Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 57: 361-390, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722684

RESUMEN

Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Genoma
2.
Mol Cell ; 80(2): 246-262.e4, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32949493

RESUMEN

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.


Asunto(s)
Eliminación de Gen , Tecnología de Genética Dirigida , Animales , Proteína 9 Asociada a CRISPR/metabolismo , Cromosomas/genética , Drosophila melanogaster/genética , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Patrón de Herencia/genética , Mutagénesis/genética , ARN Guía de Kinetoplastida/genética , Transgenes
3.
Proc Natl Acad Sci U S A ; 121(27): e2312456121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917000

RESUMEN

Controlling the principal African malaria vector, the mosquito Anopheles gambiae, is considered essential to curtail malaria transmission. However, existing vector control technologies rely on insecticides, which are becoming increasingly ineffective. Sterile insect technique (SIT) is a powerful suppression approach that has successfully eradicated a number of insect pests, yet the A. gambiae toolkit lacks the requisite technologies for its implementation. SIT relies on iterative mass releases of nonbiting, nondriving, sterile males which seek out and mate with monandrous wild females. Once mated, females are permanently sterilized due to mating-induced refractoriness, which results in population suppression of the subsequent generation. However, sterilization by traditional methods renders males unfit, making the creation of precise genetic sterilization methods imperative. Here, we introduce a vector control technology termed precision-guided sterile insect technique (pgSIT), in A. gambiae for inducible, programmed male sterilization and female elimination for wide-scale use in SIT campaigns. Using a binary CRISPR strategy, we cross separate engineered Cas9 and gRNA strains to disrupt male-fertility and female-essential genes, yielding >99.5% male sterility and >99.9% female lethality in hybrid progeny. We demonstrate that these genetically sterilized males have good longevity, are able to induce sustained population suppression in cage trials, and are predicted to eliminate wild A. gambiae populations using mathematical models, making them ideal candidates for release. This work provides a valuable addition to the malaria genetic biocontrol toolkit, enabling scalable SIT-like confinable, species-specific, and safe suppression in the species.


Asunto(s)
Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Masculino , Anopheles/genética , Anopheles/fisiología , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Malaria/transmisión , Malaria/prevención & control , Femenino , Control de Mosquitos/métodos , Infertilidad Masculina/genética , Sistemas CRISPR-Cas
4.
Trends Genet ; 39(2): 154-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36414481

RESUMEN

Gene-editing technologies have revolutionized the field of mosquito sensory biology. These technologies have been used to knock in reporter genes in-frame with neuronal genes and tag specific mosquito neurons to detect their activities using binary expression systems. Despite these advances, novel tools still need to be developed to elucidate the transmission of olfactory signals from the periphery to the brain. Here, we propose the development of a set of tools, including novel driver lines as well as sensors of neuromodulatory activities, which can advance our knowledge of how sensory input triggers behavioral outputs. This information can change our understanding of mosquito neurobiology and lead to the development of strategies for mosquito behavioral manipulation to reduce bites and disease transmission.


Asunto(s)
Culicidae , Animales , Culicidae/genética , Olfato/genética , Edición Génica , Neuronas
5.
PLoS Genet ; 19(11): e1011065, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011259

RESUMEN

Only female mosquitoes consume blood giving them the opportunity to transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from early larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.


Asunto(s)
Aedes , Empalme Alternativo , Animales , Masculino , Femenino , Humanos , Empalme Alternativo/genética , Aedes/genética , Animales Modificados Genéticamente , Larva/genética
6.
PLoS Pathog ; 19(1): e1010842, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656895

RESUMEN

As a major insect vector of multiple arboviruses, Aedes aegypti poses a significant global health and economic burden. A number of genetic engineering tools have been exploited to understand its biology with the goal of reducing its impact. For example, current tools have focused on knocking-down RNA transcripts, inducing loss-of-function mutations, or expressing exogenous DNA. However, methods for transactivating endogenous genes have not been developed. To fill this void, here we developed a CRISPR activation (CRISPRa) system in Ae. aegypti to transactivate target gene expression. Gene expression is activated through pairing a catalytically-inactive ('dead') Cas9 (dCas9) with a highly-active tripartite activator, VP64-p65-Rta (VPR) and synthetic guide RNA (sgRNA) complementary to a user defined target-gene promoter region. As a proof of concept, we demonstrate that engineered Ae. aegypti mosquitoes harboring a binary CRISPRa system can be used to effectively overexpress two developmental genes, even-skipped (eve) and hedgehog (hh), resulting in observable morphological phenotypes. We also used this system to overexpress the positive transcriptional regulator of the Toll immune pathway known as AaRel1, which resulted in a significant suppression of dengue virus serotype 2 (DENV2) titers in the mosquito. This system provides a versatile tool for research pathways not previously possible in Ae. aegypti, such as programmed overexpression of endogenous genes, and may aid in gene characterization studies and the development of innovative vector control tools.


Asunto(s)
Aedes , Animales , Humanos , Proteínas Hedgehog/metabolismo , Mosquitos Vectores/genética , ARN/metabolismo , Activación Transcripcional , Sistemas CRISPR-Cas
7.
Genome Res ; 31(3): 512-528, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33419731

RESUMEN

Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.


Asunto(s)
Culicidae/genética , Culicidae/virología , Elementos Transponibles de ADN/genética , Genómica , ARN Interferente Pequeño/genética , Virus , Animales
8.
Insect Mol Biol ; 33(4): 362-371, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38450861

RESUMEN

Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. However, Wolbachia effects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in which Wolbachia governs pathogen transmission phenotypes; rather, the genetics of the host can significantly modulate Wolbachia-mediated pathogen blocking. Specifically, previous work linked variation in Wolbachia pathogen blocking to polymorphisms in the mosquito alpha-mannosidase-2 (αMan2) gene. Here we use CRISPR-Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on both Wolbachia and virus levels, using dengue virus (DENV; Flaviviridae) and Mayaro virus (MAYV; Togaviridae). Wolbachia titres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. In Wolbachia-uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in a Wolbachia-infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication in Wolbachia-uninfected mosquitoes and did not affect Wolbachia-mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection in A. aegypti mosquitoes in a pathogen- and Wolbachia-specific manner, and that Wolbachia-mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use of Wolbachia-based strategies to control vector-borne pathogens.


Asunto(s)
Aedes , Wolbachia , alfa-Manosidasa , Animales , Aedes/microbiología , Aedes/virología , Aedes/genética , Wolbachia/fisiología , alfa-Manosidasa/metabolismo , alfa-Manosidasa/genética , Virus del Dengue/fisiología , Arbovirus/fisiología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Femenino , Infecciones por Arbovirus/transmisión , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Sistemas CRISPR-Cas
9.
Nature ; 563(7732): 501-507, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429615

RESUMEN

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Asunto(s)
Aedes/genética , Infecciones por Arbovirus/virología , Arbovirus , Genoma de los Insectos/genética , Genómica/normas , Control de Insectos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Virus del Dengue/aislamiento & purificación , Femenino , Variación Genética/genética , Genética de Población , Glutatión Transferasa/genética , Resistencia a los Insecticidas/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes/genética , Piretrinas/farmacología , Estándares de Referencia , Procesos de Determinación del Sexo/genética
10.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031258

RESUMEN

Aedes aegypti spread devastating viruses such as dengue, which causes disease among 100 to 400 million people annually. A potential approach to control mosquito disease vectors is the sterile insect technique (SIT). The strategy involves repeated release of large numbers of sterile males, which reduces insect populations because the sterile males mate and thereby suppress the fertility of females that would otherwise mate with fertile males. While SIT has been successful in suppressing certain agricultural pests, it has been less effective in depressing populations of Ae. aegypti This limitation is in part because of the fitness effects resulting from mutagenizing the mosquitoes nonspecifically. Here, we introduced and characterized the impact on female fertility of an Ae. aegypti mutation that disrupts a gene that is specifically expressed in testes. We used CRISPR/Cas9 to generate a null mutation in the Ae. aegypti ß2-tubulin (B2t) gene, which eliminates male fertility. When we allowed wild-type females to first mate with B2t mutant males, most of the females did not produce progeny even after being subsequently exposed to wild-type males. We also introduced B2t mutant and wild-type males simultaneously with wild-type females and found that a larger number of B2t mutant males relative to the wild-type males was effective in significantly suppressing female fertility. These results raise the possibility of employing B2t sterile males to improve the efficacy of SIT in suppressing populations of Ae. aegypti through repeated releases and thereby reduce the transmission of viruses by these invasive mosquitoes.


Asunto(s)
Aedes/genética , Infertilidad Masculina/genética , Control Biológico de Vectores , Animales , Sistemas CRISPR-Cas , Femenino , Edición Génica , Infertilidad Femenina , Masculino
11.
PLoS Pathog ; 17(10): e1010027, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714893

RESUMEN

Parasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during nematode infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we describe here the first in vivo study demonstrating that FARs modulate animal immunity, causing an increase in susceptibility to bacterial co-infection. Moreover, we show that FARs dampen key components of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Our data also reveal that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for an efficient immune response. Collectively, these data support a complex role for FARs in immunosuppression in animals and provide detailed mechanistic insight into parasitism in phylum Nematoda.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos/fisiología , Infecciones por Nematodos/inmunología , Proteínas de Unión al Retinol/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Nematodos , Infecciones por Nematodos/parasitología
12.
Proc Natl Acad Sci U S A ; 117(1): 708-716, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871198

RESUMEN

Mosquitoes are important vectors of disease and require sources of carbohydrates for reproduction and survival. Unlike host-related behaviors of mosquitoes, comparatively less is understood about the mechanisms involved in nectar-feeding decisions, or how this sensory information is processed in the mosquito brain. Here we show that Aedes spp. mosquitoes, including Aedes aegypti, are effective pollinators of the Platanthera obtusata orchid, and demonstrate this mutualism is mediated by the orchid's scent and the balance of excitation and inhibition in the mosquito's antennal lobe (AL). The P. obtusata orchid emits an attractive, nonanal-rich scent, whereas related Platanthera species-not visited by mosquitoes-emit scents dominated by lilac aldehyde. Calcium imaging experiments in the mosquito AL revealed that nonanal and lilac aldehyde each respectively activate the LC2 and AM2 glomerulus, and remarkably, the AM2 glomerulus is also sensitive to N,N-diethyl-meta-toluamide (DEET), a mosquito repellent. Lateral inhibition between these 2 glomeruli reflects the level of attraction to the orchid scents. Whereas the enriched nonanal scent of P. obtusata activates the LC2 and suppresses AM2, the high level of lilac aldehyde in the other orchid scents inverts this pattern of glomerular activity, and behavioral attraction is lost. These results demonstrate the ecological importance of mosquitoes beyond operating as disease vectors and open the door toward understanding the neural basis of mosquito nectar-seeking behaviors.


Asunto(s)
Aedes/fisiología , Conducta Apetitiva/fisiología , Percepción Olfatoria/fisiología , Orchidaceae/fisiología , Polinización/fisiología , Animales , Conducta Apetitiva/efectos de los fármacos , Antenas de Artrópodos/citología , Antenas de Artrópodos/fisiología , Encéfalo/fisiología , DEET/farmacología , Femenino , Repelentes de Insectos/farmacología , Masculino , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Odorantes , Percepción Olfatoria/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología , Polinización/efectos de los fármacos
13.
Biochemistry ; 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35325535

RESUMEN

CRISPR diagnostics have recently emerged as powerful diagnostic tools for the rapid detection of infections. The ultimate goal is to develop these diagnostics for the point of care, where patients quickly receive and easily interpret results. Although they are in their infancy, the COVID-19 pandemic has accelerated innovation of CRISPR diagnostics and led to an explosion of improvements to these systems. Challenges that have impeded the implementation at the point of care have been addressed, and CRISPR diagnostics have been dramatically simplified. Here we outline recent developments and advancements in CRISPR diagnostics that have pushed these technologies to the point of care.

16.
PLoS Pathog ; 16(1): e1008103, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945137

RESUMEN

With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.


Asunto(s)
Aedes/genética , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Virus del Dengue/inmunología , Aedes/virología , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/genética , Anticuerpos ampliamente neutralizantes/biosíntesis , Anticuerpos ampliamente neutralizantes/genética , Femenino , Humanos , Masculino , Ingeniería de Proteínas , Anticuerpos de Cadena Única/genética
17.
Insect Mol Biol ; 31(2): 216-224, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919304

RESUMEN

Insect epithelial cells contain unique cellular extensions such as bristles, hairs, and scales. In contrast to bristle and hair, which are not divergent in their shape, scale morphology shows high diversity. In our attempt to characterize the role of the insect-specific gene, Spindle-F (spn-F), in mosquito development, we revealed a scale-type specific requirement for the mosquito Aedes aegypti spn-F homologue. Using CRISPR-Cas9, we generated Ae-spn-F mutants and found that Ae-spn-F is an essential gene, but we were able to recover a few adult escapers. These escapers could not fly nor move, and died after 3 to 4 days. We found that in Ae-spn-F mutants, only the tip part of the bristle was affected with bulbous with misoriented ribs. We also show that in Ae-spn-F mutants, only in falcate scales, which are curved with a sharp or narrowly rounded apex, and not in other scale types, the tip region is strongly affected. Our analysis also revealed that in contrast to Drosophila spn-F, which show strong defects in both the actin and microtubule (MT) network in the bristle, the Ae-spn-F gene is required only for MT organization in scales and bristles. In summary, our results reveal that Ae-spn-F is required for shaping tapered epithelial cellular extension structures, namely, the bristle and falcate scales by affecting MT organization.


Asunto(s)
Aedes , Proteínas de Drosophila , Aedes/genética , Animales , Drosophila/genética , Proteínas de Drosophila/química , Genes de Insecto , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mosquitos Vectores
18.
Nat Rev Genet ; 17(3): 146-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26875679

RESUMEN

Engineered gene drives - the process of stimulating the biased inheritance of specific genes - have the potential to enable the spread of desirable genes throughout wild populations or to suppress harmful species, and may be particularly useful for the control of vector-borne diseases such as malaria. Although several types of selfish genetic elements exist in nature, few have been successfully engineered in the laboratory thus far. With the discovery of RNA-guided CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) nucleases, which can be utilized to create, streamline and improve synthetic gene drives, this is rapidly changing. Here, we discuss the different types of engineered gene drives and their potential applications, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.


Asunto(s)
Animales Salvajes/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Genética/métodos , Animales , Evolución Biológica , Biotecnología , Genética de Población , Organismos Modificados Genéticamente , Dinámica Poblacional , Biología Sintética
19.
Proc Natl Acad Sci U S A ; 116(9): 3656-3661, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30723148

RESUMEN

Recent Zika virus (ZIKV) outbreaks have highlighted the necessity for development of novel vector control strategies to combat arboviral transmission, including genetic versions of the sterile insect technique, artificial infection with Wolbachia to reduce population size and/or vectoring competency, and gene drive-based methods. Here, we describe the development of mosquitoes synthetically engineered to impede vector competence to ZIKV. We demonstrate that a polycistronic cluster of engineered synthetic small RNAs targeting ZIKV is expressed and fully processed in Aedes aegypti, ensuring the formation of mature synthetic small RNAs in the midgut where ZIKV resides in the early stages of infection. Critically, we demonstrate that engineered Ae. aegypti mosquitoes harboring the anti-ZIKV transgene have significantly reduced viral infection, dissemination, and transmission rates of ZIKV. Taken together, these compelling results provide a promising path forward for development of effective genetic-based ZIKV control strategies, which could potentially be extended to curtail other arboviruses.


Asunto(s)
Mosquitos Vectores/genética , Infección por el Virus Zika/genética , Virus Zika/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/virología , Brotes de Enfermedades , Humanos , Mosquitos Vectores/virología , Saliva/virología , Carga Viral/genética , Wolbachia/patogenicidad , Wolbachia/virología , Virus Zika/patogenicidad , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
20.
Heredity (Edinb) ; 126(5): 707-716, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33649572

RESUMEN

Insects naturally harbor a broad range of selfish agents that can manipulate their reproduction and development, often leading to host sex ratio distortion. Such effects directly benefit the spread of the selfish agents. These agents include two broad groups: bacterial symbionts and selfish chromosomes. Recent studies have made steady progress in uncovering the cellular targets of these agents and their effector genes. Here we highlight what is known about the targeted developmental processes, developmental timing, and effector genes expressed by several selfish agents. It is now becoming apparent that: (1) the genetic toolkits used by these agents to induce a given reproductive manipulation are simple, (2) these agents target sex-specific cellular processes very early in development, and (3) in some cases, similar processes are targeted. Knowledge of the molecular underpinnings of these systems will help to solve long-standing puzzles and provide new tools for controlling insect pests.


Asunto(s)
Reproducción , Razón de Masculinidad , Animales , Bacterias , Cromosomas , Femenino , Insectos/genética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA