Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 425
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Lab Invest ; 104(4): 102026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307209

ABSTRACT

The epithelial-mesenchymal transition (EMT) is a fundamental process in developing fibrotic diseases, including forming epiretinal membranes (ERMs). ERMs can result in irreversible vision loss. Previous research has demonstrated that vitreous (VIT) derived from patients with proliferative diabetic retinopathy can stimulate angiogenesis through the Axl/PI3K/Akt pathway. Building upon this knowledge, we aimed to explore the influence of VIT from patients with macular membranes in ARPE-19 cells. Our findings reveal that patient-derived VIT from individuals with macular membranes promotes EMT and phosphoinositide 3-kinase-delta (PI3Kδ) expression in ARPE-19 cells. To elucidate the function of PI3Kδ in the ERM, we conducted experiments involving the knockout of p110δ, a key subunit of PI3Kδ, and observed that its absence hinders EMT induced by patient-derived VIT. Moreover, p110δ depletion reduces cell proliferation and migration in ARPE-19 cells. Remarkably, these effects were further corroborated by applying the p110δ inhibitor idelalisib, which blocks fibrosis in the laser-induced fibrosis model. Collectively, our results propose that p110δ plays a critical role in the progression of ERMs. Consequently, targeting p110δ emerges as a promising therapeutic approach for mitigating fibrosis. These findings contribute to a better understanding of the underlying mechanisms involved in ERM formation and highlight the potential for p110δ-directed antifibrotic therapy in retinal diseases.


Subject(s)
Retinal Diseases , Vitreoretinopathy, Proliferative , Humans , Epithelial-Mesenchymal Transition , Fibrosis , Phosphatidylinositol 3-Kinases , Vitreoretinopathy, Proliferative/metabolism
2.
Cell Tissue Res ; 396(1): 103-117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403744

ABSTRACT

The formation of the epiretinal fibrotic membrane by retinal pigment epithelial (RPE) cells is a primary pathological change for proliferative vitreoretinopathy (PVR). Bone morphogenetic protein 6 (BMP6) is an antifibrogenic factor in various cells. To date, it is still unknown whether BMP6 can interfere with the fibrogenesis of RPE cells during the progression of PVR. This work aimed to address the relationship between BMP6 and transforming growth factor-ß2 (TGF-ß2)-elicited fibrogenesis of RPE cells, an experimental model for studying PVR in vitro. The BMP6 level was down-regulated, while the TGF-ß2 level was up-regulated in the vitreous humor of PVR patients. The BMP6 level was down-regulated in human RPE cells challenged with TGF-ß2. The treatment of RPE cells with TGF-ß2 resulted in significant increases in proliferation, migration, epithelial-to-mesenchymal transition (EMT), and extracellular matrix (ECM) remodelling. These effects were found to be inhibited by the overexpression of BMP6 or exacerbated by the knockdown of BMP6. BMP6 overexpression reduced the phosphorylation of p38 and JNK in TGF-ß2-stimulated RPE cells, while BMP6 knockdown showed the opposite effects. The inhibition of p38 or JNK partially reversed the BMP6-silencing-induced promoting effects on TGF-ß2-elicited fibrogenesis in RPE cells. Taken together, BMP6 demonstrates the ability to counteract the proliferation, migration, EMT, and ECM remodelling of RPE cells induced by TGF-ß2. This is achieved through the regulation of the p38 and JNK MAPK pathways. These findings imply a potential connection between BMP6 and PVR, and highlight the potential application of BMP6 in therapeutic interventions for PVR.


Subject(s)
Vitreoretinopathy, Proliferative , Humans , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology , Retinal Pigment Epithelium , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/therapeutic use , Bone Morphogenetic Protein 6/pharmacology , Bone Morphogenetic Protein 6/metabolism , Bone Morphogenetic Protein 6/therapeutic use , Epithelial-Mesenchymal Transition , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Retinal Pigments/therapeutic use , Cell Movement
3.
Exp Eye Res ; 241: 109839, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395214

ABSTRACT

N6-methyladenosine (m6A) is a major type of RNA modification implicated in various pathophysiological processes. Transforming growth factor ß2 (TGF-ß2) induces epithelial-mesenchymal transition (EMT) in retinal pigmental epithelial (RPE) cells and promotes the progression of proliferative vitreoretinopathy (PVR). However, the role of m6A methylation in the EMT of human telomerase reverse transcriptase (hTERT) retinal pigmental epithelium (RPE)-1 cells has not been clarified. Here, we extracted RNA from RPE cells subjected to 0 or 20 ng/mL TGF-ß2 for 72 h and identified differentially methylated genes (DMGs) by m6A-Seq and differentially expressed genes (DEGs) by RNA-Seq. We selected the genes related to EMT by conjoint m6A-Seq/RNA-Seq analysis and verified them by qRT-PCR. We then confirmed the function of m6A methylation in the EMT of RPE cells by knocking down the methyltransferase METTL3 and the m6A reading protein YTHDF1. Sequencing yielded 5814 DMGs and 1607 DEGs. Conjoint analysis selected 467 genes altered at the m6A and RNA levels that are closely associated with the EMT-related TGF-ß, AGE-RAGE, PI3K-Akt, P53, and Wnt signaling pathways. We also identified ten core EMT genes ACTG2, BMP6, CDH2, LOXL2, SNAIL1, SPARC, BMP4, EMP3, FOXM1, and MYC. Their RNA levels were evaluated by qRT-PCR and were consistent with the sequencing results. We observed that METTL3 knockdown enhanced RPE cell migration and significantly upregulated the EMT markers N-cadherin (encoded by CDH2), fibronectin (FN), Snail family transcription repressor (SLUG), and vimentin. However, YTHDF1 knockdown had the opposite effects and decreased both cell migration and the N-cadherin, FN, and SLUG expression levels. The present study clarified TGF-ß2-induced m6A- and RNA-level differences in RPE cells, indicated that m6A methylation might regulate EMT marker expression, and showed that m6A could regulate TGF-ß2-induced EMT.


Subject(s)
Adenine/analogs & derivatives , Transforming Growth Factor beta2 , Vitreoretinopathy, Proliferative , Humans , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Retinal Pigment Epithelium/metabolism , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/metabolism , Epithelial-Mesenchymal Transition , Methylation , Cadherins/genetics , Cadherins/metabolism , RNA/genetics , RNA/metabolism , Methyltransferases/metabolism , Membrane Glycoproteins/metabolism
4.
Int Ophthalmol ; 44(1): 158, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530532

ABSTRACT

PURPOSE: Rhegmatogenous retinal detachment is a severe vision-threatening complication that can result into proliferative vitreoretinopathy (PVR) and re-detachment of the retina if recovery from surgery fails. Inflammation and changes in retinal pigment epithelial (RPE) cells are important contributors to the disease. Here, we studied the effects of simvastatin and amfenac on ARPE-19 cells under inflammatory conditions. METHODS: ARPE-19 cells were pre-treated with simvastatin and/or amfenac for 24 h after which interleukin (IL)-1α or IL-1ß was added for another 24 h. After treatments, lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) processing, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity, prostaglandin E2 (PGE2) level, and extracellular levels of IL-6, IL-8, monocytic chemoattractant protein (MCP-1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor, as well as the production of reactive oxygen species (ROS) were determined. RESULTS: Pre-treatment of human ARPE-19 cells with simvastatin reduced the production of IL-6, IL-8, and MCP-1 cytokines, PGE2 levels, as well as NF-κB activity upon inflammation, whereas amfenac reduced IL-8 and MCP-1 release but increased ROS production. Together, simvastatin and amfenac reduced the release of IL-6, IL-8, and MCP-1 cytokines as well as NF-κB activity but increased the VEGF release upon inflammation in ARPE-19 cells. CONCLUSION: Our present study supports the anti-inflammatory capacity of simvastatin as pre-treatment against inflammation in human RPE cells, and the addition of amfenac complements the effect. The early modulation of local conditions in the retina can prevent inflammation induced PVR formation and subsequent retinal re-detachment.


Subject(s)
Phenylacetates , Retinal Detachment , Vitreoretinopathy, Proliferative , Humans , Vitreoretinopathy, Proliferative/metabolism , Retinal Detachment/surgery , NF-kappa B/metabolism , NF-kappa B/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Retinal Pigment Epithelium , Simvastatin/metabolism , Simvastatin/pharmacology , Reactive Oxygen Species/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Interleukin-6/metabolism , Interleukin-8/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents , Inflammation/metabolism
5.
Biochem Biophys Res Commun ; 686: 149149, 2023 12 17.
Article in English | MEDLINE | ID: mdl-37918204

ABSTRACT

Proliferative vitreoretinopathy (PVR) is a common complication of rhegmatogenous retinal detachment, eventually leading to vision loss. To date, there are no effective drugs for the treatment of this disease. In this study, we investigated the effect of blebbistatin, a non-muscle myosin II inhibitor, on the ARPE-19 cell line and in a rabbit model of proliferative vitreoretinopathy. In vitro, we found that blebbistatin inhibited the epithelial-mesenchymal transition of retinal pigment epithelial (RPE) cells and inhibited the ability of RPE cells to migrate, proliferate, generate extracellular matrix, and affect contractility. In vivo the PVR model showed that blebbistatin significantly delayed PVR progression. It also partially prevents the loss of retinal function caused by PVR. Our results suggest that blebbistatin is a potential drug with clinical applications for the treatment of PVR.


Subject(s)
Vitreoretinopathy, Proliferative , Animals , Rabbits , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Retinal Pigment Epithelium/metabolism , Epithelial-Mesenchymal Transition , Cell Movement , Myosin Type II/metabolism
6.
Mol Biol Rep ; 50(7): 5725-5732, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217618

ABSTRACT

BACKGROUND: Retinal pigment epithelium (RPE) cells are potential targets for treating retinal detachment (RD) and proliferative vitreoretinopathy (PVR), considering the importance of neuroprotection and epithelial-mesenchymal transition (EMT) of RPE in these conditions. This study investigated the effect of human Wharton's jelly mesenchymal stem cell secretome (WJMSC-S) on the expression of genes involved in both neuroprotection and EMT in RPE cells in vitro (TRKB, MAPK, PI3K, BDNF, and NGF). METHODS: RPE cells from passages 5-7 were treated with WJMSC-S (or the vehicle culture medium as control) for 24 h at 37◦C and subsequently subjected to RNA extraction and cDNA synthesis. Gene expression level was evaluated using real-time PCR in the treated versus control cells. RESULTS: The results of our study showed that WJMSC-S led to a significant downregulation in three out of five studied gene expression (MAPK, TRKB, and NGF), and simultaneously, remarkably upregulated the expression of the BDNF gene. CONCLUSIONS: According to the present data, WJMSC-S can affect the EMT and neuroprotection processes at the mRNA level by suppressing EMT and promoting neuroprotection in RPE cells. This finding may have positive clinical implications in the context of RD and PVR.


Subject(s)
Mesenchymal Stem Cells , Vitreoretinopathy, Proliferative , Wharton Jelly , Humans , Retinal Pigment Epithelium , Epithelial-Mesenchymal Transition/genetics , Wharton Jelly/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neuroprotection , Secretome , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Mesenchymal Stem Cells/metabolism
7.
BMC Ophthalmol ; 23(1): 344, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537538

ABSTRACT

BACKGROUND: Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)ß suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRß in RPE cells remained elusive. METHODS: The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRß short of a PDGF-binding domain in the RPEM cells lacking PDGFRß. Western blot was employed to analyze expression of PDGFRß and α-smooth muscle actin, and signaling events (p-PDGFRß and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study. RESULTS: Expression of a truncated PDGFRß lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRß and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRß can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics. CONCLUSION: The data shown here will improve our understanding of the mechanism by which PDGFRß can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRß transactivation (ligand-independent activation).


Subject(s)
Receptor, Platelet-Derived Growth Factor beta , Vitreoretinopathy, Proliferative , Humans , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retinal Pigment Epithelium/pathology , Proto-Oncogene Proteins c-akt , Ligands , Reactive Oxygen Species/metabolism , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/metabolism , Platelet-Derived Growth Factor/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Cell Movement
8.
Int J Mol Sci ; 24(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37298679

ABSTRACT

Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs' extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease. The bioinformatics approach we applied delineated a comprehensive overview on this fibrocellular tissue and on critical proteins that could really impact ERM physiopathology. Our interactomic analysis proposed the hyaluronic-acid-receptor cluster of differentiation 44 (CD44) as a central regulator of ERM aberrant dynamics and progression. Interestingly, the interaction between CD44 and podoplanin (PDPN) was shown to promote directional migration in epithelial cells. PDPN is a glycoprotein overexpressed in various cancers and a growing body of evidence indicates its relevant function in several fibrotic and inflammatory pathologies. The binding of PDPN to partner proteins and/or its ligand results in the modulation of signaling pathways regulating proliferation, contractility, migration, epithelial-mesenchymal transition, and extracellular matrix remodeling, all processes that are vital in ERM formation. In this context, the understanding of the PDPN role can help to modulate signaling during fibrosis, hence opening a new line of therapy.


Subject(s)
Epiretinal Membrane , Vitreoretinopathy, Proliferative , Humans , Epiretinal Membrane/metabolism , Epiretinal Membrane/pathology , Extracellular Matrix Proteins , Fibrosis , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Transcription Factors , Vitreoretinopathy, Proliferative/metabolism
9.
Am J Physiol Cell Physiol ; 323(1): C116-C124, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35544697

ABSTRACT

Retinal pigmented epithelial (RPE) cells play an important role in retinal fibrotic diseases such as proliferative vitreoretinopathy (PVR). The purpose of this study was to elucidate the involvement of dopamine receptor signaling in regulating the fibrotic activation of RPE cells. Dopamine receptor expression, the effect of dopamine on fibrotic activity, and dopamine production were measured in the human RPE cell line ARPE-19. The fibrotic activation of RPE cells was evaluated in response to treatments with selective dopamine receptor agonists and antagonists by measuring gene expression, migration, proliferation, and fibronectin deposition. DRD2 and DRD5 are the dominant dopaminergic receptors expressed in ARPE-19 cells and TGF-ß stimulation enhances the autocrine release of dopamine, which we show further exasperates fibrotic activation. Finally, treatment with D2 dopamine receptor antagonists or D5 dopamine receptor agonists inhibits profibrotic gene expression, migration, proliferation, and fibronectin deposition and thus may serve as effective mechanisms for treating retinal fibrosis including PVR.


Subject(s)
Fibronectins , Vitreoretinopathy, Proliferative , Cell Movement , Dopamine/metabolism , Dopamine Agonists/metabolism , Dopamine Agonists/pharmacology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Fibronectins/metabolism , Fibrosis , Humans , Receptors, Dopamine/metabolism , Retinal Pigment Epithelium/metabolism , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology
10.
Lab Invest ; 102(12): 1296-1303, 2022 12.
Article in English | MEDLINE | ID: mdl-35854067

ABSTRACT

Proliferative vitreoretinopathy (PVR) is a fibrotic eye disease that develops after rhegmatogenous retinal detachment surgery and open-globe traumatic injury. Idelalisib is a specific inhibitor of phosphoinositide 3-kinase (PI3K) δ. While PI3Kδ is primarily expressed in leukocytes, its expression is also considerably high in retinal pigment epithelial (RPE) cells, which play a crucial part in the PVR pathogenesis. Herein we show that GeoMx Digital Spatial Profiling uncovered strong expression of fibronectin in RPE cells within epiretinal membranes from patients with PVR, and that idelalisib (10 µM) inhibited Akt activation, fibronectin expression and collagen gel contraction induced by transforming growth factor (TGF)-ß2 in human RPE cells. Furthermore, we discovered that idelalisib at a vitreal concentration of 10 µM, a non-toxic dose to the retina, prevented experimental PVR induced by intravitreally injected RPE cells in rabbits assessed by experienced ophthalmologists using an indirect ophthalmoscope plus a + 30 D fundus lens, electroretinography, optical coherence tomography and histological analysis. These data suggested idelalisib could be harnessed for preventing patients from PVR.


Subject(s)
Fibronectins , Vitreoretinopathy, Proliferative , Animals , Humans , Rabbits , Fibronectins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Quinazolinones/pharmacology , Quinazolinones/metabolism , Retinal Pigment Epithelium/metabolism
11.
Exp Eye Res ; 220: 109085, 2022 07.
Article in English | MEDLINE | ID: mdl-35500674

ABSTRACT

A serious form of ocular fibrotic disease is proliferative vitreoretinopathy (PVR) that can ultimately lead to blindness. While the pathogenesis of PVR is known to be closely tied to retinal pigment epithelial (RPE) cell epithelial-mesenchymal transition (EMT) characterized by E-cadherin downregulation and N-cadherin upregulation. Herein, we developed a model of transforming growth factor-ß1 (TGF-ß1)-induced EMT using human RPE (hRPE) cells as a tool for exploring the mechanistic basis for E-cadherin to N-cadherin switching. This analysis revealed that the loss of E-cadherin led to the separation of ß-catenin from the catenin-cadherin complex whereupon it underwent nuclear entry to activate zinc finger E-box binding homeobox 1 (ZEB1), in turn promoting N-cadherin upregulation in this biological context. E-cadherin overexpression was sufficient to inhibit this EMT process and proliferation in RPE cells, further constraining their TGF-ß1-induced apoptosis.


Subject(s)
Cadherins , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1 , Vitreoretinopathy, Proliferative , Antigens, CD , Cadherins/metabolism , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Transforming Growth Factor beta1/metabolism , Vitreoretinopathy, Proliferative/metabolism
12.
Curr Opin Ophthalmol ; 33(3): 219-227, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35220328

ABSTRACT

PURPOSE OF REVIEW: Despite advancement in the surgical instrumentation and techniques, proliferative vitreoretinopathy (PVR) remains the most common cause for failure of rhegmatogenous retinal detachment (RRD) repair. This review discusses ongoing translational and clinical advancements in PVR. RECENT FINDINGS: PVR represents an exaggerated and protracted scarring process that can occur after RRD. The primary cell types involved are retinal pigment epithelium, glial, and inflammatory cells. They interact with growth factors and cytokines derived from the breakdown of the blood-retinal barrier that trigger a cascade of cellular processes, such as epithelial-mesenchymal transition, cell migration, chemotaxis, proliferation, elaboration of basement membrane and collagen and cellular contraction, leading to overt retinal pathology. Although there are currently no medical therapies proven to be effective against PVR in humans, increased understanding of the risks factors and pathophysiology have helped guide investigations for molecular targets of PVR. The leading therapeutic candidates are drugs that mitigate growth factors, inflammation, and proliferation are the leading therapeutic candidates. SUMMARY: Although multiple molecular targets have been investigated to prevent and treat PVR, none have yet demonstrated substantial evidence of clinical benefit in humans though some show promise. Advancements in our understanding of the pathophysiology of PVR may help develop a multipronged approach for this condition.


Subject(s)
Retinal Detachment , Vitreoretinopathy, Proliferative , Epithelial-Mesenchymal Transition , Humans , Retinal Detachment/complications , Retinal Pigment Epithelium/pathology , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/surgery , Vitreous Body/pathology
13.
J Nanobiotechnology ; 20(1): 519, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494806

ABSTRACT

BACKGROUND: Proliferative vitreoretinopathy (PVR) is a blind-causing disease initiated by the activation of retinal pigmented epithelium (RPE) primarily induced by TGF-ß families. Migrasome is a recently discovered type of extracellular vesicle related to cell migration. RESULTS: Here, we used ex vivo, in vitro, and in vivo models, to investigate the characteristics and functions of migrasomes in RPE activation and PVR development. Results indicated that the migrasome marker tetraspanin-4 (TSPAN4) was abundantly expressed in human PVR-associated clinical samples. The ex vivo model PVR microenvironment is simulated by incubating brown Norway rat RPE eyecups with TGF-ß1. Electron microscope images showed the formation of migrasome-like vesicles during the activation of RPE. Further studies indicated TGF-ß1 increased the expression of TSPAN4 which results in migrasome production. Migrasomes can be internalized by RPE and increase the migration and proliferation ability of RPE. Moreover, TSPAN4-inhibited RPE cells are with reduced ability of initiating experimental PVR. Mechanically, TSPAN4 expression and migrasome production are induced through TGF-ß1/Smad2/3 signaling pathway. CONCLUSION: In conclusion, migrasomes can be produced by RPE under PVR microenvironment. Migrasomes play a pivotal role in RPE activation and PVR progression. Thus, targeting TSPAN4 or blocking migrasome formation might be a new therapeutic method against PVR.


Subject(s)
Transforming Growth Factor beta1 , Vitreoretinopathy, Proliferative , Humans , Transforming Growth Factor beta1/metabolism , Epithelial-Mesenchymal Transition/physiology , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Retinal Pigment Epithelium , Cell Movement , Epithelium , Cells, Cultured
14.
J Cell Mol Med ; 25(9): 4220-4234, 2021 05.
Article in English | MEDLINE | ID: mdl-33759344

ABSTRACT

Proliferative vitreoretinopathy (PVR) is a refractory vitreoretinal fibrosis disease, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is the key pathological mechanism of PVR. However, few studies focused on the role of METTL3, the dominating methyltransferase for m6A RNA modification in PVR pathogenesis. Immunofluorescence staining and qRT-PCR were used to determine the expression of METTL3 in human tissues. Lentiviral transfection was used to stably overexpress and knockdown METTL3 in ARPE-19 cells. MTT assay was employed to study the effects of METTL3 on cell proliferation. The impact of METTL3 on the EMT of ARPE-19 cells was assessed by migratory assay, morphological observation and expression of EMT markers. Intravitreal injection of cells overexpressing METTL3 was used to assess the impact of METTL3 on the establishment of the PVR model. We found that METTL3 expression was less in human PVR membranes than in the normal RPE layers. In ARPE-19 cells, total m6A abundance and the METTL3 expression were down-regulated after EMT. Additionally, METTL3 overexpression inhibited cell proliferation through inducing cell cycle arrest at G0/G1 phase. Furthermore, METTL3 overexpression weakened the capacity of TGFß1 to trigger EMT by regulating wnt/ß -catenin pathway. Oppositely, knockdown of METTL3 facilitated proliferation and EMT of ARPE-19 cells. In vivo, intravitreal injection of METTL3-overexpressing cells delayed the development of PVR compared with injection of control cells. In summary, this study suggested that METTL3 is involved in the PVR process, and METTL3 overexpression inhibits the EMT of ARPE-19 cells in vitro and suppresses the PVR process in vivo.


Subject(s)
Epithelial-Mesenchymal Transition , Methyltransferases/metabolism , Retinal Pigment Epithelium/pathology , Vitreoretinopathy, Proliferative/prevention & control , Wnt Proteins/metabolism , beta Catenin/metabolism , Adolescent , Adult , Aged , Female , Follow-Up Studies , Gene Expression Regulation , Humans , Male , Methyltransferases/genetics , Middle Aged , Prognosis , Retinal Pigment Epithelium/metabolism , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology , Wnt Proteins/genetics , Young Adult , beta Catenin/genetics
15.
J Cell Mol Med ; 25(21): 10213-10223, 2021 11.
Article in English | MEDLINE | ID: mdl-34598306

ABSTRACT

This study was aim to investigate whether the progression of proliferative vitreoretinopathy (PVR) depended on the activation of Yes-associated protein (YAP) and the subsequent epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cell. The effect of YAP activation on retinal fibrosis in a PVR mouse model and in human ARPE-19 cells in vitro was studied. After treated with transforming growth factor-ß2(TGF-ß2), the expressions of fibrogenic molecules, YAP activation and the TGF-ß2-Smad signalling pathway in ARPE-19 cells were detected by Western blot and immunocytochemical analyses. The effect of YAP on change in fibrosis and EMT was tested by knockdown experiment using verteporfin (YAP inhibitor). YAP was upregulated in the PVR mouse model and during TGF-ß2-induced RPE cell EMT. In an in vivo study, verteporfin attenuated PVR progression in a mouse model. Additionally, YAP knockdown retained phenotype of RPE cells and ameliorated TGF-ß2-induced migration, gel contraction and EMT in vitro. YAP knockdown inhibited the TGF-ß2-induced upregulation of connective tissue growth factor (CTGF), smooth muscle actin (SMA-α) and fibronectin. YAP was essential for the TGF-ß2-induced nuclear translocation and phosphorylation of Smad2/3. Our work provides direct evidence that YAP is an essential regulator of EMT and profibrotic responses in PVR and indicates that YAP inhibition could be a potential target in PVR therapeutic intervention.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Vitreoretinopathy, Proliferative/etiology , Vitreoretinopathy, Proliferative/metabolism , YAP-Signaling Proteins/genetics , Animals , Biomarkers , Cell Line , Cell Movement , Disease Models, Animal , Disease Susceptibility , Fibrosis , Humans , Immunohistochemistry , Mice , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta2/metabolism , Vitreoretinopathy, Proliferative/pathology , YAP-Signaling Proteins/metabolism
16.
Exp Eye Res ; 203: 108425, 2021 02.
Article in English | MEDLINE | ID: mdl-33417914

ABSTRACT

PURPOSE: The aim of this study was to monitor inflammatory, proliferative and progressive effects of proliferative vitreoretinopathy (PVR) and aflibercept treatment in dispase induced PVR rat model by proteomic analysis. MATERIAL AND METHODS: A total of 35 male Long Evans pigmented rats were divided into three groups, namely, PVR (dispase+saline), PVR+aflibercept (dispase+aflibercept) and control. The PVR group received 2 µl of 0.03 IU/µl dispase and 2 µl saline, the PVR+aflibercept group received 2 µl of 0.03 IU/µl and 2 µl of 40 mg/ml aflibercept at the first day of the experiment. At the end of the 6th week all retina and vitreous specimens were collected by evisceration and transferred to the proteomics laboratory for analysis. Proteomic analysis by 2D gel electrophoresis coupled with MALDI-TOF/TOF was performed. RESULTS: In the PVR and PVR+aflibercept group 16 different proteins that were identified to be differentially regulated in comparison to the control group. In the PVR+aflibercept group, ENO1, ENO2, LDH-B, PEBP-1 and GS levels were higher than the PVR group. In addition, the association of proteins such as UCHL, PEBP1, PDHB and ENO1 with PVR has been demonstrated for the first time. CONCLUSION: STRING analysis elucidated the functional protein-protein interaction among the differentially regulated proteins and highlighted that those proteins mainly played roles in carbon and nucleotide metabolisms. Functional analysis of the differentially regulated proteins indicated the presence of inflammation, gliosis and retinal damage in the PVR group. Aflibercept treatment had pronounced effect on prevention of inflammation and retinal damage while causing a slight increase in gliosis. However, aflibercept treatment was not effective enough to normalize the levels of differentially regulated proteins of the PVR group. Therefore, we predict that the treatment dose of aflibercept used in this study was below of its ideal concentration and should be increased in the future studies. The differential regulation of these structural proteins in this study should shed some light to the mechanism of glial wound formation in the retina and guide future treatment modalities.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Disease Models, Animal , Eye Proteins/metabolism , Proteome/metabolism , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Vitreoretinopathy, Proliferative/drug therapy , Animals , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Endopeptidases/toxicity , Male , Proteomics , Rats , Rats, Long-Evans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vitreoretinopathy, Proliferative/chemically induced , Vitreoretinopathy, Proliferative/metabolism
17.
Exp Eye Res ; 209: 108677, 2021 08.
Article in English | MEDLINE | ID: mdl-34147507

ABSTRACT

The purpose of this study was to investigate whether excessive extracellular matrix (ECM) deposition-induced mechanical matrix stiffness plays a key role in promoting retinal pigment epithelial (RPE) cell activation and the subsequent development of proliferative vitreoretinopathy (PVR). Human ARPE-19 cells were cultured on either 50 kappa (stiff) or 0.5 kappa (soft) gel-coated coverslips. Reverse and knockdown experiments were carried out to establish a model of matrix stiffness-induced activation in ARPE-19 cells in vitro. A PVR mouse model was established by the intravitreal injection of dispase. The effects of RhoA/YAP signalling blockade on matrix stiffness-induced ARPE-19 cell activation and PVR-induced retinal fibrosis were determined by using a combination of the Yes-associated protein (YAP) inhibitor verteporfin and the RhoA inhibitor C3 exoenzyme. Matrix stiffness stimulated YAP nuclear translocation and expression in ARPE-19 cells. The effect of YAP activation was dependent on F-actin cytoskeleton polymerization and RhoA activity, forming the RhoA/YAP signalling pathway. Upstream pharmacological blockade of RhoA by C3 exoenzyme or downstream blockade of YAP by verteporfin reduced the invasion, migration, and MMP expression of ARPE-19 cells and collagen gel contraction. Furthermore, blockade of RhoA/YAP signalling reduced PVR-induced retinal fibrogenesis and inhibited the TGF-ß/Smad pathway in vivo. RhoA/YAP signalling modulates matrix stiffness-induced activation of ARPE-19 cells. Targeting this signalling pathway could alleviate PVR-induced retinal fibrosis and suggests attractive novel therapeutic strategies for intervening in the progression of PVR.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation , RNA/genetics , Retinal Pigment Epithelium/metabolism , Vitreoretinopathy, Proliferative/genetics , rhoA GTP-Binding Protein/genetics , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Blotting, Western , Cell Movement , Cells, Cultured , Disease Models, Animal , Immunohistochemistry , Mice , Retinal Pigment Epithelium/pathology , Signal Transduction , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology , YAP-Signaling Proteins , rhoA GTP-Binding Protein/biosynthesis
18.
Exp Eye Res ; 208: 108622, 2021 07.
Article in English | MEDLINE | ID: mdl-34022176

ABSTRACT

Connective tissue growth factor (CTGF) is released by retinal pigment epithelial (RPE) cells and detectable in proliferative membranes (PrMs). This experimental study was performed to investigate the mRNA and protein levels of both CTGF and vascular endothelial growth factor A (VEGF-A) in a rabbit model of proliferative vitreoretinopathy (PVR). In addition, the effects of a single intravitreal injection of the safe dose of anti-CTGF or bevacizumab as monotherapy and in combination were evaluated. PVR was induced in the right eye of albino rabbits by intravitreal injection of cultured adult human RPE cells. Quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot analysis of CTGF and VEGF-A were performed on whole eye tissue in the PVR model versus controls at different time points. In the next step, the PVR models were assigned to five groups. The monotherapy groups received a single intravitreal injection of 0.1 ml of anti-CTGF 100 µg/ml (final concentration of 6.6 µg/ml in the vitreous) or 0.03 ml of 25 mg/ml bevacizumab. In the combined group, the abovementioned amounts of anti-CTGF and bevacizumab were injected intravitreally from separate sites in one session. No antibody injection was performed in the control group. Intravitreal injection of 0.1 ml of control IgG (1 mg/ml of isotype matched) antibody was performed in the placebo group. After 2 weeks, histologic evaluation including, trichrome staining for collagen, immunostaining by anti-alpha-smooth muscle actin for myofibroblasts, and anti-collagen type-1 antibody on paraffin embedded anterior-posterior sections was done. In addition, fundus photography was performed for clinically equivalent PVR staging. Twenty-four hours following PVR induction, CTGF mRNA and protein levels increased five- and- three-fold compared to controls, respectively (P < 0.001). VEGF-A mRNA and protein levels decreased significantly after 72 h of PVR induction compared to controls (P < 0.05). Means of PrM thickness and myofibroblast cell counts significantly decreased in the anti-CTGF group (P < 0.001 and P < 0.05, respectively). The mean area of collagen type-1 fibers of PrM in the mono- and combination therapy groups that received intravitreal anti-CTGF was significantly reduced (P < 0.001); in addition, mild PVR (stage-1 and 2) formation occurred in comparison with moderate to severe PVR (stage-4 and higher) in other groups. In conclusion, we found that intravitreal injection of CTGF neutralizing antibody resulted in a reduction in PrM thickness, collagen fibers and myofibroblast density in the PVR model. CTGF inhibition may represent a potential therapeutic target for PVR.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Bevacizumab/administration & dosage , Connective Tissue Growth Factor/administration & dosage , Retinal Pigment Epithelium/drug effects , Vitreoretinopathy, Proliferative/prevention & control , Adult , Angiogenesis Inhibitors/administration & dosage , Animals , Cells, Cultured , Connective Tissue Growth Factor/immunology , Disease Models, Animal , Drug Therapy, Combination , Female , Humans , Immunohistochemistry , Intravitreal Injections , Male , Middle Aged , Rabbits , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Treatment Outcome , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vitreoretinopathy, Proliferative/diagnosis , Vitreoretinopathy, Proliferative/metabolism
19.
Exp Eye Res ; 213: 108859, 2021 12.
Article in English | MEDLINE | ID: mdl-34822854

ABSTRACT

Proliferative vitreoretinopathy (PVR) is the main cause of retinal detachment surgery failure. The epithelial-mesenchymal transition (EMT) induced by transforming growth factor (TGF-ß2) plays an important role in the development of PVR. Artesunate has been widely studied as a treatment for ophthalmic diseases because of its antioxidant, anti-inflammatory, antiapoptotic and antiproliferative properties. The purpose of this study was to investigate the effects of artesunate on the TGF-ß2-induced EMT in ARPE-19 cells and PVR development. We found that artesunate inhibited the proliferation and contraction of ARPE-19 cells after the EMT and the autocrine effects of TGF-ß2 on ARPE-19 cells. Additionally, the levels of Smad3 and p-Smad3 were increased in clinical samples, and artesunate decreased the levels of Smad3 and p-Smad3 in ARPE-19 cells treated with TGF-ß2. Artesunate also inhibited the occurrence and development of PVR in vivo. In summary, artesunate inhibits the occurrence and development of PVR by inhibiting the EMT in ARPE-19 cells.


Subject(s)
Antimalarials/therapeutic use , Artesunate/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/drug effects , Smad3 Protein/antagonists & inhibitors , Transforming Growth Factor beta2/antagonists & inhibitors , Vitreoretinopathy, Proliferative/drug therapy , Animals , Antimalarials/pharmacology , Artesunate/pharmacology , Blotting, Western , Cell Cycle/physiology , Cell Line , Cell Movement/drug effects , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Intravitreal Injections , Rabbits , Retinal Pigment Epithelium/metabolism , Signal Transduction/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta2/metabolism , Vitreoretinopathy, Proliferative/metabolism
20.
Proc Natl Acad Sci U S A ; 115(26): E5934-E5943, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891713

ABSTRACT

Degeneration of retinal astrocytes precedes hypoxia-driven pathologic neovascularization and vascular leakage in ischemic retinopathies. However, the molecular events that underlie astrocyte loss remain unclear. Astrocytes abundantly express connexin 43 (Cx43), a transmembrane protein that forms gap junction (GJ) channels and hemichannels. Cx channels can transfer toxic signals from dying cells to healthy neighbors under pathologic conditions. Here we show that Cx43 plays a critical role in astrocyte apoptosis and the resulting preretinal neovascularization in a mouse model of oxygen-induced retinopathy. Opening of Cx43 hemichannels was not observed following hypoxia. In contrast, GJ coupling between astrocytes increased, which could lead to amplification of injury. Accordingly, conditional deletion of Cx43 maintained a higher density of astrocytes in the hypoxic retina. We also identify a role for Cx43 phosphorylation in mediating these processes. Increased coupling in response to hypoxia is due to phosphorylation of Cx43 by casein kinase 1δ (CK1δ). Suppression of this phosphorylation using an inhibitor of CK1δ or in site-specific phosphorylation-deficient mice similarly protected astrocytes from hypoxic damage. Rescue of astrocytes led to restoration of a functional retinal vasculature and lowered the hypoxic burden, thereby curtailing neovascularization and neuroretinal dysfunction. We also find that absence of astrocytic Cx43 does not affect developmental angiogenesis or neuronal function in normoxic retinas. Our in vivo work directly links phosphorylation of Cx43 to astrocytic coupling and apoptosis and ultimately to vascular regeneration in retinal ischemia. This study reveals that targeting Cx43 phosphorylation in astrocytes is a potential direction for the treatment of proliferative retinopathies.


Subject(s)
Astrocytes/metabolism , Connexin 43/metabolism , Regeneration , Retinal Vessels/physiology , Vitreoretinopathy, Proliferative/metabolism , Animals , Apoptosis , Astrocytes/pathology , Casein Kinase Idelta/metabolism , Cell Hypoxia , Cell Survival , Female , Male , Mice , Phosphorylation , Vitreoretinopathy, Proliferative/pathology , Vitreoretinopathy, Proliferative/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL