Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.451
Filter
Add more filters

Publication year range
1.
Nat Methods ; 20(11): 1802-1809, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857906

ABSTRACT

We develop soft and stretchable fatigue-resistant hydrogel optical fibers that enable optogenetic modulation of peripheral nerves in naturally behaving animals during persistent locomotion. The formation of polymeric nanocrystalline domains within the hydrogels yields fibers with low optical losses of 1.07 dB cm-1, Young's modulus of 1.6 MPa, stretchability of 200% and fatigue strength of 1.4 MPa against 30,000 stretch cycles. The hydrogel fibers permitted light delivery to the sciatic nerve, optogenetically activating hindlimb muscles in Thy1::ChR2 mice during 6-week voluntary wheel running assays while experiencing repeated deformation. The fibers additionally enabled optical inhibition of pain hypersensitivity in an inflammatory model in TRPV1::NpHR mice over an 8-week period. Our hydrogel fibers offer a motion-adaptable and robust solution to peripheral nerve optogenetics, facilitating the investigation of somatosensation.


Subject(s)
Optical Fibers , Optogenetics , Mice , Animals , Hydrogels , Motor Activity , Sciatic Nerve/physiology , Locomotion
2.
Nat Mater ; 23(7): 969-976, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38671159

ABSTRACT

Electrode arrays that interface with peripheral nerves are used in the diagnosis and treatment of neurological disorders; however, they require complex placement surgeries that carry a high risk of nerve injury. Here we leverage recent advances in soft robotic actuators and flexible electronics to develop highly conformable nerve cuffs that combine electrochemically driven conducting-polymer-based soft actuators with low-impedance microelectrodes. Driven with applied voltages as small as a few hundreds of millivolts, these cuffs allow active grasping or wrapping around delicate nerves. We validate this technology using in vivo rat models, showing that the cuffs form and maintain a self-closing and reliable bioelectronic interface with the sciatic nerve of rats without the use of surgical sutures or glues. This seamless integration of soft electrochemical actuators with neurotechnology offers a path towards minimally invasive intraoperative monitoring of nerve activity and high-quality bioelectronic interfaces.


Subject(s)
Microelectrodes , Peripheral Nerves , Animals , Rats , Peripheral Nerves/physiology , Sciatic Nerve/physiology , Rats, Sprague-Dawley , Electrochemical Techniques/methods
3.
Proc Natl Acad Sci U S A ; 119(23): e2117764119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35653567

ABSTRACT

Electrical nerve stimulation serves an expanding list of clinical applications, but it faces persistent challenges in selectively activating bundled nerve fibers. In this study, we investigated electrochemical modulation with an ion-selective membrane (ISM) and whether it, used together with electrical stimulation, may provide an approach for selective control of peripheral nerves. Guided by theoretical transport modeling and direct concentration measurements, we developed an implantable, multimodal ISM cuff capable of simultaneous electrical stimulation and focused Ca2+ depletion. Acutely implanting it on the sciatic nerve of a rat in vivo, we demonstrated that Ca2+ depletion could increase the sensitivity of the nerve to electrical stimulation. Furthermore, we found evidence that the effect of ion modulation would selectively influence functional components of the nerve, allowing selective activation by electrical current. Our results raise possibilities for improving functional selectivity of new and existing bioelectronic therapies, such as vagus nerve stimulation.


Subject(s)
Electric Stimulation Therapy , Nerve Tissue , Sciatic Nerve , Animals , Electric Stimulation , Nerve Fibers , Rats , Sciatic Nerve/physiology
4.
Biochem Biophys Res Commun ; 729: 150362, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38972142

ABSTRACT

The therapeutic benefits of photobiomodulation (PBM) in pain management, although well documented, are accompanied by concerns about potential risks, including pain, particularly at higher laser intensities. This study investigated the effects of laser intensity on pain perception using behavioral and electrophysiological evaluations in rats. Our results show that direct laser irradiation of 1000 mW/cm2 to the sciatic nerve transiently increases the frequency of spontaneous firing in the superficial layer without affecting the deep layer of the spinal dorsal horn, and this effect reverses to pre-irradiation levels after irradiation. Interestingly, laser irradiation at 1000 mW/cm2, which led to an increase in spontaneous firing, did not prompt escape behavior. Furthermore, a significant reduction in the time to initiate escape behavior was observed only at 9500 mW/cm2 compared to 15, 510, 1000, and 4300 mW/cm2. This suggests that 1000 mW/cm2, the laser intensity at which an increase in spontaneous firing was observed, corresponds to a stimulus that did not cause pain. It is expected that a detailed understanding of the risks and mechanisms of PBM from a neurophysiological perspective will lead to safer and more effective use of PBM.


Subject(s)
Low-Level Light Therapy , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn , Animals , Low-Level Light Therapy/methods , Male , Rats , Spinal Cord Dorsal Horn/radiation effects , Sciatic Nerve/radiation effects , Sciatic Nerve/physiology , Action Potentials/radiation effects
5.
Biomed Eng Online ; 23(1): 40, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582838

ABSTRACT

Severely damaged peripheral nerves will regenerate incompletely due to lack of directionality in their regeneration, leading to loss of nerve function. To address this problem, various nerve guidance conduits (NGCs) have been developed to provide guidance for nerve repair. However, their clinical application is still limited, mainly because its effect in promoting nerve repair is not as good as autologous nerve transplantation. Therefore, it is necessary to enhance the ability of NGCs to promote directional nerve growth. Strategies include preparing various directional structures on NGCs to provide contact guidance, and loading various substances on them to provide electrical stimulation or neurotrophic factor concentration gradient to provide directional physical or biological signals.


Subject(s)
Nerve Regeneration , Prostheses and Implants , Nerve Regeneration/physiology , Sciatic Nerve/physiology
6.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886712

ABSTRACT

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Subject(s)
Cellulose , Disulfides , Molybdenum , Nerve Regeneration , Schwann Cells , Tissue Scaffolds , Nerve Regeneration/drug effects , Animals , Rats , Tissue Scaffolds/chemistry , Disulfides/chemistry , Disulfides/pharmacology , Schwann Cells/drug effects , Molybdenum/chemistry , Molybdenum/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Rats, Sprague-Dawley , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Cell Proliferation/drug effects , Tissue Engineering/methods , Male , Peripheral Nerve Injuries , Stereoisomerism
7.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000065

ABSTRACT

Photochemical sealing of a nerve wrap over the repair site isolates and optimizes the regenerating nerve microenvironment. To facilitate clinical adoption of the technology, we investigated photosealed autologous tissue in a rodent sciatic nerve transection and repair model. Rats underwent transection of the sciatic nerve with repair performed in three groups: standard microsurgical neurorrhaphy (SN) and photochemical sealing with a crosslinked human amnion (xHAM) or autologous vein. Functional recovery was assessed at four-week intervals using footprint analysis. Gastrocnemius muscle mass preservation, histology, and nerve histomorphometry were evaluated at 120 days. Nerves treated with a PTB-sealed autologous vein improved functional recovery at 120 days although the comparison between groups was not significantly different (SN: -58.4 +/- 10.9; XHAM: -57.9 +/- 8.7; Vein: -52.4 +/- 17.1). Good muscle mass preservation was observed in all groups, with no statistical differences between groups (SN: 69 +/- 7%; XHAM: 70 +/- 7%; Vein: 70 +/- 7%). Histomorphometry showed good axonal regeneration in all repair techniques. These results demonstrate that peripheral nerve repair using photosealed autologous veins produced regeneration at least equivalent to current gold-standard microsurgery. The use of autologous veins removes costs and foreign body concerns and would be readily available during surgery. This study illustrates a new repair method that could restore normal endoneurial homeostasis with minimal trauma following severe nerve injury.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Animals , Rats , Nerve Regeneration/physiology , Sciatic Nerve/injuries , Sciatic Nerve/surgery , Sciatic Nerve/physiology , Humans , Amnion , Transplantation, Autologous/methods , Muscle, Skeletal , Recovery of Function , Male , Neurosurgical Procedures/methods , Veins/surgery
8.
J Reconstr Microsurg ; 40(3): 232-238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37696294

ABSTRACT

BACKGROUND: Photochemical tissue bonding (PTB) is a technique for peripheral nerve repair in which a collagenous membrane is bonded around approximated nerve ends. Studies using PTB with cryopreserved human amnion have shown promising results in a rat sciatic nerve transection model including a more rapid and complete return of function, larger axon size, and thicker myelination than suture repair. Commercial collagen membranes, such as dehydrated amnion allograft, are readily available, offer ease of storage, and have no risk of disease transmission or tissue rejection. However, the biomechanical properties of these membranes using PTB are currently unknown in comparison to PTB of cryopreserved human amnion and suture neurorrhaphy. METHODS: Rat sciatic nerves (n = 10 per group) were transected and repaired using either suture neurorrhaphy or PTB with one of the following membranes: cryopreserved human amnion, monolayer human amnion allograft (crosslinked and noncrosslinked), trilayer human amnion/chorion allograft (crosslinked and noncrosslinked), or swine submucosa. Repaired nerves were subjected to mechanical testing. RESULTS: During ultimate stress testing, the repair groups that withstood the greatest strain increases were suture neurorrhaphy (69 ± 14%), PTB with crosslinked trilayer amnion (52 ± 10%), and PTB with cryopreserved human amnion (46 ± 20%), although the differences between these groups were not statistically significant. Neurorrhaphy repairs had a maximum load (0.98 ± 0.30 N) significantly greater than all other repair groups except for noncrosslinked trilayer amnion (0.51 ± 0.27 N). During fatigue testing, all samples repaired with suture, or PTBs with either crosslinked or noncrosslinked trilayer amnion were able to withstand strain increases of at least 50%. CONCLUSION: PTB repairs with commercial noncrosslinked amnion allograft membranes can withstand physiological strain and have comparable performance to repairs with human amnion, which has demonstrated efficacy in vivo. These results indicate the need for further testing of these membranes using in vivo animal model repairs.


Subject(s)
Amnion , Sciatic Nerve , Humans , Rats , Animals , Swine , Amnion/surgery , Amnion/transplantation , Sciatic Nerve/surgery , Sciatic Nerve/physiology , Axons/physiology , Transplantation, Homologous , Allografts , Suture Techniques
9.
Mol Pain ; 19: 17448069231187366, 2023.
Article in English | MEDLINE | ID: mdl-37369680

ABSTRACT

Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/ß-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/ß-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. The velocity and frequency of saltatory conduction in both types of fibers were similar. Resting membrane potentials (RMPs), input resistance, action potential (AP) threshold, and AP rheobase were also not significantly different at the NRs of the two types of fibers in the sciatic nerves. In comparison with Aα/ß-afferent fibers, Aα-efferent fibers in the sciatic nerves show higher amplitude and broader width of APs at their NRs. At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/ß-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/ß-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.


Subject(s)
Nerve Fibers, Myelinated , Neural Conduction , Rats , Animals , Nerve Fibers, Myelinated/physiology , Ranvier's Nodes , Action Potentials/physiology , Sciatic Nerve/physiology
10.
Biomacromolecules ; 24(7): 3268-3282, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37329512

ABSTRACT

Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.


Subject(s)
Peripheral Nerve Injuries , Rats , Animals , Peripheral Nerve Injuries/therapy , Rats, Sprague-Dawley , Nerve Regeneration , Sciatic Nerve/physiology , Tissue Scaffolds
11.
Xenotransplantation ; 30(2): e12792, 2023 03.
Article in English | MEDLINE | ID: mdl-36648004

ABSTRACT

Surgical intervention is required to successfully treat severe, large-gap (≥4 cm) peripheral nerve injuries. However, all existing treatments have shortcomings and an alternative to the use of autologous nerves is needed. Human and porcine nerves are physiologically similar, with comparable dimensions and architecture, presence and distribution of Schwann cells, and conserved features of the extracellular matrix (ECM). We report the repair of fully transected radial nerves in 10 Rhesus Macaques using viable, whole sciatic nerve from genetically engineered (GalT-KO), designated pathogen free (DPF) porcine donors. This resulted in the regeneration of the transected nerve, and importantly, recovery of wrist extension function, distal muscle reinnervation, and recovery of nerve conduction velocities and compound muscle action potentials similar to autologous controls. We also demonstrate the absence of immune rejection, systemic porcine cell migration, and detectable residual porcine material. Our preliminary findings support the safety and efficacy of viable porcine nerve transplants, suggest the interchangeable therapeutic use of cross-species cells, and highlight the broader clinical potential of xenotransplantation.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Humans , Swine , Animals , Macaca mulatta , Nerve Regeneration/physiology , Transplantation, Heterologous , Sciatic Nerve/physiology , Schwann Cells/physiology , Schwann Cells/transplantation
12.
Biomed Eng Online ; 22(1): 118, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062509

ABSTRACT

BACKGROUND: It is difficult to create intuitive methods of controlling prosthetic limbs, often resulting in abandonment. Peripheral nerve interfaces can be used to convert motor intent into commands to a prosthesis. The Extraneural Spatiotemporal Compound Action Potentials Extraction Network (ESCAPE-NET) is a convolutional neural network (CNN) that has previously been demonstrated to be effective at discriminating neural sources in rat sciatic nerves. ESCAPE-NET was designed to operate using data from multi-channel nerve cuff arrays, and use the resulting spatiotemporal signatures to classify individual naturally evoked compound action potentials (nCAPs) based on differing source fascicles. The applicability of this approach to larger and more complex nerves is not well understood. To support future translation to humans, the objective of this study was to characterize the performance of this approach in a computational model of the human median nerve. METHODS: Using a cross-sectional immunohistochemistry image of a human median nerve, a finite-element model was generated and used to simulate extraneural recordings. ESCAPE-NET was used to classify nCAPs based on source location, for varying numbers of sources and noise levels. The performance of ESCAPE-NET was also compared to ResNet-50 and MobileNet-V2 in the context of classifying human nerve cuff data. RESULTS: Classification accuracy was found to be inversely related to the number of nCAP sources in ESCAPE-NET (3-class: 97.8% ± 0.1%; 10-class: 89.3% ± 5.4% in low-noise conditions, 3-class: 70.3% ± 0.1%; 10-class: 52.5% ± 0.3% in high-noise conditions). ESCAPE-NET overall outperformed both MobileNet-V2 (3-class: 96.5% ± 1.1%; 10-class: 84.9% ± 1.7% in low-noise conditions, 3-class: 86.0% ± 0.6%; 10-class: 41.4% ± 0.9% in high-noise conditions) and ResNet-50 (3-class: 71.2% ± 18.6%; 10-class: 40.1% ± 22.5% in low-noise conditions, 3-class: 81.3% ± 4.4%; 10-class: 31.9% ± 4.4% in high-noise conditions). CONCLUSION: All three networks were found to learn to differentiate nCAPs from different sources, as evidenced by performance levels well above chance in all cases. ESCAPE-NET was found to have the most robust performance, despite decreasing performance as the number of classes increased, and as noise was varied. These results provide valuable translational guidelines for designing neural interfaces for human use.


Subject(s)
Median Nerve , Neural Networks, Computer , Humans , Rats , Animals , Cross-Sectional Studies , Sciatic Nerve/physiology , Evoked Potentials
13.
Artif Organs ; 47(4): 705-720, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36720049

ABSTRACT

BACKGROUND AND OBJECTIVE: The intrinsic electrical material properties of the laminar components of the mammalian peripheral nerve bundle are important parameters necessary for the accurate simulation of the electrical interaction between nerve fibers and neural interfaces. Improvements in the accuracy of these parameters improve the realism of the simulation and enables realistic screening of novel devices used for extracellular recording and stimulation of mammalian peripheral nerves. This work aims to characterize these properties for mammalian peripheral nerves to build upon the resistive parameter set established by Weerasuriya et al. in 1984 for amphibian somatic peripheral nerves (frog sciatic nerve) that is currently used ubiquitously in the in-silico peripheral nerve modeling community. METHODS: A custom designed characterization chamber was implemented and used to measure the radial and longitudinal impedance between 10 mHz and 50 kHz of freshly excised canine vagus nerves using four-point impedance spectroscopy. The impedance spectra were parametrically fitted to an equivalent circuit model to decompose and estimate the components of the various laminae. Histological sections of the electrically characterized nerves were then made to quantify the geometry and laminae thicknesses of the perineurium and epineurium. These measured values were then used to calculate the estimated intrinsic electrical properties, resistivity and permittivity, from the decomposed resistances and reactances. Finally, the estimated intrinsic electrical properties were used in a finite element method (FEM) model of the nerve characterization setup to evaluate the realism of the model. RESULTS: The geometric measurements were as follows: nerve bundle (1.6 ± 0.6 mm), major nerve fascicle diameter (1.3 ± 0.23 mm), and perineurium thickness (13.8 ± 2.1 µm). The longitudinal resistivity of the endoneurium was estimated to be 0.97 ± 0.05 Ωm. The relative permittivity and resistivity of the perineurium were estimated to be 2018 ± 391 and 3.75 kΩm ± 981 Ωm, respectively. The relative permittivity and resistivity of the epineurium were found to be 9.4 × 106 ± 8.2 × 106 and 55.0 ± 24.4 Ωm, respectively. The root mean squared (RMS) error of the experimentally obtained values when used in the equivalent circuit model to determine goodness of fit against the measured impedance spectra was found to be 13.0 ± 10.7 Ω, 2.4° ± 1.3°. The corner frequency of the perineurium and epineurium were found to be 2.6 ± 1.0 kHz and 368.5 ± 761.9 Hz, respectively. A comparison between the FEM model in-silico impedance experiment against the ex-vivo methods had a RMS error of 159.0 ± 95.4 Ω, 20.7° ± 9.8°. CONCLUSION: Although the resistive values measured in the mammalian nerve are similar to those of the amphibian model, the relative permittivity of the laminae bring new information about the reactance and the corner frequency (frequency at peak reactance) of the peripheral nerve. The measured and estimated corner frequency are well within the range of most bioelectric signals, and are important to take into account when modeling the nerve and neural interfaces.


Subject(s)
Peripheral Nerves , Sciatic Nerve , Animals , Dogs , Peripheral Nerves/physiology , Sciatic Nerve/physiology , Seizures , Mammals
14.
Bioelectromagnetics ; 44(7-8): 133-143, 2023.
Article in English | MEDLINE | ID: mdl-37277911

ABSTRACT

The goal of this study was to determine if postoperative pulsed electromagnetic fields (PEMFs) could improve the neuromuscular rehabilitation after delayed repair of peripheral nerve injuries. Thirty-six Sprague-Dawley rats were randomly divided into sham group, control group, and PEMFs group. The sciatic nerves were transected except for the control group. One month later, the nerve ends of the former two groups were reconnected. PEMFs group of rats was subjected to PEMFs thereafter. Control group and sham group received no treatment. Four and 8 weeks later, morphological and functional changes were measured. Four and eight weeks postoperatively, compared to sham group, the sciatic functional indices (SFIs) of PEMFs group were higher. More axons regenerated distally in PEMFs group. The fiber diameters of PEMFs group were larger. However, the axon diameters and myelin thicknesses were not different between these two groups. The brain-derived neurotrophic factor and vascular endothelial growth factor expressions were higher in PEMFs group after 8 weeks. Semi-quantitative IOD analysis for the intensity of positive staining indicated that there were more BDNF, VEGF, and NF200 in PEMFs group. It's concluded that PEMFs have effect on the axonal regeneration after delayed nerve repair of one month. The upregulated expressions of BDNF and VEGF may play roles in this process. © 2023 Bioelectromagnetics Society.


Subject(s)
Brain-Derived Neurotrophic Factor , Electromagnetic Fields , Rats , Animals , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A , Sciatic Nerve/physiology , Nerve Regeneration
15.
Bioelectromagnetics ; 44(7-8): 181-191, 2023.
Article in English | MEDLINE | ID: mdl-37908196

ABSTRACT

Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna-a metal ring wrapped around the damaged nerve-powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.


Subject(s)
Neurons , Sciatic Nerve , Rats , Animals , Humans , Electrodes , Sciatic Nerve/physiology , Electric Stimulation , Magnets
16.
Proc Natl Acad Sci U S A ; 117(35): 21138-21146, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817422

ABSTRACT

Organic electronic devices implemented on flexible thin films are attracting increased attention for biomedical applications because they possess extraordinary conformity to curved surfaces. A neuronal device equipped with an organic light-emitting diode (OLED), used in combination with animals that are genetically engineered to include a light-gated ion channel, would enable cell type-specific stimulation to neurons as well as conformal contact to brain tissue and peripheral soft tissue. This potential application of the OLEDs requires strong luminescence, well over the neuronal excitation threshold in addition to flexibility. Compatibility with neuroimaging techniques such as MRI provides a method to investigate the evoked activities in the whole brain. Here, we developed an ultrathin, flexible, MRI-compatible OLED device and demonstrated the activation of channelrhodopsin-2-expressing neurons in animals. Optical stimulation from the OLED attached to nerve fibers induced contractions in the innervated muscles. Mechanical damage to the tissues was significantly reduced because of the flexibility. Owing to the MRI compatibility, neuronal activities induced by direct optical stimulation of the brain were visualized using MRI. The OLED provides an optical interface for modulating the activity of soft neuronal tissues.


Subject(s)
Optogenetics/methods , Photic Stimulation/methods , Animals , Electronics , Light , Neurons , Phototherapy/methods , Rats , Rats, Wistar , Sciatic Nerve/physiology
17.
Proc Natl Acad Sci U S A ; 117(26): 14667-14675, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32532923

ABSTRACT

Many natural materials possess built-in structural variation, endowing them with superior performance. However, it is challenging to realize programmable structural variation in self-assembled synthetic materials since self-assembly processes usually generate uniform and ordered structures. Here, we report the formation of asymmetric microribbons composed of directionally self-assembled two-dimensional nanoflakes in a polymeric matrix during three-dimensional direct-ink printing. The printed ribbons with embedded structural variations show site-specific variance in their mechanical properties. Remarkably, the ribbons can spontaneously transform into ultrastretchable springs with controllable helical architecture upon stimulation. Such springs also exhibit superior nanoscale transport behavior as nanofluidic ionic conductors under even ultralarge tensile strains (>1,000%). Furthermore, to show possible real-world uses of such materials, we demonstrate in vivo neural recording and stimulation using such springs in a bullfrog animal model. Thus, such springs can be used as neural electrodes compatible with soft and dynamic biological tissues.


Subject(s)
Implantable Neurostimulators , Microtechnology/instrumentation , Nanostructures , Printing, Three-Dimensional , Animals , Anura , Elasticity , Graphite/chemistry , Ions/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Neurophysiology/instrumentation , Sciatic Nerve/physiology
18.
J Mater Sci Mater Med ; 34(7): 35, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37477830

ABSTRACT

Peripheral nerve injury (PNI) is a common and severe clinical disease worldwide, which leads to a poor prognosis because of the complicated treatments and high morbidity. Autologous nerve grafting as the gold standard still cannot meet the needs of clinical nerve transplantation because of its low availability and limited size. The development of artificial nerve conduits was led to a novel direction for PNI treatment, while most of the currently developed artificial nerve conduits was lack biochemical cues to promote nerve regeneration. In this study, we designed a novel composite neural conduit by inserting decellularized the rat sciatic nerve or kidney in a poly (lactic-co-glycolic acid) (PLGA) grooved conduit. The nerve regeneration effect of all samples was analyzed using rat sciatic nerve defect model, where decellularized tissues and grooved PLGA conduit alone were used as controls. The degree of nerve regeneration was evaluated using the motor function, gastrocnemius recovery, and morphological and histological assessments suggested that the combination of a grooved conduit with decellularized tissues significantly promoted nerve regeneration compared with decellularized tissues and PLGA conduit alone. It is worth to note that the grooved conduits containing decellularized nerves have a promotive effect similar to that of autologous nerve grafting, suggesting that it could be an artificial nerve conduit used for clinical practice in the future.


Subject(s)
Lactic Acid , Peripheral Nerve Injuries , Rats , Animals , Lactic Acid/pharmacology , Sciatic Nerve/physiology , Nerve Regeneration , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Prostheses and Implants
19.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768142

ABSTRACT

Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients' life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations.


Subject(s)
Peripheral Nerve Injuries , Humans , Peripheral Nerves/physiology , Nerve Fibers , Tissue Engineering , Nerve Regeneration/physiology , Sciatic Nerve/physiology
20.
J Reconstr Microsurg ; 39(2): 120-130, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35850137

ABSTRACT

BACKGROUND: We newly developed a muscle graft that employs a doxorubicin pretreatment technique. The aims of this study were to reveal the biological and morphological features of the muscle tissue in the second week (Study I), to reveal the regeneration outcomes of functional and kinematic assessments of longer-term follow-up (16 weeks, Study II), and to make assessments of the muscle graft with doxorubicin pretreatment in the critical-sized nerve defect model (20 mm, Study III). METHODS: A total of 26 adult rats were used in this study. Doxorubicin treatment was accomplished by immersion in a doxorubicin solution for 10 minutes followed by a rinsing procedure. The rats were divided into three groups: the muscle graft with and without doxorubicin pretreatment (M-graft-w-Dox and M-graft-w/o-Dox) groups and the autologous nerve graft (N-graft) group. Assays of apoptosis, immunofluorescent histochemistry including CD68 (macrophage marker), scanning electron microscopy (SEM), morphometrical studies of the regenerated axons, nerve conduction studies, and kinematic studies were performed. RESULTS: The M-graft-w-Dox group contained significantly larger numbers of apoptotic cells and CD68-positive cells. SEM revealed the existence of the basal lamina, so called "empty tubes," in the M-graft-w-Dox group. Study II showed contentious maturation of the regenerated axons, especially in the compound muscle action potentials. Study III showed that even at 20 mm, the M-graft-w-Dox group promoted axonal regeneration and functional regeneration. CONCLUSION: The M-graft-w-Dox group showed superior regeneration results, and this easy and short-term procedure can expand the muscle graft clinical indication for the treatment of peripheral nerve defects.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Rats , Animals , Nerve Regeneration/physiology , Sciatic Nerve/surgery , Sciatic Nerve/physiology , Muscles , Axons/physiology , Basement Membrane/physiology , Basement Membrane/transplantation , Doxorubicin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL