Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(8): e1010895, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624850

RESUMEN

Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.


Asunto(s)
Laminopatías , Músculo Estriado , Enfermedades Musculares , Animales , Humanos , Caenorhabditis elegans/genética , Lamina Tipo A/genética , Músculo Esquelético , Enfermedades Musculares/genética , Mutación Missense/genética
2.
Nature ; 574(7777): 259-263, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554973

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore,  CHIKV infection  is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/patogenicidad , Factores Celulares Derivados del Huésped/metabolismo , Interacciones Huésped-Patógeno , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/metabolismo , Animales , Células Cultivadas , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/genética , Virus Chikungunya/crecimiento & desarrollo , Femenino , Fibroblastos/virología , Células HEK293 , Factores Celulares Derivados del Huésped/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/genética , Masculino , Ratones , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Mioblastos/virología , Virus O'nyong-nyong/crecimiento & desarrollo , Virus O'nyong-nyong/patogenicidad , Unión Proteica , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
3.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37935568

RESUMEN

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Asunto(s)
Miopatías Distales , Humanos , Conectina/genética , Miopatías Distales/genética , Variaciones en el Número de Copia de ADN/genética , Músculo Esquelético/patología , Mutación/genética , Fenotipo
4.
Am J Hum Genet ; 108(5): 840-856, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33861953

RESUMEN

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.


Asunto(s)
Proteína Jagged-2/genética , Distrofias Musculares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Línea Celular , Niño , Preescolar , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Glucosiltransferasas/genética , Haplotipos/genética , Humanos , Proteína Jagged-1/genética , Proteína Jagged-2/química , Proteína Jagged-2/deficiencia , Proteína Jagged-2/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , Modelos Moleculares , Músculos/metabolismo , Músculos/patología , Distrofias Musculares/patología , Mioblastos/metabolismo , Mioblastos/patología , Linaje , Fenotipo , Receptores Notch/metabolismo , Transducción de Señal , Secuenciación del Exoma , Adulto Joven
5.
J Cell Sci ; 134(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33536248

RESUMEN

The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from LmnaH222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in LmnaH222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.


Asunto(s)
Lamina Tipo A , Músculo Estriado , Animales , Citoesqueleto , Lamina Tipo A/genética , Lamina Tipo B/genética , Ratones , Mutación/genética , Lámina Nuclear
6.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108075

RESUMEN

Human TOR1AIP1 encodes LAP1, a nuclear envelope protein expressed in most human tissues, which has been linked to various biological processes and human diseases. The clinical spectrum of diseases related to mutations in TOR1AIP1 is broad, including muscular dystrophy, congenital myasthenic syndrome, cardiomyopathy, and multisystemic disease with or without progeroid features. Although rare, these recessively inherited disorders often lead to early death or considerable functional impairment. Developing a better understanding of the roles of LAP1 and mutant TOR1AIP1-associated phenotypes is paramount to allow therapeutic development. To facilitate further studies, this review provides an overview of the known interactions of LAP1 and summarizes the evidence for the function of this protein in human health. We then review the mutations in the TOR1AIP1 gene and the clinical and pathological characteristics of subjects with these mutations. Lastly, we discuss challenges to be addressed in the future.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas de la Membrana , Distrofias Musculares , Humanos , Proteínas de la Membrana/metabolismo , Distrofias Musculares/metabolismo , Mutación , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas del Citoesqueleto/metabolismo
7.
Brain ; 144(8): 2427-2442, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-33792664

RESUMEN

Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Inositol Polifosfato 5-Fosfatasas/genética , Mutación , Fenotipo , Fosfoglicerato-Deshidrogenasa/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Proteómica , Degeneraciones Espinocerebelosas/patología , Pez Cebra
8.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955641

RESUMEN

The implementation of high-throughput diagnostic sequencing has led to the generation of large amounts of mutational data, making their interpretation more complex and responsible for long delays. It has been important to prioritize certain analyses, particularly those of "actionable" genes in diagnostic situations, involving specific treatment and/or management. In our project, we carried out an objective assessment of the clinical actionability of genes involved in myopathies, for which only few data obtained methodologically exist to date. Using the ClinGen Actionability criteria, we scored the clinical actionability of all 199 genes implicated in myopathies published by FILNEMUS for the "National French consensus on gene Lists for the diagnosis of myopathies using next generation sequencing". We objectified that 63 myopathy genes were actionable with the currently available data. Among the 36 myopathy genes with the highest actionability scores, only 8 had been scored to date by ClinGen. The data obtained through these methodological tools are an important resource for strategic choices in diagnostic approaches and the management of genetic myopathies. The clinical actionability of genes has to be considered as an evolving concept, in relation to progresses in disease knowledge and therapeutic approaches.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Musculares , Consenso , Humanos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/terapia , Mutación , Atención al Paciente
9.
Hum Mol Genet ; 28(24): 4043-4052, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29893868

RESUMEN

Mutations in the lamin A/C gene (LMNA) cause an autosomal dominant inherited form of dilated cardiomyopathy associated with cardiac conduction disease (hereafter referred to as LMNA cardiomyopathy). Compared with other forms of dilated cardiomyopathy, mutations in LMNA are responsible for a more aggressive clinical course owing to a high rate of malignant ventricular arrhythmias. Gap junctions are intercellular channels that allow direct communication between neighboring cells, which are involved in electrical impulse propagation and coordinated contraction of the heart. For gap junctions to properly control electrical synchronization in the heart, connexin-based hemichannels must be correctly targeted to intercalated discs, Cx43 being the major connexin in the working myocytes. We here showed an altered distribution of Cx43 in a mouse model of LMNA cardiomyopathy. However, little is known on the molecular mechanisms of Cx43 remodeling in pathological context. We now show that microtubule cytoskeleton alteration and decreased acetylation of α-tubulin lead to remodeling of Cx43 in LMNA cardiomyopathy, which alters the correct communication between cardiomyocytes, ultimately leading to electrical conduction disturbances. Preventing or reversing this process could offer a strategy to repair damaged heart. Stabilization of microtubule cytoskeleton using Paclitaxel improved intraventricular conduction defects. These results indicate that microtubule cytoskeleton contributes to the pathogenesis of LMNA cardiomyopathy and that drugs stabilizing the microtubule may be beneficial for patients.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Conexina 43/metabolismo , Lamina Tipo A/genética , Paclitaxel/farmacología , Acetilación/efectos de los fármacos , Animales , Trastorno del Sistema de Conducción Cardíaco/genética , Cardiomiopatías/patología , Conexina 43/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Lamina Tipo A/metabolismo , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Microtúbulos/patología , Mutación , Miocardio/patología , Miocitos Cardíacos/patología
10.
Nat Mater ; 19(4): 464-473, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31844279

RESUMEN

Mutations in the LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A/C, cause Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy and other diseases collectively known as laminopathies. The mechanisms responsible for these diseases remain incompletely understood. Using three mouse models of muscle laminopathies and muscle biopsies from individuals with LMNA-related muscular dystrophy, we found that Lmna mutations reduced nuclear stability and caused transient rupture of the NE in skeletal muscle cells, resulting in DNA damage, DNA damage response activation and reduced cell viability. NE and DNA damage resulted from nuclear migration during skeletal muscle maturation and correlated with disease severity in the mouse models. Reduction of cytoskeletal forces on the myonuclei prevented NE damage and rescued myofibre function and viability in Lmna mutant myofibres, indicating that myofibre dysfunction is the result of mechanically induced NE damage. Taken together, these findings implicate mechanically induced DNA damage as a pathogenic contributor to LMNA skeletal muscle diseases.


Asunto(s)
Daño del ADN , Lamina Tipo A , Distrofia Muscular Animal , Mutación , Miofibrillas , Membrana Nuclear , Animales , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Ratones Noqueados , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Miofibrillas/metabolismo , Miofibrillas/patología , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología
11.
Hum Mol Genet ; 27(19): 3353-3360, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982513

RESUMEN

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscular and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. We showed here an increase in oxidative stress levels in the hearts of mice carrying LMNA mutation, associated with a decrease of the key cellular antioxidant glutathione (GHS). Oral administration of N-acetyl cysteine, a GHS precursor, led to a marked improvement of GHS content, a decrease in oxidative stress markers including protein carbonyls and an improvement of left ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our novel results provide therapeutic insights into LMNA cardiomyopathy.


Asunto(s)
Acetilcisteína/administración & dosificación , Cardiomiopatía Dilatada/genética , Insuficiencia Cardíaca/genética , Lamina Tipo A/genética , Acetilcisteína/metabolismo , Animales , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Glutatión/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Humanos , Ratones , Mutación , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos
12.
Hum Mol Genet ; 27(22): 3870-3880, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30053027

RESUMEN

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscle and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for heart function. Biosynthesis of NAD+ from vitamin B3 (known as salvage pathways) is the primary source of NAD+. We showed here that NAD+ salvage pathway was altered in the heart of mouse and human carrying LMNA mutation, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Oral administration of nicotinamide riboside, a natural NAD+ precursor and a pyridine-nucleoside form of vitamin B3, leads to a marked improvement of the NAD+ cellular content, an increase of PARylation of cardiac proteins and an improvement of left ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our results provide mechanistic and therapeutic insights into dilated cardiomyopathy caused by LMNA mutations.


Asunto(s)
Cardiomiopatías/genética , Corazón/fisiopatología , Lamina Tipo A/genética , NAD/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Animales , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Ratones , Mutación , NAD/biosíntesis , Niacinamida/genética , Niacinamida/metabolismo , Poli ADP Ribosilación/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología
13.
Hum Mol Genet ; 27(17): 3060-3078, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878125

RESUMEN

Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.


Asunto(s)
Actinas/metabolismo , Cardiomiopatía Dilatada/patología , Cofilina 1/metabolismo , Lamina Tipo A/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Actinas/genética , Adolescente , Adulto , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Estudios de Casos y Controles , Cofilina 1/genética , Femenino , Corazón/fisiología , Humanos , Lamina Tipo A/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Fosforilación , Transducción de Señal , Adulto Joven
14.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396724

RESUMEN

Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/ß catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.


Asunto(s)
Lamina Tipo A/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/etiología , Distrofia Muscular de Cinturas/metabolismo , Mutación , Transducción de Señal , Animales , Biopsia , Comunicación Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lamina Tipo A/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Distrofia Muscular de Cinturas/patología , Unión Neuromuscular/metabolismo , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Hum Mol Genet ; 26(2): 333-343, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069793

RESUMEN

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is characterized by cardiac conduction abnormalities and left ventricular systolic dysfunction predisposing to heart failure. Previous cardiac transcriptional profiling of LmnaH222P/H222P mouse, a small animal model of LMNA cardiomyopathy, suggested decreased WNT/ß-catenin signalling. We confirmed decreased WNT/ß-catenin signalling in the hearts of these mice by demonstrating decreased ß-catenin and WNT proteins. This was correlated with increased expression of soluble Frizzled-related proteins that modulate the WNT/ß-catenin signalling pathway. Hearts of LmnaH222P/H222P mice also demonstrated lowered expression of the gap junction connexin 43. Activation of WNT/ß-catenin activity with 6-bromoindirubin-3'-oxime improved cardiac contractility and ameliorated intraventricular conduction defects in LmnaH222P/H222P mice, which was associated with increased expression of myocardial connexin 43. These results indicate that decreased WNT/ß-catenin contributes to the pathophysiology of LMNA cardiomyopathy and that drugs activating ß-catenin may be beneficial in affected individuals.


Asunto(s)
Cardiomiopatía Dilatada/genética , Conexina 43/genética , Lamina Tipo A/genética , beta Catenina/genética , Animales , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/fisiopatología , Conexina 43/biosíntesis , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Humanos , Indoles/administración & dosificación , Péptidos y Proteínas de Señalización Intracelular , Ratones , Mutación , Oximas/administración & dosificación , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Proteínas Wnt/genética , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/biosíntesis
17.
Am J Hum Genet ; 99(3): 753-761, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27569547

RESUMEN

The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse.


Asunto(s)
Apnea/genética , Mutación/genética , Miastenia Gravis/genética , Terminales Presinápticos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adolescente , Apnea/complicaciones , Apnea/metabolismo , Apnea/patología , Artrogriposis/complicaciones , Artrogriposis/genética , Butirilcolinesterasa/metabolismo , Niño , Preescolar , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Análisis Mutacional de ADN , Exoma/genética , Femenino , Genes Recesivos/genética , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Hipotonía Muscular/genética , Debilidad Muscular/complicaciones , Debilidad Muscular/genética , Debilidad Muscular/patología , Mutación Missense/genética , Miastenia Gravis/complicaciones , Miastenia Gravis/metabolismo , Miastenia Gravis/patología , Unión Neuromuscular/enzimología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Terminales Presinápticos/patología , Simportadores/deficiencia , Transmisión Sináptica
18.
Hum Mol Genet ; 25(11): 2220-2233, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27131347

RESUMEN

Cardiomyopathy caused by lamin A/C gene mutations (LMNA cardiomyopathy) is characterized by increased myocardial fibrosis, which impairs left ventricular relaxation and predisposes to heart failure, and cardiac conduction abnormalities. While we previously discovered abnormally elevated extracellular signal-regulated kinase 1/2 (ERK1/2) activities in heart in LMNA cardiomyopathy, its role on the development of myocardial fibrosis remains unclear. We now showed that transforming growth factor (TGF)-ß/Smad signaling participates in the activation of ERK1/2 signaling in LMNA cardiomyopathy. ERK1/2 acts on connective tissue growth factor (CTGF/CCN2) expression to mediate the myocardial fibrosis and left ventricular dysfunction. Studies in vivo demonstrate that inhibiting CTGF/CCN2 using a specific antibody decreases myocardial fibrosis and improves the left ventricular dysfunction. Together, these findings show that cardiac ERK1/2 activity is modulated in part by TGF-ß/Smad signaling, leading to altered activation of CTGF/CCN2 to mediate fibrosis and alter cardiac function. This identifies a novel mechanism in the development of LMNA cardiomyopathy.


Asunto(s)
Cardiomiopatías/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Fibrosis/genética , Lamina Tipo A/genética , Factor de Crecimiento Transformador beta/genética , Animales , Cardiomiopatías/patología , Fibrosis/patología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Proteínas Smad/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología
19.
Muscle Nerve ; 58(6): 812-817, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30066418

RESUMEN

INTRODUCTION: Particular fibroadipose infiltration patterns have been recently described by muscle imaging in congenital and later onset forms of LMNA-related muscular dystrophies (LMNA-RD). METHODS: Scores for fibroadipose infiltration of 23 lower limb muscles in 34 patients with LMNA-RD were collected from heat maps of 2 previous studies. Scoring systems were homogenized. Relationships between muscle infiltration and disease duration and age of onset were modeled with random forests. RESULTS: The pattern of infiltration differs according to disease duration but not to age of disease onset. The muscles whose progression best predicts disease duration were semitendinosus, biceps femoris long head, gluteus medius, and semimembranosus. DISCUSSION: In LMNA-RD, our synthetic analysis of lower limb muscle infiltration did not find major differences between forms with different ages of onset but allowed the identification of muscles with characteristic infiltration during disease progression. Monitoring of these specific muscles by quantitative MRI may provide useful imaging biomarkers in LMNA-RD. Muscle Nerve 58:812-817, 2018.


Asunto(s)
Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Atrofia Muscular Espinal/diagnóstico por imagen , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Progresión de la Enfermedad , Extremidades/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadísticas no Paramétricas , Tomografía Computarizada por Rayos X , Adulto Joven
20.
Muscle Nerve ; 56(5): 993-997, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28256728

RESUMEN

INTRODUCTION: Hereditary inclusion body myopathy (hIBM) refers to a group of clinically and genetically heterogeneous diseases. The overlapping histochemical features of hIBM with other genetic disorders lead to low diagnostic rates with targeted single-gene sequencing. This is true for the most prevalent form of hIBM, GNEpathy. Therefore, we used whole-exome sequencing (WES) to determine whether a cohort of clinically suspected GNEpathy patients undiagnosed by targeted GNE analysis could be genetically characterized. METHODS: Twenty patients with hIBM but undiagnosed by targeted GNE sequencing were analyzed by WES before data filtering on 306 genes associated with neuromuscular disorders. RESULTS: Seven patients out of 20 were found to have disease-causing mutations in genes associated with hIBM or genes allowing for hIBM in the differential diagnosis or associated with unexpected diagnosis. DISCUSSION: Next-generation sequencing is an efficient strategy in the context of hIBM, resulting in a molecular diagnosis for 35% of the patients initially undiagnosed by targeted GNE analysis. Muscle Nerve 56: 993-997, 2017.


Asunto(s)
Complejos Multienzimáticos/genética , Mutación/genética , Miositis por Cuerpos de Inclusión/genética , Adolescente , Adulto , Estudios de Cohortes , Análisis Mutacional de ADN , Exoma , Femenino , Francia , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA