Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Hum Genet ; 84(6): 792-800, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19520207

RESUMEN

Retinitis pigmentosa (RP) refers to a genetically heterogeneous group of progressive neurodegenerative diseases that result in dysfunction and/or death of rod and cone photoreceptors in the retina. So far, 18 genes have been identified for autosomal-dominant (ad) RP. Here, we describe an adRP locus (RP42) at chromosome 7p15 through linkage analysis in a six-generation Scandinavian family and identify a disease-causing mutation, c.449G-->A (p.S150N), in exon 6 of the KLHL7 gene. Mutation screening of KLHL7 in 502 retinopathy probands has revealed three different missense mutations in six independent families. KLHL7 is widely expressed, including expression in rod photoreceptors, and encodes a 75 kDa protein of the BTB-Kelch subfamily within the BTB superfamily. BTB-Kelch proteins have been implicated in ubiquitination through Cullin E3 ligases. Notably, all three putative disease-causing KLHL7 mutations are within a conserved BACK domain; homology modeling suggests that mutant amino acid side chains can potentially fill the cleft between two helices, thereby affecting the ubiquitination complexes. Mutations in an identical region of another BTB-Kelch protein, gigaxonin, have previously been associated with giant axonal neuropathy. Our studies suggest an additional role of the ubiquitin-proteasome protein-degradation pathway in maintaining neuronal health and in disease.


Asunto(s)
Autoantígenos/genética , Genes Dominantes , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Retinitis Pigmentosa/genética , Secuencia de Aminoácidos , Autoantígenos/metabolismo , Cromosomas Humanos Par 7/genética , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Ligamiento Genético , Humanos , Immunoblotting , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
2.
Ophthalmic Genet ; 24(4): 215-23, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14566651

RESUMEN

PURPOSE: To describe new disease-causing RP2 and RPGR-ORF15 mutations and their corresponding clinical phenotypes in Swedish families with X-linked retinitis pigmentosa (XLRP) and to establish genotype-phenotype correlations by studying the clinical spectrum of disease in families with a known molecular defect. METHODS: Seventeen unrelated families with RP and an apparent X-linked pattern of disease inheritance were identified from the Swedish RP registry and screened for mutations in the RP2 and RPGR (for the RP3 disease) genes. These families had been previously screened for the RPGR exons 1-19, and disease-causing mutations were identified in four of them. In the remaining 13 families, we sequenced the RP2 gene and the newly discovered RPGR-ORF exon. Detailed clinical evaluations were then obtained from individuals in the three families with identified mutations. RESULTS: Mutations in RP2 and RPGR-ORF15 were identified in three of the 13 families. Clinical evaluations of affected males and carrier females demonstrated varying degrees of retinal dysfunction and visual handicap, with early onset and severe disease in the families with mutations in the ORF15 exon of the RPGR gene. CONCLUSIONS: A total of seven mutations in the RP2 and RPGR genes have been discovered so far in Swedish XLRP families. All affected individuals express a severe form of retinal degeneration with visual handicap early in life, although the degree of retinal dysfunction varies both in hemizygous male patients and in heterozygous carrier females. Retinal disease phenotypes in patients with mutations in the RPGR-ORF15 were more severe than in patients with mutations in RP2 or other regions of the RPGR.


Asunto(s)
Proteínas Portadoras/genética , Cromosomas Humanos X/genética , Proteínas del Ojo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación/genética , Proteínas/genética , Retinitis Pigmentosa/genética , Adulto , Anciano , Análisis Mutacional de ADN , Electrorretinografía , Exones/genética , Femenino , Proteínas de Unión al GTP , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana , Persona de Mediana Edad , Sistemas de Lectura Abierta , Linaje , Suecia , Agudeza Visual , Campos Visuales
3.
Exp Eye Res ; 75(4): 431-43, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12387791

RESUMEN

X-linked retinitis pigmentosa comprises the severe forms of RP, with early onset of night blindness, rapid constriction of visual fields and eventual loss of central acuity. Of the five distinct XLRP loci identified on the X chromosome, mutations have been found only in the RP2 and RPGR genes. Of these, mutations in RPGR are more common, particularly in a mutational hot spot that was identified in the newly discovered exon ORF15. We report on an extended family with a microdeletion in RPGR exon ORF15 and the retinal histopathology of a female carrier of this mutation. We found a 1bp deletion at position 632 in exon ORF15 in affected members of family XLRP-319. This mutation alters the reading frame of the predicted RPGR protein, resulting in a premature stop codon. The mutation segregated with disease in three generations of the family and was associated with severe early onset retinal disease in affected men. The retina from a 75 year old carrier female donor had slight photoreceptor loss in the less diseased areas. More severe atrophy with retinal pigment epithelium (RPE) migration was present in areas of the mid- and far periphery. By immunocytochemistry, loss of rhodopsin labelling in rods was found in the areas of focal atrophy and loss of uniform cone spacing was apparent even in well preserved regions. Small multifocal areas of outer retinal degeneration were present in the better preserved regions of the eye. In these foci, rod and cone loss did not coincide. The dissociation of rod and cone degeneration in areas of focal disease is consistent with random X-inactivation early in embryonic development and the occurrence of distinct patterns of radial (rod) and tangential (cone) dispersion during clonal expansion early in photoreceptor differentiation.


Asunto(s)
Exones/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación/genética , Retina/patología , Retinitis Pigmentosa/genética , Adulto , Femenino , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Retinitis Pigmentosa/patología
4.
Am J Hum Genet ; 70(6): 1545-54, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11992260

RESUMEN

X-linked retinitis pigmentosa (XLRP) is a clinically and genetically heterogeneous degenerative disease of the retina. At least five loci have been mapped for XLRP; of these, RP2 and RP3 account for 10%-20% and 70%-90% of genetically identifiable disease, respectively. However, mutations in the respective genes, RP2 and RPGR, were detected in only 10% and 20% of families with XLRP. Mutations in an alternatively spliced RPGR exon, ORF15, have recently been shown to account for 60% of XLRP in a European cohort of 47 families. We have performed, in a North American cohort of 234 families with RP, a comprehensive screen of the RP2 and RPGR (including ORF15) genes and their 5' upstream regions. Of these families, 91 (39%) show definitive X-linked inheritance, an additional 88 (38%) reveal a pattern consistent with X-linked disease, and the remaining 55 (23%) are simplex male patients with RP who had an early onset and/or severe disease. In agreement with the previous studies, we show that mutations in the RP2 gene and in the original 19 RPGR exons are detected in <10% and approximately 20% of XLRP probands, respectively. Our studies have revealed RPGR-ORF15 mutations in an additional 30% of 91 well-documented families with X-linked recessive inheritance and in 22% of the total 234 probands analyzed. We suggest that mutations in an as-yet-uncharacterized RPGR exon(s), intronic changes, or another gene in the region might be responsible for the disease in the remainder of this North American cohort. We also discuss the implications of our studies for genetic diagnosis, genotype-phenotype correlations, and gene-based therapy.


Asunto(s)
Proteínas Portadoras/genética , Proteínas del Ojo , Ligamiento Genético/genética , Mutación/genética , Proteínas/genética , Retinitis Pigmentosa/genética , Cromosoma X/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Exones/genética , Proteínas de Unión al GTP , Variación Genética/genética , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana , América del Norte , Sistemas de Lectura Abierta/genética , Fenotipo , Polimorfismo Genético/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA