Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 47(5): 890-902.e4, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166589

RESUMEN

Granulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs) produce monocytes during homeostasis and in response to increased demand during infection. Both progenitor populations are thought to derive from common myeloid progenitors (CMPs), and a hierarchical relationship (CMP-GMP-MDP-monocyte) is presumed to underlie monocyte differentiation. Here, however, we demonstrate that mouse MDPs arose from CMPs independently of GMPs, and that GMPs and MDPs produced monocytes via similar but distinct monocyte-committed progenitors. GMPs and MDPs yielded classical (Ly6Chi) monocytes with gene expression signatures that were defined by their origins and impacted their function. GMPs produced a subset of "neutrophil-like" monocytes, whereas MDPs gave rise to a subset of monocytes that yielded monocyte-derived dendritic cells. GMPs and MDPs were also independently mobilized to produce specific combinations of myeloid cell types following the injection of microbial components. Thus, the balance of GMP and MDP differentiation shapes the myeloid cell repertoire during homeostasis and following infection.


Asunto(s)
Células Dendríticas/fisiología , Células Precursoras de Granulocitos/fisiología , Monocitos/fisiología , Células Progenitoras Mieloides/fisiología , Animales , Antígenos Ly/análisis , Diferenciación Celular , Leucosialina/análisis , Ratones , Análisis de Secuencia de ARN , Transcriptoma
2.
Nucleic Acids Res ; 52(6): e32, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412294

RESUMEN

Data from both bulk and single-cell whole-genome DNA methylation experiments are under-utilized in many ways. This is attributable to inefficient mapping of methylation sequencing reads, routinely discarded genetic information, and neglected read-level epigenetic and genetic linkage information. We introduce the BISulfite-seq Command line User Interface Toolkit (BISCUIT) and its companion R/Bioconductor package, biscuiteer, for simultaneous extraction of genetic and epigenetic information from bulk and single-cell DNA methylation sequencing. BISCUIT's performance, flexibility and standards-compliant output allow large, complex experimental designs to be characterized on clinical timescales. BISCUIT is particularly suited for processing data from single-cell DNA methylation assays, with its excellent scalability, efficiency, and ability to greatly enhance mappability, a key challenge for single-cell studies. We also introduce the epiBED format for single-molecule analysis of coupled epigenetic and genetic information, facilitating the study of cellular and tissue heterogeneity from DNA methylation sequencing.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Epigenómica , Análisis de Secuencia de ADN , Sulfitos
3.
Proc Natl Acad Sci U S A ; 119(52): e2212306119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534800

RESUMEN

Injury to muscle brings about the activation of stem cells, which then generate new myocytes to replace damaged tissue. We demonstrate that this activation is accompanied by a dramatic change in the stem-cell methylation pattern that prepares them epigenetically for terminal myocyte differentiation. These de- and de novo methylation events occur at regulatory elements associated with genes involved in myogenesis and are necessary for activation and regeneration. Local injury of one muscle elicits an almost identical epigenetic change in satellite cells from other muscles in the body, in a process mediated by circulating factors. Furthermore, this same methylation state is also generated in muscle stem cells (MuSCs) of female animals following pregnancy, even in the absence of any injury. Unlike the activation-induced expression changes, which are transient, the induced methylation profile is stably maintained in resident MuSCs and thus represents a molecular memory of previous physiological events that is probably programmed to provide a mechanism for long-term adaptation.


Asunto(s)
Metilación de ADN , Músculo Esquelético , Animales , Femenino , Músculo Esquelético/metabolismo , Células Madre/metabolismo , Diferenciación Celular/genética , Epigénesis Genética , Desarrollo de Músculos/genética , Regeneración/genética
4.
Am J Hum Genet ; 107(4): 622-635, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946763

RESUMEN

Quantifying the functional effects of complex disease risk variants can provide insights into mechanisms underlying disease biology. Genome-wide association studies have identified 39 regions associated with risk of epithelial ovarian cancer (EOC). The vast majority of these variants lie in the non-coding genome, where they likely function through interaction with gene regulatory elements. In this study we first estimated the heritability explained by known common low penetrance risk alleles for EOC. The narrow sense heritability (hg2) of EOC overall and high-grade serous ovarian cancer (HGSOCs) were estimated to be 5%-6%. Partitioned SNP heritability across broad functional categories indicated a significant contribution of regulatory elements to EOC heritability. We collated epigenomic profiling data for 77 cell and tissue types from Roadmap Epigenomics and ENCODE, and from H3K27Ac ChIP-seq data generated in 26 ovarian cancer and precursor-related cell and tissue types. We identified significant enrichment of risk single-nucleotide polymorphisms (SNPs) in active regulatory elements marked by H3K27Ac in HGSOCs. To further investigate how risk SNPs in active regulatory elements influence predisposition to ovarian cancer, we used motifbreakR to predict the disruption of transcription factor binding sites. We identified 469 candidate causal risk variants in H3K27Ac peaks that are predicted to significantly break transcription factor (TF) motifs. The most frequently broken motif was REST (p value = 0.0028), which has been reported as both a tumor suppressor and an oncogene. Overall, these systematic functional annotations with epigenomic data improve interpretation of EOC risk variants and shed light on likely cells of origin.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Proteínas Co-Represoras/genética , Cistadenocarcinoma Seroso/genética , Elementos de Facilitación Genéticos , Histonas/genética , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/genética , Alelos , Sitios de Unión , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/patología , Mapeo Cromosómico , Proteínas Co-Represoras/metabolismo , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patología , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Patrón de Herencia , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Penetrancia , Polimorfismo de Nucleótido Simple , Riesgo
5.
Nucleic Acids Res ; 49(16): 9246-9263, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34370013

RESUMEN

To reconstruct systematically hyperactive transcription factor (TF)-dependent transcription networks in squamous cell carcinomas (SCCs), a computational method (ELMER) was applied to 1293 pan-SCC patient samples, and 44 hyperactive SCC TFs were identified. As a top candidate, DLX5 exhibits a notable bifurcate re-configuration of its bivalent promoter in cancer. Specifically, DLX5 maintains a bivalent state in normal tissues; its promoter is hypermethylation, leading to DLX5 transcriptional silencing in esophageal adenocarcinoma (EAC). In stark contrast, DLX5 promoter gains active histone marks and becomes transcriptionally activated in ESCC, which is directly mediated by SOX2. Functionally, silencing of DLX5 substantially inhibits SCC viability both in vitro and in vivo. Mechanistically, DLX5 cooperates with TP63 in regulating ∼2000 enhancers and promoters, which converge on activating cancer-promoting pathways. Together, our data establish a novel and strong SCC-promoting factor and elucidate a new epigenomic mechanism - bifurcate chromatin re-configuration - during cancer development.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Adenocarcinoma/patología , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Neoplasias Esofágicas/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética
6.
Genes Dev ; 29(9): 923-33, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25934504

RESUMEN

DNA methylation patterns are set up in a relatively fixed programmed manner during normal embryonic development and are then stably maintained. Using genome-wide analysis, we discovered a postnatal pathway involving gender-specific demethylation that occurs exclusively in the male liver. This demodification is programmed to take place at tissue-specific enhancer sequences, and our data show that the methylation state at these loci is associated with and appears to play a role in the transcriptional regulation of nearby genes. This process is mediated by the secretion of testosterone at the time of sexual maturity, but the resulting methylation profile is stable and therefore can serve as an epigenetic memory even in the absence of this inducer. These findings add a new dimension to our understanding of the role of DNA methylation in vivo and provide the foundations for deciphering how environment can impact on the epigenetic regulation of genes in general.


Asunto(s)
Metilación de ADN , Epigénesis Genética/genética , Hígado/metabolismo , Andrógenos/farmacología , Animales , Castración , Metilación de ADN/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Histonas/genética , Histonas/metabolismo , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales , Testosterona/metabolismo , Testosterona/farmacología
7.
Nucleic Acids Res ; 47(3): 1255-1267, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30496486

RESUMEN

As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Sarcoma de Ewing/genética , Transcripción Genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Humanos , Motivos de Nucleótidos/genética , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/patología , Transducción de Señal/genética
8.
Proc Natl Acad Sci U S A ; 115(22): E5086-E5095, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29764999

RESUMEN

Competitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells. dBET6 treatment drastically reduces BET protein genomic occupancy, RNA-Pol2 activity, and permissive chromatin marks. Subsequently, dBET6 represses the proliferation, self-renewal, and tumorigenic ability of GBM cells. Moreover, dBET6-induced degradation of BET proteins exerts superior antiproliferation effects compared to conventional BBIs and overcomes both intrinsic and acquired resistance to BBIs in GBM cells. Our study reveals crucial functions of BET proteins and provides the rationale and therapeutic merits of targeted degradation of BET proteins in GBM.


Asunto(s)
Antineoplásicos/farmacología , Factor de Transcripción E2F1 , Glioblastoma , Proteínas Serina-Treonina Quinasas , Proteínas de Unión al ARN , Proteínas de Ciclo Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
9.
Gut ; 69(4): 630-640, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31409603

RESUMEN

OBJECTIVE: While oesophageal squamous cell carcinoma remains infrequent in Western populations, the incidence of oesophageal adenocarcinoma (EAC) has increased sixfold to eightfold over the past four decades. We aimed to characterise oesophageal cancer-specific and subtypes-specific gene regulation patterns and their upstream transcription factors (TFs). DESIGN: To identify regulatory elements, we profiled fresh-frozen oesophageal normal samples, tumours and cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematical modelling was performed to establish (super)-enhancers landscapes and interconnected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs were investigated by ChIP-Seq, circularised chromosome conformation capture sequencing and luciferase assay. Biological functions of candidate factors were evaluated both in vitro and in vivo. RESULTS: We found widespread and pervasive alterations of the (super)-enhancer reservoir in both subtypes of oesophageal cancer, leading to transcriptional activation of a myriad of novel oncogenes and signalling pathways, some of which may be exploited pharmacologically (eg, leukemia inhibitory factor (LIF) pathway). Focusing on EAC, we bioinformatically reconstructed and functionally validated an interconnected circuitry formed by four master TFs-ELF3, KLF5, GATA6 and EHF-which promoted each other's expression by interacting with each super-enhancer. Downstream, these master TFs occupied almost all EAC super-enhancers and cooperatively orchestrated EAC transcriptome. Each TF within the transcriptional circuitry was highly and specifically expressed in EAC and functionally promoted EAC cell proliferation and survival. CONCLUSIONS: By establishing cancer-specific and subtype-specific features of the EAC epigenome, our findings promise to transform understanding of the transcriptional dysregulation and addiction of EAC, while providing molecular clues to develop novel therapeutic modalities against this malignancy.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Redes Reguladoras de Genes/fisiología , Factores de Transcripción/genética , Adenocarcinoma/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Factor de Transcripción GATA6/genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Proto-Oncogénicas c-ets/genética
10.
Bioinformatics ; 35(11): 1974-1977, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30364927

RESUMEN

MOTIVATION: DNA methylation has been used to identify functional changes at transcriptional enhancers and other cis-regulatory modules (CRMs) in tumors and other disease tissues. Our R/Bioconductor package ELMER (Enhancer Linking by Methylation/Expression Relationships) provides a systematic approach that reconstructs altered gene regulatory networks (GRNs) by combining enhancer methylation and gene expression data derived from the same sample set. RESULTS: We present a completely revised version 2 of ELMER that provides numerous new features including an optional web-based interface and a new Supervised Analysis mode to use pre-defined sample groupings. We show that Supervised mode significantly increases statistical power and identifies additional GRNs and associated Master Regulators, such as SOX11 and KLF5 in Basal-like breast cancer. AVAILABILITY AND IMPLEMENTATION: ELMER v.2 is available as an R/Bioconductor package at http://bioconductor.org/packages/ELMER/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma , Metilación de ADN , Programas Informáticos
11.
J Proteome Res ; 18(5): 2270-2278, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30990720

RESUMEN

Protein citrullination (or deimination), an irreversible post-translational modification, has been implicated in several physiological and pathological processes, including gene expression regulation, apoptosis, rheumatoid arthritis, and Alzheimer's disease. Several research studies have been carried out on citrullination under many conditions. However, until now, challenges in sample preparation and data analysis have made it difficult to confidently identify a citrullinated protein and assign the citrullinated site. To overcome these limitations, we generated a mouse hyper-citrullinated spectral library and set up coordinates to confidently identify and validate citrullinated sites. Using this workflow, we detect a four-fold increase in citrullinated proteome coverage across six mouse organs compared with the current state-of-the art techniques. Our data reveal that the subcellular distribution of citrullinated proteins is tissue-type-dependent and that citrullinated targets are involved in fundamental physiological processes, including the metabolic process. These data represent the first report of a hyper-citrullinated library for the mouse and serve as a central resource for exploring the role of citrullination in this organism.


Asunto(s)
Citrulina/metabolismo , Redes y Vías Metabólicas/fisiología , Biblioteca de Péptidos , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Cromatografía Liquida , Biología Computacional/métodos , Riñón/química , Riñón/metabolismo , Hígado/química , Hígado/metabolismo , Pulmón/química , Pulmón/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Muramidasa/química , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocardio/química , Miocardio/metabolismo , Especificidad de Órganos , Péptidos/química , Desiminasas de la Arginina Proteica/química
12.
BMC Genomics ; 20(1): 745, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619158

RESUMEN

BACKGROUND: The development of next generation sequencing (NGS) methods led to a rapid rise in the generation of large genomic datasets, but the development of user-friendly tools to analyze and visualize these datasets has not developed at the same pace. This presents a two-fold challenge to biologists; the expertise to select an appropriate data analysis pipeline, and the need for bioinformatics or programming skills to apply this pipeline. The development of graphical user interface (GUI) applications hosted on web-based servers such as Shiny can make complex workflows accessible across operating systems and internet browsers to those without programming knowledge. RESULTS: We have developed GENAVi (Gene Expression Normalization Analysis and Visualization) to provide a user-friendly interface for normalization and differential expression analysis (DEA) of human or mouse feature count level RNA-Seq data. GENAVi is a GUI based tool that combines Bioconductor packages in a format for scientists without bioinformatics expertise. We provide a panel of 20 cell lines commonly used for the study of breast and ovarian cancer within GENAVi as a foundation for users to bring their own data to the application. Users can visualize expression across samples, cluster samples based on gene expression or correlation, calculate and plot the results of principal components analysis, perform DEA and gene set enrichment and produce plots for each of these analyses. To allow scalability for large datasets we have provided local install via three methods. We improve on available tools by offering a range of normalization methods and a simple to use interface that provides clear and complete session reporting and for reproducible analysis. CONCLUSION: The development of tools using a GUI makes them practical and accessible to scientists without bioinformatics expertise, or access to a data analyst with relevant skills. While several GUI based tools are currently available for RNA-Seq analysis we improve on these existing tools. This user-friendly application provides a convenient platform for the normalization, analysis and visualization of gene expression data for scientists without bioinformatics expertise.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Interpretación Estadística de Datos , Visualización de Datos , Internet , Reproducibilidad de los Resultados , Interfaz Usuario-Computador
13.
Gut ; 67(10): 1769-1779, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28860350

RESUMEN

OBJECTIVES: Oesophageal squamous cell carcinoma (OSCC) and adenocarcinoma (OAC) are distinct cancers in terms of a number of clinical and epidemiological characteristics, complicating the design of clinical trials and biomarker developments. We analysed 1048 oesophageal tumour-germline pairs from both subtypes, to characterise their genomic features, and biological and clinical significance. DESIGN: Previously exome-sequenced samples were re-analysed to identify significantly mutated genes (SMGs) and mutational signatures. The biological functions of novel SMGs were investigated using cell line and xenograft models. We further performed whole-genome bisulfite sequencing and chromatin immunoprecipitation (ChIP)-seq to characterise epigenetic alterations. RESULTS: OSCC and OAC displayed nearly mutually exclusive sets of driver genes, indicating that they follow independent developmental paths. The combined sample size allowed the statistical identification of a number of novel subtype-specific SMGs, mutational signatures and prognostic biomarkers. Particularly, we identified a novel mutational signature similar to Catalogue Of Somatic Mutations In Cancer (COSMIC)signature 16, which has prognostic value in OSCC. Two newly discovered SMGs, CUL3 and ZFP36L2, were validated as important tumour-suppressors specific to the OSCC subtype. We further identified their additional loss-of-function mechanisms. CUL3 was homozygously deleted specifically in OSCC and other squamous cell cancers (SCCs). Notably, ZFP36L2 is associated with super-enhancer in healthy oesophageal mucosa; DNA hypermethylation in its super-enhancer reduced active histone markers in squamous cancer cells, suggesting an epigenetic inactivation of a super-enhancer-associated SCC suppressor. CONCLUSIONS: These data comprehensively contrast differences between OSCC and OAC at both genomic and epigenomic levels, and reveal novel molecular features for further delineating the pathophysiological mechanisms and treatment strategies for these cancers.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Proteínas Cullin/genética , Neoplasias Esofágicas/genética , Factores de Transcripción/genética , Adenocarcinoma/patología , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Humanos , Mutación con Pérdida de Función , Pronóstico
14.
Circulation ; 136(2): 200-214, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28411247

RESUMEN

BACKGROUND: Cardiosphere-derived cells (CDCs) confer cardioprotection in acute myocardial infarction by distinctive macrophage (Mϕ) polarization. Here we demonstrate that CDC-secreted exosomes (CDCexo) recapitulate the cardioprotective effects of CDC therapy known as cellular postconditioning. METHODS: Rats and pigs underwent myocardial infarction induced by ischemia/reperfusion before intracoronary infusion of CDCexo, inert fibroblast exosomes (Fbexo; control), or vehicle. Two days later, infarct size was quantified. Macrophages were isolated from cardiac tissue or bone marrow for downstream analyses. RNA sequencing was used to determine exosome content and alterations in gene expression profiles in Mϕ. RESULTS: Administration of CDCexo but not Fbexo after reperfusion reduces infarct size in rat and pig models of myocardial infarction. Furthermore, CDCexo reduce the number of CD68+ Mϕ within infarcted tissue and modify the polarization state of Mϕ so as to mimic that induced by CDCs. CDCexo are enriched in several miRNAs (including miR-146a, miR-181b, and miR-126) relative to Fbexo. Reverse pathway analysis of whole-transcriptome data from CDCexo-primed Mϕ implicated miR-181b as a significant (P=1.3x10-21) candidate mediator of CDC-induced Mϕ polarization, and PKCδ (protein kinase C δ) as a downstream target. Otherwise inert Fbexo loaded selectively with miR-181b alter Mϕ phenotype and confer cardioprotective efficacy in a rat model of myocardial infarction. Adoptive transfer of PKCδ-suppressed Mϕ recapitulates cardioprotection. CONCLUSIONS: Our data support the hypothesis that exosomal transfer of miR-181b from CDCs into Mϕ reduces PKCδ transcript levels and underlies the cardioprotective effects of CDCs administered after reperfusion.


Asunto(s)
Exosomas/genética , Técnicas de Transferencia de Gen , Macrófagos/fisiología , MicroARNs/genética , Infarto del Miocardio/genética , Miocitos Cardíacos/fisiología , Animales , Polaridad Celular/fisiología , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , MicroARNs/administración & dosificación , Infarto del Miocardio/prevención & control , Miocitos Cardíacos/trasplante , Ratas , Ratas Endogámicas WKY , Porcinos , Porcinos Enanos
15.
Genome Res ; 25(4): 467-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25747664

RESUMEN

The holistic role of DNA methylation in the organization of the cancer epigenome is not well understood. Here we perform a comprehensive, high-resolution analysis of chromatin structure to compare the landscapes of HCT116 colon cancer cells and a DNA methylation-deficient derivative. The NOMe-seq accessibility assay unexpectedly revealed symmetrical and transcription-independent nucleosomal phasing across active, poised, and inactive genomic elements. DNA methylation abolished this phasing primarily at enhancers and CpG island (CGI) promoters, with little effect on insulators and non-CGI promoters. Abolishment of DNA methylation led to the context-specific reestablishment of the poised and active states of normal colon cells, which were marked in methylation-deficient cells by distinct H3K27 modifications and the presence of either well-phased nucleosomes or nucleosome-depleted regions, respectively. At higher-order genomic scales, we found that long, H3K9me3-marked domains had lower accessibility, consistent with a more compact chromatin structure. Taken together, our results demonstrate the nuanced and context-dependent role of DNA methylation in the functional, multiscale organization of cancer epigenomes.


Asunto(s)
Cromatina/genética , Neoplasias del Colon/genética , Metilación de ADN/genética , Línea Celular Tumoral , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética , Células HCT116 , Histonas/genética , Humanos , Nucleosomas/genética , Regiones Promotoras Genéticas/genética , ADN Metiltransferasa 3B
16.
Mol Cell ; 39(6): 901-11, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20864037

RESUMEN

Profound chromatin changes occur during mitosis to allow for gene silencing and chromosome segregation followed by reactivation of memorized transcription states in daughter cells. Using genome-wide sequencing, we found H2A.Z-containing +1 nucleosomes of active genes shift upstream to occupy TSSs during mitosis, significantly reducing nucleosome-depleted regions. Single-molecule analysis confirmed nucleosome shifting and demonstrated that mitotic shifting is specific to active genes that are silenced during mitosis and, thus, is not seen on promoters, which are silenced by methylation or mitotically expressed genes. Using the GRP78 promoter as a model, we found H3K4 trimethylation is also maintained while other indicators of active chromatin are lost and expression is decreased. These key changes provide a potential mechanism for rapid silencing and reactivation of genes during the cell cycle.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Mitosis/genética , Nucleosomas/metabolismo , Acetilación , Factor de Unión a CCAAT/metabolismo , Proteínas de Ciclo Celular/genética , División Celular/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Metilación de ADN/fisiología , ADN Polimerasa II/metabolismo , Chaperón BiP del Retículo Endoplásmico , Fase G1/genética , Expresión Génica/genética , Genes p16/fisiología , Proteínas de Choque Térmico/genética , Humanos , Proteínas de la Membrana/genética , Metilación , Modelos Genéticos , Fosforilación/fisiología , Regiones Promotoras Genéticas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Fase de Descanso del Ciclo Celular/genética , Análisis de Secuencia de ADN , Proteína de Unión a TATA-Box/metabolismo , Sitio de Iniciación de la Transcripción/fisiología , Quinasa Tipo Polo 1
17.
Crit Rev Biochem Mol Biol ; 50(6): 550-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26446758

RESUMEN

Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer-target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Animales , Cromatina/química , Cromatina/genética , Epigenómica/métodos , Humanos , Transcriptoma
18.
Nat Methods ; 11(6): 689-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24727652

RESUMEN

Genomic information is encoded on a wide range of distance scales, ranging from tens of bases to megabases. We developed a multiscale framework to analyze and visualize the information content of genomic signals. Different types of signals, such as G+C content or DNA methylation, are characterized by distinct patterns of signal enrichment or depletion across scales spanning several orders of magnitude. These patterns are associated with a variety of genomic annotations. By integrating the information across all scales, we demonstrated improved prediction of gene expression from polymerase II chromatin immunoprecipitation sequencing (ChIP-seq) measurements, and we observed that gene expression differences in colorectal cancer are related to methylation patterns that extend beyond the single-gene scale. Our software is available at https://github.com/tknijnen/msr/.


Asunto(s)
Genómica/métodos , Programas Informáticos , Transcriptoma , Animales , ADN/química , Metilación de ADN , Humanos , Análisis de Secuencia de ADN
19.
Hum Mol Genet ; 23(8): 2198-209, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24256810

RESUMEN

Genome-wide association studies of colorectal cancer (CRC) have identified a number of common variants associated with modest risk, including rs3802842 at chromosome 11q23.1. Several genes map to this region but rs3802842 does not map to any known transcribed or regulatory sequences. We reasoned, therefore, that rs3802842 is not the functional single-nucleotide polymorphism (SNP), but is in linkage disequilibrium (LD) with a functional SNP(s). We performed ChIP-seq for histone modifications in SW480 and HCT-116 CRC cells, and incorporated ChIP-seq and DNase I hypersensitivity data available through ENCODE within a 137-kb genomic region containing rs3802842 on 11q23.1. We identified SNP rs10891246 in LD with rs3802842 that mapped within a bidirectional promoter region of genes C11orf92 and C11orf93. Following mutagenesis to the risk allele, the promoter demonstrated lower levels of reporter gene expression. A second SNP rs7130173 was identified in LD with rs3802842 that mapped to a candidate enhancer region, which showed strong unidirectional activity in both HCT-116 and SW480 CRC cells. The risk allele of rs7130173 demonstrated reduced enhancer activity compared with the common allele, and reduced nuclear protein binding affinity in electromobility shift assays compared with the common allele suggesting differential transcription factor (TF) binding. SNPs rs10891246 and rs7130173 are on the same haplotype, and expression quantitative trait loci (eQTL) analyses of neighboring genes implicate C11orf53, C11orf92 and C11orf93 as candidate target genes. These data imply that rs10891246 and rs7130173 are functional SNPs mapping to 11q23.1 and that C11orf53, C11orf92 and C11orf93 represent novel candidate target genes involved in CRC etiology.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 11/genética , Neoplasias Colorrectales/genética , Elementos de Facilitación Genéticos/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Humanos , Luciferasas/metabolismo , Repeticiones de Microsatélite/genética , Sitios de Carácter Cuantitativo , Factores de Riesgo , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas
20.
Magn Reson Med ; 75(6): 2295-302, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26140699

RESUMEN

PURPOSE: Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. METHODS: A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. RESULTS: Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. CONCLUSION: Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Espiración/fisiología , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espirometría/métodos , Humanos , Pulmón/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA