Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 257, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107690

RESUMEN

The recent advances in high-throughput single-cell sequencing have created an urgent demand for computational models which can address the high complexity of single-cell multiomics data. Meticulous single-cell multiomics integration models are required to avoid biases towards a specific modality and overcome sparsity. Batch effects obfuscating biological signals must also be taken into account. Here, we introduce a new single-cell multiomics integration model, Single-cell Multiomics Autoencoder Integration (scMaui) based on variational product-of-experts autoencoders and adversarial learning. scMaui calculates a joint representation of multiple marginal distributions based on a product-of-experts approach which is especially effective for missing values in the modalities. Furthermore, it overcomes limitations seen in previous VAE-based integration methods with regard to batch effect correction and restricted applicable assays. It handles multiple batch effects independently accepting both discrete and continuous values, as well as provides varied reconstruction loss functions to cover all possible assays and preprocessing pipelines. We demonstrate that scMaui achieves superior performance in many tasks compared to other methods. Further downstream analyses also demonstrate its potential in identifying relations between assays and discovering hidden subpopulations.


Asunto(s)
Aprendizaje Profundo , Análisis de la Célula Individual , Humanos , Multiómica/métodos , Análisis de la Célula Individual/métodos
2.
Nat Commun ; 15(1): 3146, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605029

RESUMEN

Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Péptidos , Humanos , Fosforilación , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica , Mutación , Proteínas Intrínsecamente Desordenadas/metabolismo , Unión Proteica , Sitios de Unión , Proteínas del Ojo/genética
3.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766140

RESUMEN

Midbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage1-3. As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days4,5, the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain. We found extensive rewiring of 3D genome architecture at 24 hours past exposure which remains or worsens by 14 days, outlasting transcriptional responses. The cocaine-induced chromatin rewiring occurs at all genomic scales and affects genes with major roles in cocaine-induced synaptic changes. A single cocaine exposure triggers extensive long-lasting changes in chromatin condensation in post-synaptic and post-transcriptional regulatory genes, for example the unfolding of Rbfox1 which becomes most prominent 14 days post exposure. Finally, structurally remodeled genes are most expressed in a specific DN sub-type characterized by low expression of the dopamine auto-receptor Drd2, a key feature of highly cocaine-sensitive cells. These results reveal an important role for long-lasting 3D genome remodelling in the cellular memory of a single cocaine exposure, providing new hypotheses for understanding the inception of drug addiction and 3D genome plasticity.

4.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168299

RESUMEN

DUX4 is a germline transcription factor and a master regulator of zygotic genome activation. During early embryogenesis, DUX4 is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In adult somatic cells, DUX4 expression is silenced and its activation in adult muscle cells causes the genetic disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Here we show that herpesviruses from alpha-, beta- and gamma-herpesvirus subfamilies as well as papillomaviruses actively induce DUX4 expression to promote viral transcription and replication. We demonstrate that HSV-1 immediate early proteins directly induce expression of DUX4 and its target genes including endogenous retroelements, which mimics zygotic genome activation. We further show that DUX4 directly binds to the viral genome and promotes viral transcription. DUX4 is functionally required for herpesvirus infection, since genetic depletion of DUX4 by CRISPR/Cas9 abrogates viral replication. Our results show that herpesviruses induce DUX4 expression and its downstream germline-specific genes and retroelements, thus mimicking an early embryonic-like transcriptional program that prevents epigenetic silencing of the viral genome and facilitates herpesviral gene expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA