Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 698
Filter
Add more filters

Publication year range
1.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31002796

ABSTRACT

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Subject(s)
Gain of Function Mutation/genetics , Obesity/pathology , Receptor, Melanocortin, Type 4/genetics , Signal Transduction , Adult , Aged , Body Mass Index , Coronary Artery Disease/complications , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Cyclic AMP/metabolism , Databases, Factual , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , GTP-Binding Protein alpha Subunits, Gs/metabolism , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 4/chemistry , Receptor, Melanocortin, Type 4/metabolism , beta-Arrestins/metabolism
2.
Cell ; 152(3): 612-9, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374353

ABSTRACT

Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension.


Subject(s)
Brain Stem/metabolism , Insulin/metabolism , Neurons/metabolism , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/metabolism , Animals , Blood Pressure , Brain Stem/cytology , Cholinergic Neurons/metabolism , Cyclic AMP/metabolism , Electrophysiological Phenomena , Humans , KATP Channels/metabolism , Male , Mice , Obesity/metabolism , Obesity/physiopathology , Parasympathetic Nervous System/metabolism , Receptor, Melanocortin, Type 4/genetics , Spinal Cord/metabolism , Sympathetic Nervous System/metabolism
3.
Nature ; 599(7883): 131-135, 2021 11.
Article in English | MEDLINE | ID: mdl-34646010

ABSTRACT

Oestrogen depletion in rodents and humans leads to inactivity, fat accumulation and diabetes1,2, underscoring the conserved metabolic benefits of oestrogen that inevitably decrease with age. In rodents, the preovulatory surge in 17ß-oestradiol (E2) temporarily increases energy expenditure to coordinate increased physical activity with peak sexual receptivity. Here we report that a subset of oestrogen-sensitive neurons in the ventrolateral ventromedial hypothalamic nucleus (VMHvl)3-7 projects to arousal centres in the hippocampus and hindbrain, and enables oestrogen to rebalance energy allocation in female mice. Surges in E2 increase melanocortin-4 receptor (MC4R) signalling in these VMHvl neurons by directly recruiting oestrogen receptor-α (ERα) to the Mc4r gene. Sedentary behaviour and obesity in oestrogen-depleted female mice were reversed after chemogenetic stimulation of VMHvl neurons expressing both MC4R and ERα. Similarly, a long-term increase in physical activity is observed after CRISPR-mediated activation of this node. These data extend the effect of MC4R signalling - the most common cause of monogenic human obesity8 - beyond the regulation of food intake and rationalize reported sex differences in melanocortin signalling, including greater disease severity of MC4R insufficiency in women9. This hormone-dependent node illuminates the power of oestrogen during the reproductive cycle in motivating behaviour and maintaining an active lifestyle in women.


Subject(s)
Brain/physiology , Estrogens/metabolism , Physical Exertion/physiology , Receptor, Melanocortin, Type 4/metabolism , Signal Transduction , Animals , CRISPR-Cas Systems , Energy Metabolism , Estrogen Receptor alpha/metabolism , Estrogens/deficiency , Female , Gene Editing , Hippocampus/metabolism , Male , Melanocortins/metabolism , Mice , Neurons/metabolism , Obesity/metabolism , Rhombencephalon/metabolism , Sedentary Behavior , Sex Characteristics , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/physiology
4.
N Engl J Med ; 385(17): 1581-1592, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34614324

ABSTRACT

BACKGROUND: GNAS encodes the Gαs (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. GNAS mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism). METHODS: We performed exome sequencing and targeted resequencing in 2548 children who presented with severe obesity, and we unexpectedly identified 22 GNAS mutation carriers. We investigated whether the effect of GNAS mutations on melanocortin 4 receptor (MC4R) signaling explains the obesity and whether the variable clinical spectrum in patients might be explained by the results of molecular assays. RESULTS: Almost all GNAS mutations impaired MC4R signaling. A total of 6 of 11 patients who were 12 to 18 years of age had reduced growth. In these patients, mutations disrupted growth hormone-releasing hormone receptor signaling, but growth was unaffected in carriers of mutations that did not affect this signaling pathway (mean standard-deviation score for height, -0.90 vs. 0.75, respectively; P = 0.02). Only 1 of 10 patients who reached final height before or during the study had short stature. GNAS mutations that impaired thyrotropin receptor signaling were associated with developmental delay and with higher thyrotropin levels (mean [±SD], 8.4±4.7 mIU per liter) than those in 340 severely obese children who did not have GNAS mutations (3.9±2.6 mIU per liter; P = 0.004). CONCLUSIONS: Because pathogenic mutations may manifest with obesity alone, screening of children with severe obesity for GNAS deficiency may allow early diagnosis, improving clinical outcomes, and melanocortin agonists may aid in weight loss. GNAS mutations that are identified by means of unbiased genetic testing differentially affect GPCR signaling pathways that contribute to clinical heterogeneity. Monogenic diseases are clinically more variable than their classic descriptions suggest. (Funded by Wellcome and others.).


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , Mutation , Pediatric Obesity/genetics , Receptor, Melanocortin, Type 4/metabolism , Adolescent , Body Height , Child , Chromogranins/genetics , Female , GTP-Binding Protein alpha Subunits, Gs/deficiency , Humans , Male , Mutation, Missense , Receptors, Thyrotropin/metabolism , Signal Transduction , Exome Sequencing
5.
FASEB J ; 37(5): e22920, 2023 05.
Article in English | MEDLINE | ID: mdl-37078546

ABSTRACT

The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN → LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.


Subject(s)
Paraventricular Hypothalamic Nucleus , Receptor, Melanocortin, Type 4 , Mice , Animals , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Body Weight , Paraventricular Hypothalamic Nucleus/metabolism , Neurons/metabolism , Weight Gain
6.
Diabetes Obes Metab ; 26 Suppl 2: 46-63, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504134

ABSTRACT

Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.


Subject(s)
Obesity Management , Humans , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Precision Medicine , Obesity/epidemiology , Obesity/genetics , Obesity/therapy , Leptin/genetics , Leptin/metabolism , Melanocortins/therapeutic use , Melanocortins/genetics
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33795520

ABSTRACT

Mutations in the melanocortin 4 receptor (MC4R) result in hyperphagia and obesity and are the most common cause of monogenic obesity in humans. Preclinical rodent studies have determined that the critical role of the MC4R in controlling feeding can be mapped in part to its expression in the paraventricular nucleus of the hypothalamus (paraventricular nucleus [PVN]), where it regulates the activity of anorexic neural circuits. Despite the critical role of PVN MC4R neurons in regulating feeding, the in vivo neuronal activity of these cells remains largely unstudied, and the network activity of PVN MC4R neurons has not been determined. Here, we utilize in vivo single-cell endomicroscopic and mathematical approaches to determine the activity and network dynamics of PVN MC4R neurons in response to changes in energy state and pharmacological manipulation of central melanocortin receptors. We determine that PVN MC4R neurons exhibit both quantitative and qualitative changes in response to fasting and refeeding. Pharmacological stimulation of MC4R with the therapeutic MC4R agonist setmelanotide rapidly increases basal PVN MC4R activity, while stimulation of melanocortin 3 receptor (MC3R) inhibits PVN MC4R activity. Finally, we find that distinct PVN MC4R neuronal ensembles encode energy deficit and energy surfeit and that energy surfeit is associated with enhanced network connections within PVN MC4R neurons. These findings provide valuable insight into the neural dynamics underlying hunger and energy surfeit.


Subject(s)
Feeding Behavior/physiology , Paraventricular Hypothalamic Nucleus/physiology , Receptor, Melanocortin, Type 4/metabolism , Animals , Male , Mice , Microscopy, Fluorescence , Nerve Net , Optical Imaging , Paraventricular Hypothalamic Nucleus/cytology , Receptor, Melanocortin, Type 3/agonists , Single-Cell Analysis
8.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062808

ABSTRACT

The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin-melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like MC4R, thyroid hormones (TH) are also essential for energy homeostasis control. TH transport across membranes is facilitated by the monocarboxylate transporter 8 (MCT8), which is also known to form heterodimers with GPCRs. Based on the finding in single-cell RNA-sequencing data that both proteins are simultaneously expressed in hypothalamic neurons, we investigated a putative interplay between MC4R and MCT8. We developed a novel staining protocol utilizing a fluorophore-labeled MC4R ligand and demonstrated a co-localization of MC4R and MCT8 in human brain tissue. Using in vitro assays such as BRET, IP1, and cAMP determination, we found that MCT8 modulates MC4R-mediated phospholipase C activation but not cAMP formation via a direct interaction, an effect that does not require a functional MCT8 as it was not altered by a specific MCT8 inhibitor. This suggests an extended functional spectrum of MCT8 as a GPCR signaling modulator and argues for the investigation of further GPCR-protein interactions with hitherto underrepresented physiological functions.


Subject(s)
Monocarboxylic Acid Transporters , Receptor, Melanocortin, Type 4 , Type C Phospholipases , Humans , Receptor, Melanocortin, Type 4/metabolism , Receptor, Melanocortin, Type 4/genetics , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Type C Phospholipases/metabolism , HEK293 Cells , Signal Transduction , Cyclic AMP/metabolism , Symporters/metabolism , Symporters/genetics , Protein Binding , Animals
9.
J Cell Physiol ; 238(12): 2867-2878, 2023 12.
Article in English | MEDLINE | ID: mdl-37850660

ABSTRACT

The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.


Subject(s)
Fishes , Genes, Homeobox , Leptin , Animals , DNA-Binding Proteins/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/genetics , Fishes/metabolism , Leptin/genetics , Leptin/pharmacology , Promoter Regions, Genetic/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Thyroid Hormones , Thyroid Nuclear Factor 1/genetics , Thyroid Nuclear Factor 1/metabolism , Humans , HEK293 Cells
10.
FASEB J ; 36(12): e22645, 2022 12.
Article in English | MEDLINE | ID: mdl-36349991

ABSTRACT

Melanocortin-4 receptor (MC4R) is a critical regulator of appetite and energy expenditure in rodents and humans. MC4R deficiency causes hyperphagia, reduced energy expenditure, and impaired glucose metabolism. Ligand binding to MC4R activates adenylyl cyclase, resulting in increased levels of intracellular cyclic adenosine monophosphate (cAMP), a secondary messenger that regulates several cellular processes. Cyclic adenosine monophosphate responsive element-binding protein-1-regulated transcription coactivator-1 (CRTC1) is a cytoplasmic coactivator that translocates to the nucleus in response to cAMP and is reportedly involved in obesity. However, the precise mechanism through which CRTC1 regulates energy metabolism remains unknown. Additionally, there are no reports linking CRTC1 and MC4R, although both CRTC1 and MC4R are known to be involved in obesity. Here, we demonstrate that mice lacking CRTC1, specifically in MC4R cells, are sensitive to high-fat diet (HFD)-induced obesity and exhibit hyperphagia and increased body weight gain. Moreover, the loss of CRTC1 in MC4R cells impairs glucose metabolism. MC4R-expressing cell-specific CRTC1 knockout mice did not show changes in body weight gain, food intake, or glucose metabolism when fed a normal-chow diet. Thus, CRTC1 expression in MC4R cells is required for metabolic adaptation to HFD with respect to appetite regulation. Our results revealed an important protective role of CRTC1 in MC4R cells against dietary adaptation.


Subject(s)
Insulin Resistance , Receptor, Melanocortin, Type 4 , Humans , Mice , Animals , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Hyperphagia/genetics , Hyperphagia/metabolism , Obesity/genetics , Obesity/metabolism , Energy Metabolism , Mice, Knockout , Transcription Factors/metabolism , Glucose , Adenosine Monophosphate/metabolism
11.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 30-42, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37953587

ABSTRACT

Industrialized and developing nations face severe public health problems related to childhood obesity. Previous studies revealed that the melanocortin-4 receptor gene (MC4R) is the most prevalent monogenic cause of severe early obesity. Due to its influence on food intake and energy expenditure via neuronal melanocortin-4 receptor pathways, MC4R is recognized as a regulator of energy homeostasis. This study used a variety of computational systems to analyze 273 missense variations of MC4R in silico. Several tools, including PolyPhen, PROVEAN, SIFT, SNAP2, MutPred2, PROVEAN, SNP&GO and Mu-Pro, I-Mutant, PhD-SNP, SAAFEC-SEQ I-Mutant, and ConSurf, were used to make predictions of 13 extremely confident nsSNPs that are harmful and disease-causing (E308k, P299L, D298H, C271F, C271R, P260L, T246N, G243R, C196Y, W174C, Y157S, D126Y, and D90G). The results of our study suggest that these MC4R nsSNPs may disrupt normal protein function, leading to an increased risk of childhood obesity. These results highlight the potential use of these nsSNPs as biomarkers to predict susceptibility to obesity and as targets for personalized interventions.


Subject(s)
Pediatric Obesity , Humans , Child , Pediatric Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Mutation, Missense/genetics
12.
Nature ; 543(7645): 385-390, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28273060

ABSTRACT

Bone has recently emerged as a pleiotropic endocrine organ that secretes at least two hormones, FGF23 and osteocalcin, which regulate kidney function and glucose homeostasis, respectively. These findings have raised the question of whether other bone-derived hormones exist and what their potential functions are. Here we identify, through molecular and genetic analyses in mice, lipocalin 2 (LCN2) as an osteoblast-enriched, secreted protein. Loss- and gain-of-function experiments in mice demonstrate that osteoblast-derived LCN2 maintains glucose homeostasis by inducing insulin secretion and improves glucose tolerance and insulin sensitivity. In addition, osteoblast-derived LCN2 inhibits food intake. LCN2 crosses the blood-brain barrier, binds to the melanocortin 4 receptor (MC4R) in the paraventricular and ventromedial neurons of the hypothalamus and activates an MC4R-dependent anorexigenic (appetite-suppressing) pathway. These results identify LCN2 as a bone-derived hormone with metabolic regulatory effects, which suppresses appetite in a MC4R-dependent manner, and show that the control of appetite is an endocrine function of bone.


Subject(s)
Appetite Regulation/physiology , Bone and Bones/metabolism , Lipocalin-2/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Blood-Brain Barrier/metabolism , Bone and Bones/cytology , Cyclic AMP/metabolism , Eating/physiology , Female , Fibroblast Growth Factor-23 , Glucose/metabolism , Homeostasis , Hypothalamus/cytology , Hypothalamus/metabolism , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Male , Mice , Neurons/metabolism , Obesity/metabolism , Osteoblasts/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Thinness/metabolism
13.
Anim Genet ; 54(5): 637-642, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37365843

ABSTRACT

Obesity is an escalating global health problem affecting both humans and companion animals. In cats it is associated with increased mortality and multiple diseases, including diabetes mellitus. Two genes coding for proteins known to play a critical role in energy homeostasis across species are the proopiomelanocortin (POMC) gene and the melanocortin-4 receptor (MC4R) gene. A missense variant in the coding sequence of the feline MC4R (MC4R:c.92C>T) has been reported to be associated with diabetes and overweight in domestic shorthair cats, and while variants in the POMC gene are known to cause obesity in humans and dogs, variants in POMC and their association with feline obesity and diabetes mellitus have not been investigated to date. The current study aimed to assess the association between the previously described MC4R variant and body condition score (BCS), as well as body fat content (%BF) in 89 non-diabetic domestic shorthair cats. Furthermore, we investigated the feline POMC gene as a potential candidate gene for obesity. Our results indicate that the MC4R:c.92C>T polymorphism is not associated with BCS or %BF in non-diabetic domestic shorthair cats. The mutation analysis of all POMC exons identified two missense variants, with a variant in exon 1 (c.28G>C; p.G10R) predicted to be damaging. The variant was subsequently assessed in all 89 cats, and cats heterozygous for the variant had a significantly increased body condition score (p = 0.03) compared with cats homozygous for the wild-type allele. Results from our study provide additional evidence that the previously described variant in MC4R is not associated with obesity in domestic shorthair cats. More importantly, we have identified a novel variant in the POMC gene, which might play a role in increased body condition score and body fat content in domestic shorthair cats.


Subject(s)
Cat Diseases , Diabetes Mellitus , Receptor, Melanocortin, Type 4 , Animals , Cats/genetics , Dogs , Humans , Alleles , Cat Diseases/genetics , Diabetes Mellitus/genetics , Dog Diseases/genetics , Obesity/genetics , Obesity/veterinary , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism
14.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003551

ABSTRACT

The leptin-melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin-melanocortin signaling, and heterozygous variants in this gene are the most common cause of MO. A targeted gene panel consisting of 52 obesity-related genes was used to screen for variants associated with obesity. Variants were analyzed and filtered to identify potential disease-causing activity and validated using Sanger sequencing. We identified two novel heterozygous variants, c.253A>G p.Ser85Gly and c.802T>C p.Tyr268His, in the MC4R gene in two unrelated patients with morbid obesity and evaluated the functional impact of these variants. The impact of the variants on the MC4R gene was assessed using in silico prediction tools and molecular dynamics simulation. To further study the pathogenicity of the identified variants, GT1-7 cells were transfected with plasmid DNA encoding either wild-type or mutant MC4R variants. The effects of allelic variations in the MC4R gene on cAMP synthesis, MC4R protein level, and activation of PKA, ERB, and CREB signaling pathways in both stimulated and unstimulated ɑ-MSH paradigms were determined for their functional implications. In silico analysis suggested that the variants destabilized the MC4R structure and affected the overall dynamics of the MC4R protein, possibly leading to intracellular receptor retention. In vitro analysis of the functional impact of these variants showed a significant reduction in cell surface receptor expression and impaired extracellular ligand binding activity, leading to reduced cAMP production. Our analysis shows that the variants do not affect total protein expression; however, they are predicted to affect the post-translational localization of the MC4R protein to the cell surface and impair downstream signaling cascades such as PKA, ERK, and CREB signaling pathways. This finding might help our patients to benefit from the novel therapeutic advances for monogenic forms of obesity.


Subject(s)
Leptin , Obesity, Morbid , Humans , Leptin/genetics , Obesity, Morbid/genetics , Qatar , Alleles , alpha-MSH/pharmacology , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Mutation
15.
J Cell Mol Med ; 26(15): 4125-4136, 2022 08.
Article in English | MEDLINE | ID: mdl-35818295

ABSTRACT

The MC4R, a GPCR, has long been a major target for obesity treatment. As the most well-studied melanocortin receptor subtype, the evolutionary knowledge pushes the drug development and structure-activity relationship (SAR) moving forward. The past decades have witnessed the evolution of scientists' view on GPCRs gradually from the control of a single canonical signalling pathway via a bilateral 'active-inactive' model to a multi-state alternative model where the ligands' binding affects the selection of the downstream signalling. This evolution brings the concept of biased signalling and the beginning of the next generation of peptide drug development, with the aim of turning from receptor subtype specificity to signalling pathway selectivity. The determination of the value structures of the MC4R revealed insights into the working mechanism of MC4R activation upon binding of agonists. However, new challenge has risen as we seek to unravel the mystery of MC4R signalling selection. Thus, more biased agonists and ligands with representative biological functions are needed to solve the rest of the puzzle.


Subject(s)
Receptor, Melanocortin, Type 4 , Signal Transduction , Ligands , Peptides , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptors, Melanocortin
16.
Physiol Genomics ; 54(6): 196-205, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35476598

ABSTRACT

The brain renin-angiotensin system (RAS) is implicated in control of blood pressure (BP), fluid intake, and energy expenditure (EE). Angiotensin II (ANG II) within the arcuate nucleus of the hypothalamus contributes to control of resting metabolic rate (RMR) and thereby EE through its actions on Agouti-related peptide (AgRP) neurons, which also contribute to EE control by leptin. First, we determined that although leptin stimulates EE in control littermates, mice with transgenic activation of the brain RAS (sRA) exhibit increased EE and leptin has no additive effect to exaggerate EE in these mice. These findings led us to hypothesize that leptin and ANG II in the brain stimulate EE through a shared mechanism. Because AgRP signaling to the melanocortin MC4R receptor contributes to the metabolic effects of leptin, we performed a series of studies examining RMR, fluid intake, and BP responses to ANG II in mice rendered deficient for expression of MC4R via a transcriptional block (Mc4r-TB). These mice were resistant to stimulation of RMR in response to activation of the endogenous brain RAS via chronic deoxycorticosterone acetate (DOCA)-salt treatment, whereas fluid and electrolyte effects remained intact. These mice were also resistant to stimulation of RMR via acute intracerebroventricular (ICV) injection of ANG II, whereas BP responses to ICV ANG II remained intact. Collectively, these data demonstrate that the effects of ANG II within the brain to control RMR and EE are dependent on MC4R signaling, whereas fluid homeostasis and BP responses are independent of MC4R signaling.


Subject(s)
Angiotensin II , Energy Metabolism , Leptin , Receptor, Melanocortin, Type 4 , Agouti-Related Protein/metabolism , Angiotensin II/pharmacology , Animals , Blood Pressure/physiology , Brain/metabolism , Energy Metabolism/physiology , Leptin/metabolism , Leptin/pharmacology , Melanocortins/metabolism , Melanocortins/pharmacology , Mice , Receptor, Melanocortin, Type 4/metabolism
17.
Gastroenterology ; 161(2): 536-547.e2, 2021 08.
Article in English | MEDLINE | ID: mdl-33848536

ABSTRACT

OBJECTIVE: Hypothalamic melanocortin 4 receptors (MC4R) are a key regulator of energy homeostasis. Brain-penetrant MC4R agonists have failed, as concentrations required to suppress food intake also increase blood pressure. However, peripherally located MC4R may also mediate metabolic benefits of MC4R activation. Mc4r transcript is enriched in mouse enteroendocrine L cells and peripheral administration of the endogenous MC4R agonist, α-melanocyte stimulating hormone (α-MSH), triggers the release of the anorectic hormones Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in mice. This study aimed to determine whether pathways linking MC4R and L-cell secretion exist in humans. DESIGN: GLP-1 and PYY levels were assessed in body mass index-matched individuals with or without loss-of-function MC4R mutations following an oral glucose tolerance test. Immunohistochemistry was performed on human intestinal sections to characterize the mucosal MC4R system. Static incubations with MC4R agonists were carried out on human intestinal epithelia, GLP-1 and PYY contents of secretion supernatants were assayed. RESULTS: Fasting PYY levels and oral glucose-induced GLP-1 secretion were reduced in humans carrying a total loss-of-function MC4R mutation. MC4R was localized to L cells and regulates GLP-1 and PYY secretion from ex vivo human intestine. α-MSH immunoreactivity in the human intestinal epithelia was predominantly localized to L cells. Glucose-sensitive mucosal pro-opiomelanocortin cells provide a local source of α-MSH that is essential for glucose-induced GLP-1 secretion in small intestine. CONCLUSION: Our findings describe a previously unidentified signaling nexus in the human gastrointestinal tract involving α-MSH release and MC4R activation on L cells in an autocrine and paracrine fashion. Outcomes from this study have direct implications for targeting mucosal MC4R to treat human metabolic disorders.


Subject(s)
Enteroendocrine Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/metabolism , Peptide YY/metabolism , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/metabolism , Autocrine Communication , Blood Glucose/metabolism , Case-Control Studies , Enteroendocrine Cells/drug effects , Glucose/administration & dosage , Glucose Tolerance Test , Humans , Intestinal Mucosa/drug effects , Loss of Function Mutation , Paracrine Communication , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/genetics , Secretory Pathway , Signal Transduction , Time Factors , alpha-MSH/pharmacology
18.
Diabetes Obes Metab ; 24(4): 583-598, 2022 04.
Article in English | MEDLINE | ID: mdl-34882941

ABSTRACT

The melanocortin-4 receptor (MC4R) has been critically investigated for the past two decades, and novel findings regarding MC4R signalling and its potential exploitation in weight loss therapy have lately been emphasized. An association between MC4R and obesity is well established, with disease-causing mutations affecting 1% to 6% of obese patients. More than 200 MC4R variants have been reported, although conflicting results as to their effects have been found in different cohorts. Most notably, some MC4R gain-of-function variants seem to rescue obesity and related complications via specific pathways such as beta-arrestin (ß-arrestin) recruitment. Broadly speaking, however, dysfunctional MC4R dysregulates satiety and induces hyperphagia. The picture at the mechanistic level is complicated as, in addition to the canonical G stimulatory pathway, the ß-arrestin signalling pathway and ions (particularly calcium) seem to interact with MC4R signalling to contribute to or alleviate obesity pathogenesis. Thus, the overall complexity of the MC4R signalling spectra has broadened considerably, indicating there is great potential for the development of new drugs to manage obesity and its related complications. Alpha-melanocyte-stimulating hormone is the major endogenous MC4R agonist, but structure-based ligand discovery studies have identified possible superior and selective agonists that can improve MC4R function. However, some of these agonists characterized in vitro and in vivo confer adverse effects in patients, as demonstrated in clinical trials. In this review, we provide a comprehensive insight into the genetics, function and regulation of MC4R and its contribution to obesity. We also outline new approaches in drug development and emerging drug candidates to treat obesity.


Subject(s)
Obesity , Receptor, Melanocortin, Type 4 , Drug Development , Homeostasis , Humans , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/metabolism , alpha-MSH/pharmacology , alpha-MSH/therapeutic use
19.
BMC Endocr Disord ; 22(1): 234, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123585

ABSTRACT

BACKGROUND: Recent studies have shown that obesity is largely influenced by heredity and created by the interactions between several genes and environmental and behavioral factors. This study aimed to examine association between variant rs17782313 near melanocortin-4 receptor (MC4R) gene and behavioral and hormonal factors then evaluated interactions between variant MC4R rs17782313 with behavioral and hormonal factors on obesity. METHODS: This cross-sectional study included 403 subjects, overweight and/or obesity, aged 20-50 years from Iran. The MC4R rs17782313 data were measured by the PCR-RFLP method. Dietary intake, physical activity, stress, anxiety, depression, appetite and emotional eating were assessed by using validated questionnaires. Ghrelin, glucagon-like peptide-1 and cortisol were measured by radioimmunoassay in plasma samples. Participants were also divided into three groups based on rs17782313 genotype and BMI. RESULTS: After adjustment for age, gender, energy intake and PA, significant associations were observed between food intake, appetite, emotional eating, stress and physical activity with MC4R rs17782313 (p ˂0.05). Also, significant interactions were observed between fat intake (p-interaction = 0.002), protein intake (p-interaction = 0.01), energy intake (p-interaction = 0.01), emotional eating (p-interaction = 0.02), appetite (p-interaction = 0.04), stress (p-interaction = 0.04), ghrelin (p-interaction = 0.03), cortisol (p-interaction = 0.04) and physical activity (p-interaction = 0.04) and MC4R rs17782313 in terms of BMI. CONCLUSION: Interactions between the CC genotype and high intakes of fat and energy, emotional eating, high appetite, and too much stress with high levels of cortisol and ghrelin probably can have an effect on BMI in overweight/obese subjects.


Subject(s)
Overweight , Receptor, Melanocortin, Type 4 , Adult , Cross-Sectional Studies , Eating , Feeding Behavior , Ghrelin/genetics , Glucagon-Like Peptide 1 , Humans , Hydrocortisone , Iran/epidemiology , Obesity/genetics , Overweight/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Transcription Factors
20.
BMC Endocr Disord ; 22(1): 121, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538513

ABSTRACT

BACKGROUND: Recent studies have shown that dietary carbohydrate quantity and quality as well as genetic variants may contribute to determining the metabolic rate and general and central obesity. This study aimed to examine interactions between melanocortin 4 receptor gene (MC4R) rs17782313 and dietary carbohydrate intake, glycemic index (GI), and glycemic load (GL) on body mass index (BMI), waist circumferences (WC), basal metabolic rate (BMR), and BMR/kg in overweight/obese women. METHODS: A total of 282 Iranian women (BMI ≥ 25) aged 18-56 years were enrolled in this cross-sectional study. All participants were assessed for blood parameters, body composition, BMR, and dietary intake. Dietary carbohydrate intake, GI, and GL were determined using a valid, reliable 147-item food frequency questionnaire. MC4R rs17782313 was genotyped by the restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: After adjustment for age and energy intake, significant interactions were observed between carbohydrate intake and MC4R rs17782313 in terms of BMI (P Interaction = 0.007), WC (P Interaction = 0.02), and BMR/kg (P Interaction = 0.003) in this way that higher carbohydrate intake, compared with lower intake, was associated with an increase in BMI and WC for individuals with C allele carriers (TC + CC genotypes), while related to an increase in BMR/kg for those carrying the TT genotype. No significant interaction was found between MC4R rs17782313 and GI and GL on BMI, WC, BMR/kg, and BMR. CONCLUSIONS: Interactions between the MC4R rs17782313 and carbohydrate intake probably can have an effect on BMI, WC, and BMR/kg in overweight/obese women.


Subject(s)
Overweight , Receptor, Melanocortin, Type 4 , Basal Metabolism/genetics , Body Mass Index , Cross-Sectional Studies , Dietary Carbohydrates , Female , Genetic Predisposition to Disease , Humans , Iran/epidemiology , Obesity/complications , Obesity, Abdominal/metabolism , Overweight/genetics , Overweight/metabolism , Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL