7.
J Infect Dis ; 223(1): 119-127, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32621741

ABSTRACT

BACKGROUND: Understanding immunogenicity and safety of monovalent type 2 oral poliovirus vaccine (mOPV2) in inactivated poliovirus vaccine (IPV)-immunized children is of major importance in informing global policy to control circulating vaccine-derived poliovirus outbreaks. METHODS: In this open-label, phase 4 study (NCT02582255) in 100 IPV-vaccinated Lithuanian 1-5-year-olds, we measured humoral and intestinal type 2 polio neutralizing antibodies before and 28 days after 1 or 2 mOPV2 doses given 28 days apart and measured stool viral shedding after each dose. Parents recorded solicited adverse events (AEs) for 7 days after each dose and unsolicited AEs for 6 weeks after vaccination. RESULTS: After 1 mOPV2 challenge, the type 2 seroprotection rate increased from 98% to 100%. Approximately 28 days after mOPV2 challenge 34 of 68 children (50%; 95% confidence interval, 38%-62%) were shedding virus; 9 of 37 (24%; 12%-41%) were shedding 28 days after a second challenge. Before challenge, type 2 intestinal immunity was undetectable in IPV-primed children, but 28 of 87 (32%) had intestinal neutralizing titers ≥32 after 1 mOPV2 dose. No vaccine-related serious or severe AEs were reported. CONCLUSIONS: High viral excretion after mOPV2 among exclusively IPV-vaccinated children was substantially lower after a subsequent dose, indicating induction of intestinal immunity against type 2 poliovirus.


Subject(s)
Poliomyelitis/immunology , Poliovirus Vaccine, Oral/immunology , Antibodies, Neutralizing , Child, Preschool , Female , Humans , Immunogenicity, Vaccine , Infant , Intestines/immunology , Lithuania , Male , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus Vaccine, Oral/adverse effects , Virus Shedding
8.
J Infect Dis ; 223(1): 113-118, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32621746

ABSTRACT

BACKGROUND: China implemented the globally synchronized switch from trivalent oral poliovirus vaccine (tOPV) to bivalent OPV (bOPV) and introduced 1 dose of inactivated poliovirus vaccine on 1 May 2016. We assessed the impact of the switch on the immunity level against poliovirus, especially type 2. METHODS: Children born between 2014 and 2017, who were brought to the hospitals in Urumqi city, Xinjiang Province in 2017, were enrolled and blood samples were collected to test for antibody titers against poliovirus. A comparison of seroprevalence between the children born before (preswitch group) and after the switch (postswitch group) was performed to assess the impact of the switch on the immunity level against polio. RESULTS: A total of 172 subjects were enrolled. The overall seroprevalences were 98.8%, 79.1%, and 98.3% for types 1, 2, and 3, respectively. Seroprevalence for type 2 significantly decreased from 91.6% in the preswitch group to 67.4% in the postswitch group, but no statistically significant change was observed for both types 1 and 3. CONCLUSIONS: The switch from tOPV to bOPV can provide high-level immunity against types 1 and 3 but not against type 2, indicating a high risk of type 2 vaccine-derived poliovirus emergence and transmission.


Subject(s)
Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/immunology , Child, Preschool , China , Cross-Sectional Studies , Female , Humans , Immunization Schedule , Infant , Infant, Newborn , Male , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Seroepidemiologic Studies
9.
J Infect Dis ; 221(4): 544-552, 2020 02 03.
Article in English | MEDLINE | ID: mdl-30788503

ABSTRACT

BACKGROUND: Following the declaration of wild-type 2 poliovirus eradication in 2015, the type 2 component was removed from the live-attenuated oral polio vaccine (OPV). This change implies a need to improve global coverage through routine immunization with inactivated polio vaccine (IPV), to ensure type 2 immunity. Several manufacturers use Sabin OPV strains for IPV production (sIPV), rather than the usual wild-type strains used for conventional IPV (cIPV). However, in contrast to cIPV, potency assays for sIPV have not been standardized, no international references exist, and no antigen units have been defined for a sIPV human dose. Thus, sIPV products from different manufacturers cannot be compared, and the relationship between antigenicity and immunogenicity of sIPV is not well understood. METHODS: A collaborative study was conducted in which laboratories used different methods to measure the antigen content of a set of sIPV and cIPV samples with an aim to identify a suitable reference for sIPV products. RESULTS: The study revealed differences in the reactivity of antibody reagents to cIPV and sIPV products. CONCLUSIONS: Homologous references are required to measure the antigen content of IPV products consistently. The first World Health Organization international standard for sIPV was established, with new, specific Sabin D-antigen units assigned.


Subject(s)
Antigens, Viral/immunology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Poliovirus/immunology , Vaccine Potency , Vaccines, Attenuated/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Immunogenicity, Vaccine/immunology , Poliomyelitis/virology
10.
Lancet ; 394(10193): 148-158, 2019 07 13.
Article in English | MEDLINE | ID: mdl-31174831

ABSTRACT

BACKGROUND: Use of oral live-attenuated polio vaccines (OPV), and injected inactivated polio vaccines (IPV) has almost achieved global eradication of wild polio viruses. To address the goals of achieving and maintaining global eradication and minimising the risk of outbreaks of vaccine-derived polioviruses, we tested novel monovalent oral type-2 poliovirus (OPV2) vaccine candidates that are genetically more stable than existing OPVs, with a lower risk of reversion to neurovirulence. Our study represents the first in-human testing of these two novel OPV2 candidates. We aimed to evaluate the safety and immunogenicity of these vaccines, the presence and extent of faecal shedding, and the neurovirulence of shed virus. METHODS: In this double-blind, single-centre phase 1 trial, we isolated participants in a purpose-built containment facility at the University of Antwerp Hospital (Antwerp, Belgium), to minimise the risk of environmental release of the novel OPV2 candidates. Participants, who were recruited by local advertising, were adults (aged 18-50 years) in good health who had previously been vaccinated with IPV, and who would not have any contact with immunosuppressed or unvaccinated people for the duration of faecal shedding at the end of the study. The first participant randomly chose an envelope containing the name of a vaccine candidate, and this determined their allocation; the next 14 participants to be enrolled in the study were sequentially allocated to this group and received the same vaccine. The subsequent 15 participants enrolled after this group were allocated to receive the other vaccine. Participants and the study staff were masked to vaccine groups until the end of the study period. Participants each received a single dose of one vaccine candidate (candidate 1, S2/cre5/S15domV/rec1/hifi3; or candidate 2, S2/S15domV/CpG40), and they were monitored for adverse events, immune responses, and faecal shedding of the vaccine virus for 28 days. Shed virus isolates were tested for the genetic stability of attenuation. The primary outcomes were the incidence and type of serious and severe adverse events, the proportion of participants showing viral shedding in their stools, the time to cessation of viral shedding, the cell culture infective dose of shed virus in virus-positive stools, and a combined index of the prevalence, duration, and quantity of viral shedding in all participants. This study is registered with EudraCT, number 2017-000908-21 and ClinicalTrials.gov, number NCT03430349. FINDINGS: Between May 22 and Aug 22, 2017, 48 volunteers were screened, of whom 15 (31%) volunteers were excluded for reasons relating to the inclusion or exclusion criteria, three (6%) volunteers were not treated because of restrictions to the number of participants in each group, and 30 (63%) volunteers were sequentially allocated to groups (15 participants per group). Both novel OPV2 candidates were immunogenic and increased the median blood titre of serum neutralising antibodies; all participants were seroprotected after vaccination. Both candidates had acceptable tolerability, and no serious adverse events occurred during the study. However, severe events were reported in six (40%) participants receiving candidate 1 (eight events) and nine (60%) participants receiving candidate 2 (12 events); most of these events were increased blood creatinine phosphokinase but were not accompanied by clinical signs or symptoms. Vaccine virus was detected in the stools of 15 (100%) participants receiving vaccine candidate 1 and 13 (87%) participants receiving vaccine candidate 2. Vaccine poliovirus shedding stopped at a median of 23 days (IQR 15-36) after candidate 1 administration and 12 days (1-23) after candidate 2 administration. Total shedding, described by the estimated median shedding index (50% cell culture infective dose/g), was observed to be greater with candidate 1 than candidate 2 across all participants (2·8 [95% CI 1·8-3·5] vs 1·0 [0·7-1·6]). Reversion to neurovirulence, assessed as paralysis of transgenic mice, was low in isolates from those vaccinated with both candidates, and sequencing of shed virus indicated that there was no loss of attenuation in domain V of the 5'-untranslated region, the primary site of reversion in Sabin OPV. INTERPRETATION: We found that the novel OPV2 candidates were safe and immunogenic in IPV-immunised adults, and our data support the further development of these vaccines to potentially be used for maintaining global eradication of neurovirulent type-2 polioviruses. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Immunogenicity, Vaccine , Poliovirus Vaccine, Oral/adverse effects , Poliovirus Vaccine, Oral/immunology , Poliovirus/immunology , Adult , Antibodies, Viral/blood , Double-Blind Method , Feces/virology , Female , Humans , Male , Middle Aged , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/administration & dosage , RNA, Viral/analysis , Single-Blind Method , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Virulence/immunology , Virus Shedding/immunology , Young Adult
11.
J Med Virol ; 92(2): 129-138, 2020 02.
Article in English | MEDLINE | ID: mdl-31502669

ABSTRACT

The number of new and improved human viral vaccines licensed in recent years contrasts sharply with what could be termed the golden era (1955-1990) when vaccines against polio-, measles, mumps, rubella, and hepatitis B viruses first became available. Here, we attempt to explain why vaccines, mainly against viruses other than human immunodeficiency virus and hepatitis C virus, are still unavailable. They include human herpesviruses other than varicella-zoster virus, respiratory syncytial and most other respiratory, enteric and arthropod-borne viruses. Improved oral poliovirus vaccines are also urgently required. Their unavailability is attributable to regulatory/economic factors and the properties of individual viruses, but also to an absence of relevant animal models and ethical problems for the conduct of clinical of trials in pediatric and other critical populations. All are portents of likely difficulties for the licensing of effective vaccines against emerging pathogens, such as avian influenza, Ebola, and Zika viruses.


Subject(s)
Viral Vaccines/economics , Viral Vaccines/immunology , Viral Vaccines/supply & distribution , Virus Diseases/prevention & control , Animals , Antibodies, Viral , Chickenpox Vaccine/immunology , Clinical Trials as Topic/ethics , Dengue Vaccines/immunology , Disease Models, Animal , Ebola Vaccines/immunology , Humans , Influenza Vaccines/immunology , Measles-Mumps-Rubella Vaccine/immunology , Poliovirus Vaccine, Oral/immunology , Rotavirus Vaccines/immunology , Zika Virus/immunology
12.
Med Anthropol Q ; 34(4): 504-524, 2020 12.
Article in English | MEDLINE | ID: mdl-32529703

ABSTRACT

The author analyzes the aftermath of Edward Hooper's suggestion that the trial of an oral polio vaccine (OPV) in the Belgian colonies of Africa engendered the pandemic form of the AIDS virus, HIV-1. In response to Hooper's book, The River (1999), the Royal Society in London held a conference to debate the origins of HIV. Examination of the quick dismissal of the OPV theory opens a space for legitimately challenging the widely held belief that the vaccine contamination question was convincingly resolved. This article interrogates the relationship between historiography and the making of scientific facts and history, suggesting that historians have been too credulous of scientists' testimony. The further result of the lack of a thorough analysis of the evidence backing the OPV hypothesis has resulted in a missed opportunity to read The River as one of the few detailed accounts of the immense social, political, technological, and interspecies infrastructure constituted by Cold War vaccine production. This biomedical infrastructure dramatically changed the geographic and interspecies mobility of viruses in ways that may be impossible to reconstruct. Yet these potential transmission routes remain crucial to acknowledge. The COVID-19 pandemic draws attention to the critical importance of studying The WetNet, a concept coined by the author to name the conceptual and material infrastructures of inter- and intraspecies fluid bonding.


Subject(s)
HIV Infections/history , HIV-1 , Poliomyelitis/history , Poliovirus Vaccine, Oral/history , Africa , Animals , Anthropology, Medical/history , COVID-19/epidemiology , COVID-19/transmission , Culture , HIV Infections/epidemiology , HIV Infections/transmission , History, 20th Century , Humans , Internationality , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/immunology , SARS-CoV-2 , Vaccination/history
13.
J Infect Dis ; 220(3): 386-391, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30869149

ABSTRACT

BACKGROUND: Due to global shortage of inactivated poliovirus vaccine and withdrawal of oral vaccine containing poliovirus type 2 (PV2), a PV2-containing vaccine was not used in Vietnam May 2016 to October 2018. We assessed the population immunity gap to PV2. METHODS: A cross-sectional survey in children aged 1-18 months was carried out in January 2018. One blood sample per child was analyzed for presence of poliovirus neutralizing antibodies. In children with detectable anti-PV2 antibodies, a second sample was analyzed 4 months later to distinguish between passive (maternally derived) and active (induced by secondary transmission or vaccination) immunity. RESULTS: Sera were obtained from 1106/1110 children. Seroprevalence of PV2 antibodies was 87/368 (23.6%) at age 1-7 months, 27/471 (5.7%) at 8-15 months, and 19/267 (7.1%) at 16-18 months. Seroprevalence declined with age in the 1-7 months group; in the 8-18 months group there was no significant change with age. Four months later, 11/87 (14%), 9/27 (32%), and 12/19 (37%) remained seropositive in 1-7, 8-15, and 16-18 months age groups, respectively. CONCLUSIONS: We found declining immunity to PV2, suggesting Vietnam is at risk for an outbreak of type 2 vaccine-derived poliovirus following virus importation or new emergence.


Subject(s)
Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Poliovirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Child, Preschool , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Female , Humans , Infant , Male , Poliomyelitis/immunology , Seroepidemiologic Studies , Vaccination/methods , Vietnam
14.
J Infect Dis ; 219(4): 578-581, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30239830

ABSTRACT

FUT2 determines whether histo-blood group antigens are secreted at mucosal surfaces. Secretor status influences susceptibility to enteric viruses, potentially including oral poliovirus vaccine (OPV). We performed a nested case-control study to determine the association between FUT2 genotype (single-nucleotide polymorphisms G428A, C302T, and A385T) and seroconversion among Indian infants who received a single dose of monovalent type 3 OPV. Secretor prevalence was 75% (89 of 118) in infants who seroconverted and 80% (97 of 122) in infants who did not seroconvert (odds ratio, 0.79; 95% confidence interval, .43-1.45). Our findings suggest that FUT2 genotype is not a key determinant of variation in OPV immunogenicity.


Subject(s)
Fucosyltransferases/genetics , Genotype , Immunogenicity, Vaccine/genetics , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/immunology , Case-Control Studies , Female , Humans , India , Infant , Male , Galactoside 2-alpha-L-fucosyltransferase
15.
J Infect Dis ; 219(8): 1178-1186, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30247561

ABSTRACT

BACKGROUND: Oral poliovirus vaccine (OPV) is less immunogenic in low- or middle-income than in high-income countries. We tested whether bacterial and viral components of the intestinal microbiota are associated with this phenomenon. METHODS: We assessed the prevalence of enteropathogens using TaqMan array cards 14 days before and at vaccination in 704 Indian infants (aged 6-11 months) receiving monovalent type 3 OPV (CTRI/2014/05/004588). Nonpolio enterovirus (NPEV) serotypes were identified by means of VP1 sequencing. In 120 infants, the prevaccination bacterial microbiota was characterized using 16S ribosomal RNA sequencing. RESULTS: We detected 56 NPEV serotypes on the day of vaccination. Concurrent NPEVs were associated with a reduction in OPV seroconversion, consistent across species (odds ratio [95% confidence interval], 0.57 [.36-.90], 0.61 [.43-.86], and 0.69 [.41-1.16] for species A, B, and C, respectively). Recently acquired enterovirus infections, detected at vaccination but not 14 days earlier, had a greater interfering effect on monovalent type 3 OPV seroresponse than did persistent infections, with enterovirus detected at both time points (seroconversion in 44 of 127 infants [35%] vs 63 of 129 [49%]; P = .02). The abundance of specific bacterial taxa did not differ significantly according to OPV response, although the microbiota was more diverse in nonresponders at the time of vaccination. CONCLUSION: Enteric viruses have a greater impact on OPV response than the bacterial microbiota, with recent enterovirus infections having a greater inhibitory effect than persistent infections.


Subject(s)
Enterovirus , Gastrointestinal Microbiome , Intestines/virology , Poliovirus Vaccine, Oral/pharmacology , Seroconversion , Enterovirus/genetics , Enterovirus Infections/epidemiology , Enterovirus Infections/immunology , Gastrointestinal Microbiome/genetics , Humans , India/epidemiology , Infant , Intestines/microbiology , Poliovirus Vaccine, Oral/immunology , RNA, Ribosomal, 16S/genetics
16.
J Biol Chem ; 293(40): 15471-15482, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30126841

ABSTRACT

Recruitment of poliovirus (PV) RNA to the human ribosome requires the coordinated interaction of the viral internal ribosome entry site (IRES) and several host cellular initiation factors and IRES trans-acting factors (ITAFs). Attenuated PV Sabin strains contain point mutations in the PV IRES domain V (dV) that inhibit viral translation. Remarkably, attenuation is most apparent in cells of the central nervous system, but the molecular basis to explain this is poorly understood. The dV contains binding sites for eukaryotic initiation factor 4G (eIF4G) and polypyrimidine tract-binding protein (PTB). Impaired binding of these proteins to the mutant IRESs has been observed, but these effects have not been quantitated. We used a fluorescence anisotropy assay to reveal that the Sabin mutants reduce the equilibrium dissociation constants of eIF4G and PTB to the PV IRES by up to 6-fold. Using the most inhibitory Sabin 3 mutant, we used a real-time fluorescence helicase assay to show that the apparent affinity of an active eIF4G/4A/4B helicase complex for the IRES is reduced by 2.5-fold. The Sabin 3 mutant did not alter the maximum rate of eIF4A-dependent helicase activity, suggesting that this mutant primarily reduces the affinity, rather than activity, of the unwinding complex. To confirm this affinity model of attenuation, we show that eIF4G overexpression in HeLa cells overcomes the attenuation of a Sabin 3 mutant PV-luciferase replicon. Our study provides a quantitative framework for understanding the mechanism of PV Sabin attenuation and provides an explanation for the previously observed cell type-specific translational attenuation.


Subject(s)
Eukaryotic Initiation Factor-4G/genetics , Mutation , Poliovirus Vaccine, Oral/genetics , Poliovirus/genetics , Polypyrimidine Tract-Binding Protein/genetics , Protein Biosynthesis , Animals , Baculoviridae/genetics , Baculoviridae/immunology , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/immunology , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/immunology , Eukaryotic Initiation Factor-4G/immunology , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , Humans , Internal Ribosome Entry Sites , Luciferases/genetics , Luciferases/metabolism , Nucleic Acid Conformation , Poliovirus/immunology , Poliovirus Vaccine, Oral/biosynthesis , Poliovirus Vaccine, Oral/immunology , Polypyrimidine Tract-Binding Protein/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Sf9 Cells , Spodoptera , Vaccines, Attenuated
17.
Cochrane Database Syst Rev ; 12: CD011780, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31858595

ABSTRACT

BACKGROUND: Poliomyelitis is a debilitating and deadly infection. Despite exponential growth in medical science, there is still no cure for the disease, which is caused by three types of wild polioviruses: types 1, 2, and 3. According to the Global Polio Eradication Initiative (GPEI), wild poliovirus is still in circulation in three countries, and fresh cases have been reported even in the year 2018. Due to the administration of live vaccines, the risk for vaccine-derived poliovirus (VDPV) is high in areas that are free from wild polioviruses. This is evident based on the fact that VDPV caused 20 outbreaks between 2000 and 2011. Recent recommendations from the World Health Organization favoured the inclusion of inactivated poliovirus vaccine (IPV) in the global immunisation schedule. IPV can be delivered in two ways: intramuscularly and intradermally. IPV was previously administered intramuscularly, but shortages in vaccine supplies, coupled with the higher costs of the vaccines, led to the innovation of delivering a fractional dose (one-fifth) of IPV intradermally. However, there is uncertainty regarding the efficacy, immunogenicity, and safety of an intradermal, fractional dose of IPV compared to an intramuscular, full dose of IPV. OBJECTIVES: To compare the immunogenicity and efficacy of an inactivated poliovirus vaccine (IPV) in equivalent immunisation schedules using fractional-dose IPV given via the intradermal route versus full-dose IPV given via the intramuscular route. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, 10 other databases, and two trial registers up to February 2019. We also searched the GPEI website and scanned the bibliographies of key studies and reviews in order to identify any additional published and unpublished trials in this area not captured by our electronic searches. SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs of healthy individuals of any age who are eligible for immunisation with IPV, comparing intradermal fractional-dose (one-fifth) IPV to intramuscular full-dose IPV. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. MAIN RESULTS: We included 13 RCTs involving a total of 7292 participants, both children (n = 6402) and adults (n = 890). Nine studies were conducted in middle-income countries, three studies in high-income countries, and only one study in a low-income country. Five studies did not report methods of randomisation, and one study failed to conceal the allocations. Eleven studies did not blind participants, and six studies did not blind outcome assessments. Two studies had high attrition rates, and one study selectively reported the results. Three studies were funded by pharmaceutical companies. Paralytic poliomyelitis. No study reported data on this outcome. Seroconversion rates. These were significantly higher for all three types of wild poliovirus for children given intramuscular full-dose IPV after a single primary dose and two primary doses, but only significantly higher for type two wild poliovirus given intramuscularly after three primary doses: • dose one (six studies): poliovirus type 1 (odds ratio (OR) 0.30, 95% confidence interval (CI) 0.22 to 0.41; 2570 children); poliovirus type 2 (OR 0.43, 95% CI 0.31 to 0.60; 2567 children); poliovirus type 3 (OR 0.19, 95% CI 0.12 to 0.30; 2571 children); • dose two (three studies): poliovirus type 1 (OR 0.23, 95% CI 0.16 to 0.33; 981 children); poliovirus type 2 (OR 0.41, 95% CI 0.28 to 0.60; 853 children); and poliovirus type 3 (OR 0.12, 95% CI 0.07 to 0.22; 855 children); and • dose three (three studies): poliovirus type 1 (OR 0.45, 95% CI 0.07 to 3.15; 973 children); poliovirus type 2 (OR 0.34, 95% CI 0.19 to 0.63; 973 children); and poliovirus type 3 (OR 0.18, 95% CI 0.01 to 2.58; 973 children). Using the GRADE approach, we rated the certainty of the evidence as low or very low for seroconversion rate (after a single, two, or three primary doses) for all three poliovirus types due to significant risk of bias, heterogeneity, and indirectness in applicability/generalisability. Geometric mean titres. No study reported mean antibody titres. Median antibody titres were higher for intramuscular full-dose IPV (7 studies with 4887 children); although these studies also reported a rise in antibody titres in the intradermal group, none reported the duration for which the titres remained high. Any vaccine-related adverse event. Five studies (2217 children) reported more adverse events, such as fever and redness, in the intradermal group, whilst two studies (1904 children) reported more adverse events in the intramuscular group. AUTHORS' CONCLUSIONS: There is low- and very low-certainty evidence that intramuscular full-dose IPV may result in a slight increase in seroconversion rates for all three types of wild poliovirus, compared with intradermal fractional-dose IPV. We are uncertain whether intradermal fractional-dose (one-fifth) IPV has better protective effects and causes fewer adverse events in children than intramuscular full-dose IPV.


Subject(s)
Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/immunology , Humans , Immunization Schedule , Injections, Intradermal , Injections, Intramuscular , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Randomized Controlled Trials as Topic , Vaccination/methods
18.
J Infect Dis ; 217(3): 443-450, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29126173

ABSTRACT

Background: We assessed immunity against polioviruses induced with a new Pakistani poliovirus immunization schedule and compared it to alternative poliovirus immunization schedules. Methods: Newborns were randomized to undergo vaccination based on 1 of 5 vaccination schedules, with doses administered at birth and at 6, 10, and 14 weeks of age. Arm A received inactivated poliovirus vaccine (IPV) at all time points. Arm B received bivalent oral poliovirus vaccine (bOPV) at all time points. Arms C and D received bOPV at the first 3 time points and bOPV plus IPV at the final time point (the current schedule). Arm E received trivalent OPV (tOPV) at all time points. At 22 weeks of age, all children received 1 challenge dose of tOPV, and children in arm D received 1 additional IPV dose. Sera were analyzed for the presence of poliovirus neutralizing antibodies at birth and 14 and 22 weeks of age. Results: Seroconversion for poliovirus type 1 (PV1) at 22 weeks of age was observed in 80% of individuals in arm A, 97% in arm B, 94% in arm C, 96% in arm D, and 94% in arm E; for PV2, seroconversion frequencies were 84%, 19%, 53%, 49%, and 93%, respectively; and for PV3, seroconversion frequencies were 93%, 94%, 98%, 94%, and 85%, respectively. Conclusions: The current immunization schedule in Pakistan induced high seroconversion rates for PV1 and PV3; however, it induced PV2 seroconversion in only half of study subjects. There is a growing cohort of young children in Pakistan who are unprotected against PV2; and this creates an increasing risk of a large-scale outbreak of poliomyelitis caused by circulating vaccine-derived PV2.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Immunization Schedule , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Female , Humans , Infant , Infant, Newborn , Male , Pakistan , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage , Pregnancy
19.
J Infect Dis ; 217(9): 1395-1398, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29300947

ABSTRACT

Replication of oral poliovirus vaccine (OPV) in the intestine (ie, vaccine take) is associated with seroconversion and protection against poliomyelitis. We used quantitative polymerase chain reaction analysis to measure vaccine shedding in 300 seronegative infants aged 6-11 months and in 218 children aged 1-4 years 7 days after administration of monovalent or bivalent OPV. We found that the quantity of shedding correlated with the magnitude of the serum neutralizing antibody response measured 21 or 28 days after vaccination. This suggests that the immune response to OPV is on a continuum, rather than an all-or-nothing phenomenon, that depends on efficient vaccine virus replication.


Subject(s)
Antibodies, Viral/blood , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/immunology , Poliovirus/physiology , Virus Replication/physiology , Virus Shedding/physiology , Antibodies, Neutralizing/blood , Child, Preschool , Feces/virology , Female , Humans , Immunization Schedule , India , Infant , Male , Poliovirus Vaccine, Oral/administration & dosage , Seroconversion
20.
J Infect Dis ; 217(3): 371-380, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29304199

ABSTRACT

Background: The impact of inactivated polio vaccines (IPVs) on intestinal mucosal immune responses to live poliovirus is poorly understood. Methods: In a 2014 phase 2 clinical trial, Panamanian infants were immunized at 6, 10, and 14 weeks of age with bivalent oral polio vaccine (bOPV) and randomized to receive either a novel monovalent high-dose type 2-specific IPV (mIPV2HD) or a standard trivalent IPV at 14 weeks. Infants were challenged at 18 weeks with a monovalent type 2 oral polio vaccine (mOPV2). Infants' intestinal immune responses during the 3 weeks following challenge were investigated by measuring poliovirus type-specific neutralization and immunoglobulin (Ig) A, IgA1, IgA2, IgD, IgG, and IgM antibodies in stool samples. Results: Despite mIPV2HD's 4-fold higher type 2 polio D-antigen content and heightened serum neutralization profile, mIPV2HD-immunized infants' intestinal immune responses to mOPV2 challenge were largely indistinguishable from those receiving standard IPV. Mucosal responses were tightly linked to evidence of active infection and, in the 79% of participants who shed virus, robust type 2-specific IgA responses and stool neutralization were observed by 2 weeks after challenge. Conclusions: Enhancing IPV-induced serum neutralization does not substantively improve intestinal mucosal immune responses or limit viral shedding on mOPV2 challenge. Clinical Trials Registration: NCT02111135.


Subject(s)
Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Feces/chemistry , Intestinal Mucosa/immunology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Oral/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Humans , Immunity, Mucosal , Immunoglobulin A/analysis , Immunoglobulin D/analysis , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Infant , Male , Poliomyelitis/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL