Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Macromol Rapid Commun ; 44(12): e2300015, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059597

RESUMEN

Thermally activated delayed fluorescent (TADF) emitters have become the leading emissive materials for highly efficient organic light-emitting diodes (OLEDs). The deposition of these materials in scalable and cost-effective ways is paramount when looking toward the future of OLED applications. Herein, a simple OLED with fully solution-processed organic layers is introduced, where the TADF emissive layer is ink-jet printed. The TADF polymer has electron and hole conductive side chains, simplifying the fabrication process by removing the need for additional host materials. The OLED has a peak emission of 502 nm and a maximum luminance of close to 9600 cd m-2 . The self-hosted TADF polymer is also demonstrated in a flexible OLED, reaching a maximum luminance of over 2000 cd m-2 . These results demonstrate the potential applications of this self-hosted TADF polymer in flexible ink-jet printed OLEDs and, therefore, for a more scalable fabrication process.


Asunto(s)
Colorantes , Tinta , Conductividad Eléctrica , Electrones , Polímeros
2.
Macromol Rapid Commun ; : e2300274, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474483

RESUMEN

Nitroxide groups covalently grafted to carbon fibers are used as anchoring sites for TEMPO-terminated polymers (poly-n-butylacrylate and polystyrene) in a "graft to" surface modification strategy. All surface-modified fibers are evaluated for their physical properties, showing that several treatments have enhanced the tensile strength and Young's modulus compared to the control fibers. Up to an 18% increase in tensile strength and 12% in Young's modulus are observed. Similarly, the evaluation of interfacial shear strength in an epoxy polymer shows improvements of up to 144% relative to the control sample. Interestingly, the polymer-grafted surfaces show smaller increases in interfacial shear strength compared to surfaces modified with a small molecule only. This counterintuitive result is attributed to the incompatibility, both chemical and physical, of the grafted polymers to the surrounding epoxy matrix. Molecular dynamics simulations of the interface suggest that the diminished increase in mechanical shear strength observed for the polymer grafted surfaces may be due to the lack of exposed chain ends, whereas the small molecule grafted interface exclusively presents chain ends to the resin interface, resulting in good improvements in mechanical properties.

3.
Angew Chem Int Ed Engl ; 61(15): e202113076, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029002

RESUMEN

Herein, we introduce the wavelength-orthogonal crosslinking of hydrogel networks using two red-shifted chromophores, i.e. acrylpyerene (AP, λactivation =410-490 nm) and styrylpyrido[2,3-b]pyrazine (SPP, λactivation =400-550 nm), able to undergo [2+2] photocycloaddition in the visible-light regime. The photoreactivity of the SPP moiety is pH-dependent, whereby an acidic environment inhibits the cycloaddition. By employing a spiropyran-based photoacid generator with suitable absorption wavelength, we are able to restrict the activation wavelength of the SPP moiety to the green light region (λactivation =520-550 nm), enabling wavelength-orthogonal activation of the AP group. Our wavelength-orthogonal photochemical system was successfully applied in the design of hydrogels whose stiffness can be tuned independently by either green or blue light.

4.
Angew Chem Int Ed Engl ; 61(45): e202212710, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36102176

RESUMEN

Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.

5.
J Am Chem Soc ; 143(50): 21113-21126, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34859671

RESUMEN

Predicting wavelength-dependent photochemical reactivity is challenging. Herein, we revive the well-established tool of measuring action spectra and adapt the technique to map wavelength-resolved covalent bond formation and cleavage in what we term "photochemical action plots". Underpinned by tunable lasers, which allow excitation of molecules with near-perfect wavelength precision, the photoinduced reactivity of several reaction classes have been mapped in detail. These include photoinduced cycloadditions and bond formation based on photochemically generated o-quinodimethanes and 1,3-dipoles such as nitrile imines as well as radical photoinitiator cleavage. Organized by reaction class, these data demonstrate that UV/vis spectra fail to act as a predictor for photochemical reactivity at a given wavelength in most of the examined reactions, with the photochemical reactivity being strongly red shifted in comparison to the absorption spectrum. We provide an encompassing perspective of the power of photochemical action plots for bond-forming reactions and their emerging applications in the design of wavelength-selective photoresists and photoresponsive soft-matter materials.

6.
Anal Chem ; 93(22): 8091-8098, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019383

RESUMEN

The nitrile imine-mediated tetrazole-ene cycloaddition is a widely used class of photoligation. Optimizing the reaction outcome requires detailed knowledge of the tetrazole photoactivation profile, which can only partially be ascertained from absorption spectroscopy, or otherwise involves laborious reaction monitoring in solution. Photodissociation action spectroscopy (PDAS) combines the advantages of optical spectroscopy and mass spectrometry in that only absorption events resulting in a mass change are recorded, thus revealing the desired wavelength dependence of product formation. Moreover, the sensitivity and selectivity afforded by the mass spectrometer enable reliable assessment of the photodissociation profile even on small amounts of crude material, thus accelerating the design and synthesis of next-generation substrates. Using this workflow, we demonstrate that the photodissociation onset for nitrile imine formation is red-shifted by ca. 50 nm with a novel N-ethylcarbazole derivative relative to a phenyl-substituted archetype. Benchmarked against solution-phase tunable laser experiments and supported by quantum chemical calculations, these discoveries demonstrate that PDAS is a powerful tool for rapidly screening the efficacy of new substrates in the quest toward efficient visible light-triggered ligation for biological applications.


Asunto(s)
Iminas , Rayos Láser , Reacción de Cicloadición , Espectrometría de Masas , Análisis Espectral
7.
Angew Chem Int Ed Engl ; 60(18): 10402-10408, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33571392

RESUMEN

Herein, we pioneer a wavelength-gated synthesis route to phenalene diimides. Consecutive Diels-Alder reactions of methylisophthalaldehydes and maleimides afford hexahydro-phenalene-1,6-diol diimides via 5-formyl-hexahydro-benzo[f]isoindoles as the intermediate. Both photoreactions are efficient (82-99 % yield) and exhibit excellent diastereoselectivity (62-98 % d.r.). The wavelength-gated nature of the stepwise reaction enables the modular construction of phenalene diimide scaffolds by choice of substrate and wavelength. Importantly, this synthetic methodology opens a facile avenue to a new class of persistent phenalenyl diimide neutral radicals, constituting a versatile route to spin-active molecules.

8.
J Am Chem Soc ; 142(17): 7744-7748, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32293171

RESUMEN

We introduce a highly efficient photoligation system, affording a pro-fluorescent Diels-Alder product that, on demand, converts into an intensively fluorescent naphthalene via E1 elimination in the presence of catalytic amounts of acid. The Diels-Alder reaction of the photocaged diene (o-quinodimethane ether or thioether) with electron-deficient alkynes is induced by UV or visible light. In contrast to previously reported ligation techniques directly leading to fluorescent products, the fluorescence is turned on after the photoligation. Thus, the light absorption of the fluorophore does not undermine the photoligation via competitive absorption, and as a result, photobleaching or side reactions of the fluorophore are not observed. Critically, the gated generation of a fluorescent product allows for fluorometric determination of the conversion. We employ a simple synthesis strategy for heterobifunctional electron-deficient alkynes allowing for facile functionalization of payload molecules.

9.
Chemistry ; 26(71): 16985-16989, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-32839970

RESUMEN

We report a photochemical reaction system which requires activation by two colors of light. Specifically, a dual wavelength gated system is established by fusing the visible light mediated deprotection of a dithioacetal with the UV light activated Diels-Alder reaction of an o-methylbenzaldehyde with N-ethylmaleimide. Critically, both light sources are required to achieve the Diels-Alder adduct, irradiation with visible or UV light alone does not lead to the target product. The introduced dual gated photochemical system is particularly interesting for application in light driven 3D printing, where two color wavelength activated photoresists may become reality.

10.
Chemistry ; 26(4): 809-813, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31797435

RESUMEN

Donor-acceptor Stenhouse adducts (DASA) are popular photoswitches capable of toggling between two isomers depending on the light and temperature of the system. The cyclized polar form is accessed by visible-light irradiation, whereas the linear nonpolar form is recovered in the dark. Upon the formation of the cyclized form, the DASA contains a double bond featuring a ß-carbon prone to nucleophilic attack. Here, an isomer selective thiol-Michael reaction between the cyclized DASA and a base-activated thiol is introduced. The thiol-Michael addition was carried out with an alkyl (1-butanethiol) and an aromatic thiol (p-bromothiophenol) as reaction partners, both in the presence of a base. Under optimized conditions, the reaction proceeds preferentially in the presence of light and base. The current study demonstrates that DASAs can be selectively trapped in their cyclized state.

11.
Macromol Rapid Commun ; 41(18): e2000183, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32548919

RESUMEN

High-performance polymers such as polymethacrylimides have outstanding properties, for example, a unique strength-to-weight ratio and a high thermal stability, usually coupled to a high glass transition temperature. However, the requirement of high processing temperatures caused by these high glass-transition temperatures is often not desired for melt extrusion processes. Herein, a novel and straightforward imidization process of poly(methacrylic anhydrides) is presented with different ratios of ammonia and N-isopropylamine that is induced by thermal treatment. Therefore, polymethacrylimides with a varying degree of N-substitution, and thus a varying number of hydrogen-bond-donating moieties, are synthesized under facile reaction conditions. An in-depth investigation into the structures obtained with this new methodology is undertaken via a combination of nuclear magnetic resonance spectroscopy (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution electrospray ionization mass spectrometry (ESI-MS). Additionally, thermal properties of the materials are investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses. These latter measurements highlight the key opportunity available with this novel synthesis to tailor the thermal properties of the polymer by providing a clear correlation between hydrogen bond formation, as observed by FT-IR, and the glass transition temperature.


Asunto(s)
Polímeros , Rastreo Diferencial de Calorimetría , Enlace de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
12.
Angew Chem Int Ed Engl ; 59(33): 14143-14147, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32367632

RESUMEN

We report a photochemical flow setup that exploits λ-orthogonal reactions using two different colours of light (λ1 =350 nm and λ2 =410 nm) in sequential on-line irradiation steps. Critically, both photochemically reactive units (a visible-light reactive chalcone and a UV-activated photo-caged diene) are present in the reaction mixture. We demonstrate the power of two colour photoflow by the wavelength-selective end group modification of photo-caged polymer end groups and the subsequent polymer ring closure driven by a [2+2] cycloaddition. Importantly, we evidence that the high energy gate does not induce the visible light reaction of the chalcone, which attests the true λ-orthogonal nature of the flow reaction system. For the first time, this study opens the realm of photoflow reactions to λ-orthogonal photochemistry.

13.
J Am Chem Soc ; 141(42): 16605-16609, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31592659

RESUMEN

We introduce the hybrid copolymerization of two disparate monomer classes (vinyl monomers and ring-strained cyclic olefins) via living photopolymerization. The living character of the polymerization technique (metal-free photo-ROMP) is demonstrated by consecutive chain-extensions. Further, we propose a mechanism for the copolymerization and analyze the copolymer structure in detail by high-resolution mass spectrometry.

14.
Chemistry ; 25(15): 3700-3709, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30238521

RESUMEN

Catalyst-free and bond-forming light-induced reactions have seen an unprecedented renaissance in the realm of soft matter materials science due to their efficiency, spatio-temporal controllability and, sometimes, photoreversible nature. However, many of these reactions rely on the application of high energy UV light that can cause photo-degradation and is inapplicable in biological environments. If up-conversion systems or two-photon processes are to be avoided, strategies for red-shifting catalyst-free ligation technology are critically required. This Concept article introduces the reader to recent methods that lead to efficient, catalyst-free visible-light-induced ligation chemistry based on polyaromatic substituted photoreactive compounds-pyrene and anthracene-and, furthermore, emphasizes the broad and facile applicability of these molecules in polymeric material design. Concomitantly, we highlight that a careful action plot analysis of photochemical reactivity can provide deep insights into reactivity patterns, far beyond those suggested by the absorption spectrum. Indeed, we suggest that an action plot analysis is necessary for the evaluation of any photochemical system and its response to structural chemical changes.

15.
Angew Chem Int Ed Engl ; 58(22): 7470-7474, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30916368

RESUMEN

We report light-induced reactions in a two-chromophore system capable of sequence-independent λ-orthogonal reactivity relying solely on the choice of wavelength and solvent. In a solution of water and acetonitrile, LED irradiation at λmax =285 nm leads to full conversion of 2,5-diphenyltetrazoles with N-ethylmaleimide to the pyrazoline ligation products. Simultaneously present o-methylbenzaldehyde thioethers are retained. Conversely, LED irradiation at λmax =382 nm is used to induce ligation of the o-methylbenzaldehydes in acetonitrile with N-ethylmaleimide via o-quinodimethanes, while 2,5-diphenyltetrazoles also present are retained. This unprecedented photochemical selectivity is achieved through control of the number and wavelength of incident photons as well as favorable optical properties and quantum yields of the reactants in their environment.

16.
J Am Chem Soc ; 140(37): 11848-11854, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30137988

RESUMEN

We introduce a photocaged diene system ( o-quinodimethane thioethers) based on o-methylbenzaldehydes ( o-MBAs) that can be activated with visible light. The pioneered system is accessible in a single step from commercially available starting materials in excellent yields. Variable synthetic handles can be attached to the photocaged diene, often without elaborate protecting group chemistry. Full conversion of various o-methylbenzaldehydes to the Diels-Alder adduct is achieved in the presence of maleimides under catalyst-free conditions triggered by visible light irradiation with LEDs under flow conditions. Unlike the previously reported UV-induced ligation of o-quinodimethanes, the reaction can be conducted both in organic solvents and in aqueous solution. We further demonstrate the ability of the photocaged dienes to ligate two polymer blocks by visible light. The [4+2] nature of the reaction makes it a powerful orthogonal ligation platform.

17.
Chemistry ; 24(47): 12246-12249, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-29577465

RESUMEN

A self-reporting, profluorescent, visible light-induced release system is introduced. Fluorescence activation is enabled by a mild remote trigger signal that can be monitored with the naked-eye in real time. The light-responsive spin-silenced polymer is synthesized via an Ugi post-polymerization modification incorporating paramagnetic nitroxides and a light cleavable fluorophore moiety.

18.
Chemistry ; 24(3): 576-580, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29159967

RESUMEN

We exploit λ-orthogonal photoligation of nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) chemistry to generate complex, interconnected surface modifications via a simple layered surface patterning approach. By judicious choice of activating chromophores, we introduce a one pot reaction where nitrile imine formation can be triggered independently of other tetrazoles present. When irradiated with visible light, a tetrazole bearing a pyrene chromophore undergoes quantitative elimination of nitrogen to release nitrile imine (which subsequently undergoes trapping with a dipolarophile in a 1,3 dipolar cycloaddition) whereas a tetrazole bearing a phenyl moiety remains unreacted. Subsequent irradiation of the solution with UV light yields the N-phenyl containing nitrile imine quantitatively, while the pyrene pyrazoline adduct remains unchanged. This λ-orthogonal photoligation was subsequently exploited for the generation of layered patterned surfaces. Specifically, the visible light active tetrazole was grafted to a silicon wafer and subsequently photolithographically patterned with a dipolarophile modified with a UV-active tetrazole. Various electron deficient olefins were then patterned in a spatially resolved manner relying on different light activation. The desired functionality was successfully imaged on the silicon wafers using time-of-flight-secondary ion mass spectrometry (ToF-SIMS), demonstrating that a powerful mask-less lithographic platform technology has been established.

19.
Chemistry ; 24(71): 18873-18879, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30329188

RESUMEN

A substrate-independent and versatile coating platform for (spatially resolved) surface functionalization, based on nitroxide radical coupling (NRC) reactions and the formation of thermo-labile alkoxyamine functional groups, was introduced. Nitroxide-decorated poly(glycidyl methacrylate) (PGMA) microspheres, obtained through bioinspired copolymer surface deposition using dopamine and a nitroxide functional dopamine derivative as monomers, were conjugated with small functional groups in a rewritable process. Reversible coding of the nitroxide functional microspheres by NRC and decoding through thermal alkoxyamine fission were monitored and characterized by electron paramagnetic resonance (EPR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In addition, this nitroxide coating system was exploited in "grafting-to" polymer surface ligations of poly(methyl methacrylate) (PMMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) in spatially confined areas. Polymer strands terminated with an Irgacure 2959 (2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone) photoinitiator were obtained through chain-transfer polymerization, and subsequently coupled to nitroxide-immobilized poly(dopamine) (PDA)-coated silicon substrates by using rapid photoclick NRC reactions. Light-driven polymer surface coding was visualized by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and XPS imaging.

20.
Langmuir ; 34(10): 3264-3274, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29442516

RESUMEN

We pioneer a versatile surface modification strategy based on mussel-inspired oxidative catecholamine polymerization for the design of nitroxide-containing thin polymer films. A 3,4-dihydroxy-l-phenylalanine (l-DOPA) monomer equipped with a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-derived oxidation-labile hydroxylamine functional group is employed as a universal coating agent to generate polymer scaffolds with persistent radical character. Various types of materials including silicon, titanium, ceramic alumina, and inert poly(tetrafluoroethylene) (PTFE) were successfully coated with poly(DOPA-TEMPO) thin films in a one-step dip-coating procedure under aerobic, slightly alkaline (pH 8.5) conditions. Steadily growing polymer films (∼1.1 nm h-1) were monitored by ellipsometry, and their thicknesses were critically compared with those obtained from atomic force microscopic cross-sectional profiles. The heterogeneous composition of surface-adherent nitroxide scaffolds examined by X-ray photoelectron spectroscopy was correlated to that examined by in-solution polymer analysis via high-resolution electrospray ionization mass spectrometry, revealing oligomeric structures with up to six repeating units, mainly composed of covalently linked dihydroxyindole along the polymer backbone. Critically, the reversible redox-active character of the nitroxide-containing polymer scaffolds was investigated by cyclic voltammetric measurements, revealing a convenient and facile access route to electrochemically active nitroxide polymer coatings with potential application in electronic devices such as organic radical batteries.


Asunto(s)
Óxidos de Nitrógeno/química , Polímeros/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA