Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
J Fish Dis ; 44(10): 1619-1637, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34237181

RESUMEN

Anti-nutritional factors in dietary components can have a negative impact on the intestinal barrier. Here, we present soya bean-induced changes in the intestine of juvenile zebrafish and the effect of yeast ß-glucan through a transcriptomic approach. The inclusion of soya bean meal affected the expression of several intestinal barrier function-related genes like arl4ca, rab25b, rhoub, muc5ac, muc5d, clcn2c and cltb in zebrafish. Several metabolic genes like cyp2x10.2, cyp2aa2, aldh3a2b, crata, elovl4, elovl6, slc51a, gpat2 and ATP-dependent peptidase activity (lonrf, clpxb) were altered in the intestinal tissue. The expression of immune-related genes like nlrc3, nlrp12, gimap8, prdm1 and tph1a, and genes related to cell cycle, DNA damage and DNA repair (e.g. spo11, rad21l1, nabp1b, spata22, tdrd9) were also affected in the soya bean fed group. Furthermore, our study suggests the plausible effect of yeast ß-glucan through the modulation of several genes that regulate immune responses and barrier integrity. Our findings indicate a subdued inflammation in juvenile zebrafish fed soya bean meal and the efficacy of ß-glucan to counter these subtle inflammatory responses.


Asunto(s)
Enfermedades de los Peces/prevención & control , Glycine max/química , Inflamación/veterinaria , Enfermedades Intestinales/prevención & control , Polisacáridos/metabolismo , Transcriptoma/efectos de los fármacos , Pez Cebra , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inmunología , Inflamación/prevención & control , Enfermedades Intestinales/inmunología , Intestinos , Polisacáridos/administración & dosificación , Polisacáridos/química , Saccharomyces cerevisiae/química
3.
Eur J Immunol ; 48(2): 283-292, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28921509

RESUMEN

Class-switching of B cells to IgA can be induced via both T-cell-dependent and T-cell-independent mechanisms. IgA is most predominantly produced mucosally and is important for combating infections and allergies. In contrast to mice, humans have two forms of IgA; IgA1 and IgA2 with diverse tissue distribution. In early life, IgA levels might be sub-optimal especially during the fall season when bacterial and viral infections are more common. Therefore, we investigated using human B cells whether T-cell-independent factors -promoting cell survival, class switching and immunoglobulin secretion- BAFF, APRIL, IL-10 and retinoic acid can boost IgA production in the context of viral or bacterial infection. To this end total and naive peripheral blood B cells were stimulated with these factors for 6 days in the presence or absence of TLR7/8 agonist R848 (mimicking viral infection) or TLR9 agonist CpG-ODN (mimicking bacterial infection). We show that BAFF significantly augments IgA2 production in TLR7/8 stimulated mature, but not naïve B cells. In addition, BAFF augments IL-10 production and viability in TLR7/8 and TLR9 stimulated mature B cells. These data warrant further investigation of its role in immune regulation both in the periphery and mucosal tissues in early life or during disease.


Asunto(s)
Factor Activador de Células B/metabolismo , Linfocitos B/fisiología , Células Sanguíneas/inmunología , Hipersensibilidad/inmunología , Infecciones/inmunología , Membrana Mucosa/inmunología , Linfocitos T/inmunología , Animales , Factor Activador de Células B/genética , Células Cultivadas , Humanos , Imidazoles/farmacología , Inmunoglobulina A/metabolismo , Cambio de Clase de Inmunoglobulina , Interleucina-10/metabolismo , Activación de Linfocitos , Ratones , Oligodesoxirribonucleótidos/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
4.
Glycobiology ; 28(3): 126-130, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281012

RESUMEN

The human milk oligosaccharide 3'-sialyllactose (3'SL) has previously been shown to activate murine dendritic cells (DC) in a Toll-like receptor (TLR) 4-mediated manner ex vivo. In this study we aimed to investigate whether 3'SL has similar immunomodulatory properties on human DC. 3'SL was shown to induce NF-κB activation via human TLR4. However, LPS was detected in the commercially obtained 3'SL from different suppliers. After the removal of LPS from 3'SL, we studied its ability to modify DC differentiation in vitro. In contrast to LPS and 3'SL, LPS-free 3'SL did not induce functional and phenotypical changes on immature DC (iDC). iDC that were differentiated in the presence of LPS or 3'SL showed a semi-mature phenotype (i.e., fewer CD83+CD86+ DC), produced IL-10 and abrogated IL-12p70 and tumor necrosis factor-alpha levels upon stimulation with several TLR ligands. Differentiation into these tolerogenic DC was completely abrogated by LPS removal from 3'SL. In contrast to previous reports in mice, we found that LPS-free 3'SL does not activate NF-κB via human TLR4. In conclusion, removing LPS from (oligo)saccharide preparations is necessary to study their potential immunomodulatory function.


Asunto(s)
Células Dendríticas/inmunología , Tolerancia Inmunológica/inmunología , Lipopolisacáridos/análisis , Lipopolisacáridos/inmunología , Oligosacáridos/inmunología , Receptor Toll-Like 4/metabolismo , Animales , Células Dendríticas/efectos de los fármacos , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Leche Humana/química , FN-kappa B/metabolismo , Oligosacáridos/farmacología , Receptor Toll-Like 4/inmunología
5.
J Immunol ; 192(1): 484-91, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24277695

RESUMEN

CXCL8 is a potent neutrophil recruiting chemokine. CXCL8 is produced by several innate immune cells, including neutrophils, macrophages, as well as epithelial cells. Although previously considered only to be produced as a result of TLR signaling in these cells, recent reports show that T cell-derived cytokines also induce CXCL8 in epithelial cells. Likewise, we observed that T cell inhibition diminished intestinal production of functional mouse homologs of CXCL8 in the early phase of enterocolitis. In this study, we specifically investigated whether adaptive cells contribute to innate cxcl8 expression in the intestines. To this end, we used the zebrafish as our model system. Unlike murine models that lack CXCL8, zebrafish have two CXCL8 chemokines that are both elevated after an acute inflammatory stimulus and recruit neutrophils. Furthermore, zebrafish develop innate and adaptive immunity sequentially, enabling analysis of intestinal cxcl8 expression in the absence (<3 wk of age) and presence (>3 wk of age) of adaptive immunity. In this study, we show that intestinal cxcl8-l1 but not cxcl8-l2 expression is regulated by T lymphocytes under homeostatic conditions. In contrast, during intestinal inflammation especially, cxcl8-l1 expression is upregulated independent of T lymphocyte presence. Furthermore, we show that human CXCL8 is able to induce intestinal zebrafish neutrophil recruitment and cxcl8-l1 expression, demonstrating that zebrafish can be used as a model to study CXCL8 function and regulation. In conclusion, these data provide evidence that Cxcl8-l1 and Cxcl8-l2 are differentially regulated via T lymphocyte-dependent and -independent mechanisms during homeostasis and inflammation.


Asunto(s)
Regulación de la Expresión Génica , Interleucina-8/genética , Mucosa Intestinal/metabolismo , Linfocitos T/metabolismo , Pez Cebra/genética , Inmunidad Adaptativa/genética , Traslado Adoptivo , Animales , Animales Modificados Genéticamente , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Homeostasis , Humanos , Inmunidad Innata/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacología , Intestinos/inmunología , Linfocitos T/inmunología , Pez Cebra/inmunología
6.
Immun Inflamm Dis ; 12(2): e1144, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38363052

RESUMEN

Interleukin-22 (IL-22) is an important cytokine in the intestinal environment. IL-22 is mainly produced by immune cells and targeted at nonimmune cells such as epithelial and stromal cells in a broad array of tissues such as -but not restricted to- the liver and adipose tissue. IL-22 therefore connects immune functions with metabolic functions of the host, and since it is induced by the microbiota, connects host functioning to the outside environment. IL-22 induces epithelial cell proliferation aiding in rapid epithelium regeneration and wound healing. Additionally, IL-22 activates antiapoptotic genes and DNA damage response pathways, enhancing epithelial cell survival. Recently, it has also been shown that IL-22 induces Paneth cell differentiation in humans. However, IL-22 can also contribute to intestinal epithelium damage and reduces microbial diversity in the intestine directly or indirectly by inducing excessive antimicrobial peptide production by epithelial cells. Moreover, IL-22 enhances angiogenesis and may therefore support tumorigenesis in the intestine. In conclusion, it appears that whether IL-22 has a beneficial or harmful effect in the mammalian intestine largely depends on its regulation. This review aims to provide a comprehensive overview of the current literature and emphasizes that IL-22 signaling outcome depends on the timing and duration of IL-22 production, the presence of it regulators such as IL-22BP, and the specific location of the cytokine production in the gastrointestinal tract.


Asunto(s)
Interleucina-22 , Intestinos , Animales , Humanos , Homeostasis , Interleucina-22/metabolismo , Mucosa Intestinal
7.
Front Cell Infect Microbiol ; 14: 1356628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38456079

RESUMEN

Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.


Asunto(s)
Meningitis , Streptococcus suis , Animales , Humanos , Porcinos , Plasminógeno/metabolismo , Barrera Hematoencefálica , Streptococcus suis/genética , Streptococcus suis/metabolismo , Traslocación Bacteriana , Fibrinolisina/metabolismo , Sitios de Unión , Fosfopiruvato Hidratasa/química
8.
Front Immunol ; 14: 1183701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275890

RESUMEN

Alginate oligosaccharides (AOS) are natural bioactive compounds with anti-inflammatory properties. We performed a feeding trial employing a zebrafish (Danio rerio) model of soybean-induced intestinal inflammation. Five groups of fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a soybean meal+ß-glucan (BG) diet and 2 soybean meal+AOS diets (alginate products differing in the content of low molecular weight fractions - AL, with 31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic and plasma metabolomic profiles of the study groups. In addition, we assessed the expression of inflammatory marker genes and histological alterations in the intestine. Dietary algal ß-(1, 3)-glucan and AOS were able to bring the expression of certain inflammatory genes altered by dietary SBM to a level similar to that in the control group. Intestinal transcriptomic analysis indicated that dietary SBM changed the expression of genes linked to inflammation, endoplasmic reticulum, reproduction and cell motility. The AL diet suppressed the expression of genes related to complement activation, inflammatory and humoral response, which can likely have an inflammation alleviation effect. On the other hand, the AH diet reduced the expression of genes, causing an enrichment of negative regulation of immune system process. The BG diet suppressed several immune genes linked to the endopeptidase activity and proteolysis. The plasma metabolomic profile further revealed that dietary SBM can alter inflammation-linked metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched the arginine biosynthesis pathway. The diet AL helped in elevating one of the short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased the abundance of a vitamin, pantothenic acid. Histological evaluation revealed the advantage of the AL diet: it increased the goblet cell number and length of villi of the intestinal mucosa. Overall, our results indicate that dietary AOS with an appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.


Asunto(s)
Pez Cebra , beta-Glucanos , Animales , Pez Cebra/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/metabolismo , Intestinos , Inflamación , Glycine max , Oligosacáridos/farmacología , Oligosacáridos/metabolismo
9.
Anim Microbiome ; 5(1): 15, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869372

RESUMEN

BACKGROUND: Prebiotic feed additives aim to improve gut health by influencing the microbiota and the gut barrier. Most studies on feed additives concentrate on one or two (monodisciplinary) outcome parameters, such as immunity, growth, microbiota or intestinal architecture. A combinatorial and comprehensive approach to disclose the complex and multifaceted effects of feed additives is needed to understand their underlying mechanisms before making health benefit claims. Here, we used juvenile zebrafish as a model species to study effects of feed additives by integrating gut microbiota composition data and host gut transcriptomics with high-throughput quantitative histological analysis. Zebrafish received either control, sodium butyrate or saponin-supplemented feed. Butyrate-derived components such as butyric acid or sodium butyrate have been widely used in animal feeds due to their immunostimulant properties, thereby supporting intestinal health. Soy saponin is an antinutritional factor from soybean meal that promotes inflammation due to its amphipathic nature. RESULTS: We observed distinct microbial profiles associated with each diet, discovering that butyrate (and saponin to a lesser extent) affected gut microbial composition by reducing the degree of community-structure (co-occurrence network analysis) compared to controls. Analogously, butyrate and saponin supplementation impacted the transcription of numerous canonical pathways compared to control-fed fish. For example, both butyrate and saponin increased the expression of genes associated with immune response and inflammatory response, as well as oxidoreductase activity, compared to controls. Furthermore, butyrate decreased the expression of genes associated with histone modification, mitotic processes and G-coupled receptor activity. High-throughput quantitative histological analysis depicted an increase of eosinophils and rodlet cells in the gut tissue of fish receiving butyrate after one week of feeding and a depletion of mucus-producing cells after 3 weeks of feeding this diet. Combination of all datasets indicated that in juvenile zebrafish, butyrate supplementation increases the immune and the inflammatory response to a greater extent than the established inflammation-inducing anti-nutritional factor saponin. Such comprehensive analysis was supplemented by in vivo imaging of neutrophil and macrophage transgenic reporter zebrafish (mpeg1:mCherry/mpx:eGFPi114) larvae. Upon exposure to butyrate and saponin, these larvae displayed a dose-dependent increase of neutrophils and macrophages in the gut area. CONCLUSION: The omics and imaging combinatorial approach provided an integrated evaluation of the effect of butyrate on fish gut health and unraveled inflammatory-like features not previously reported that question the usage of butyrate supplementation to enhance fish gut health under basal conditions. The zebrafish model, due to its unique advantages, provides researchers with an invaluable tool to investigate effects of feed components on fish gut health throughout life.

10.
ACS Appl Mater Interfaces ; 14(33): 37316-37329, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969154

RESUMEN

Biosensing using liquid crystals has a tremendous potential by coupling the high degree of sensitivity of their alignment to their surroundings with clear optical feedback. Many existing set-ups use birefringence of nematic liquid crystals, which severely limits straightforward and frugal implementation into a sensing platform due to the sophisticated optical set-ups required. In this work, we instead utilize chiral nematic liquid crystal microdroplets, which show strongly reflected structural color, as sensing platforms for surface active agents. We systematically quantify the optical response of closely related biological amphiphiles and find unique optical signatures for each species. We detect signatures across a wide range of concentrations (from micromolar to millimolar), with fast response times (from seconds to minutes). The striking optical response is a function of the adsorption of surfactants in a nonhomogeneous manner and the topology of the chiral nematic liquid crystal orientation at the interface requiring a scattering, multidomain structure. We show that the surface interactions, in particular, the surface packing density, to be a function of both headgroup and tail and thus unique to each surfactant species. We show lab-on-a-chip capability of our method by drying droplets in high-density two-dimensional arrays and simply hydrating the chip to detect dissolved analytes. Finally, we show proof-of-principle in vivo biosensing in the healthy as well as inflamed intestinal tracts of live zebrafish larvae, demonstrating CLC droplets show a clear optical response specifically when exposed to the gut environment rich in amphiphiles. Our unique approach shows clear potential in developing on-site detection platforms and detecting biological amphiphiles in living organisms.


Asunto(s)
Cristales Líquidos , Adsorción , Animales , Cristales Líquidos/química , Tensoactivos/química , Pez Cebra
11.
Front Immunol ; 13: 1018768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389790

RESUMEN

Soybean meal evokes diet-induced intestinal inflammation in certain fishes. Although the molecular aspects of soybean-induced intestinal inflammation in zebrafish are known, the impact of the inflammatory diet on fish behavior remain largely underexplored. We fed zebrafish larvae with three diets - control, soybean meal and soybean meal with ß-glucan to gain deeper insight into the behavioral changes associated with the soybean meal-induced inflammation model. We assessed the effect of the diets on the locomotor behavior, morphological development, oxygen consumption and larval transcriptome. Our study revealed that dietary soybean meal can reduce the locomotor activity, induce developmental defects and increase the oxygen demand in zebrafish larvae. Transcriptomic analysis pointed to the suppression of genes linked to visual perception, organ development, phototransduction pathway and activation of genes linked to the steroid biosynthesis pathway. On the contrary, ß-glucan, an anti-inflammatory feed additive, counteracted the behavioral and phenotypic changes linked to dietary soybean. Although we did not identify any differentially expressed genes from the soybean meal alone fed group vs soybean meal + ß-glucan-fed group comparison, the unique genes from the comparisons of the two groups with the control likely indicate reduction in inflammatory cytokine signaling, inhibition of proteolysis and induction of epigenetic modifications by the dietary glucan. Furthermore, we found that feeding an inflammatory diet at the larval stage can lead to long-lasting developmental defects. In conclusion, our study reveals the extra-intestinal manifestations associated with soybean meal-induced inflammation model.


Asunto(s)
Pez Cebra , beta-Glucanos , Animales , Alimentación Animal/análisis , Dieta/efectos adversos , Inflamación/genética , Glycine max , Larva
12.
Front Microbiol ; 12: 729053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603258

RESUMEN

Our world is filled with microbes. Each multicellular organism has developed ways to interact with this microbial environment. Microbes do not always pose a threat; they can contribute to many processes that benefit the host. Upon colonization both host and microbes adapt resulting in dynamic ecosystems in different host niches. Regulatory processes develop within the host to prevent overt inflammation to beneficial microbes, yet keeping the possibility to respond when pathogens attempt to adhere and invade tissues. This review will focus on microbial colonization and the early (innate) host immune response, with special emphasis on the microbiota-modifying roles of IL-10 and IL-22 in the intestine. IL-10 knock out mice show an altered microbial composition, and spontaneously develop enterocolitis over time. IL-22 knock out mice, although not developing enterocolitis spontaneously, also have an altered microbial composition and increase of epithelial-adherent bacteria, mainly caused by a decrease in mucin and anti-microbial peptide production. Recently interesting links have been found between the IL-10 and IL-22 pathways. While IL-22 can function as a regulatory cytokine at the mucosal surface, it also has inflammatory roles depending on the context. For example, lack of IL-22 in the IL-10-/- mice model prevents spontaneous colitis development. Additionally, the reduced microbial diversity observed in IL-10-/- mice was also reversed in IL-10/IL-22 double mutant mice (Gunasekera et al., 2020). Since in early life, host immunity develops in parallel and in interaction with colonizing microbes, there is a need for future studies that focus on the effect of the timing of colonization in relation to the developmental phase of the host. To illustrate this, examples from zebrafish research will be compared with studies performed in mammals. Since zebrafish develop from eggs and are directly exposed to the outside microbial world, timing of the development of host immunity and subsequent control of microbial composition, is different from mammals that develop in utero and only get exposed after birth. Likewise, colonization studies using adult germfree mice might yield different results from those using neonatal germfree mice. Lastly, special emphasis will be given to the need for host genotype and environmental (co-housing) control of experiments.

13.
Gastroenterology ; 137(5): 1757-67.e1, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19698716

RESUMEN

BACKGROUND & AIMS: The pathogenesis of inflammatory bowel disease involves dysfunctional mucosal immune responses to commensal bacteria in genetically predisposed hosts. Interactions between host cells and bacteria are complicated, making it a challenge to assess their relative contribution to intestinal pathology. We developed a zebrafish model of enterocolitis to study these interactions. METHODS: Enterocolitis was induced by intrarectal administration of the hapten oxazolone in adult wild-type and myeloperoxidase-reporter transgenic zebrafish in the presence or absence of antibiotics. Intestinal inflammation was evaluated by histological and flow cytometry analyses and cytokine profiling with quantitative real-time polymerase chain reaction. Changes in the composition of the intestinal microbiota following antibiotic administration were assessed by 16SrRNA sequencing and bacterial load was quantified by culture on nonselective media (colony-forming units). RESULTS: In zebrafish, the infiltrate and severity of oxazolone-induced enterocolitis are influenced by the composition of the microbiota. Inflammation is characterized by granulocyte influx; epithelial damage; goblet cell depletion; and increased expression of interleukin-1beta, tumor necrosis factor-alpha, and interleukin-10. Zebrafish given vancomycin had bacterial populations dominated by Fusobacteria and reduced enterocolitis scores, intestinal damage, and percentages of infiltrating neutrophils and eosinophils. In contrast, zebrafish given colistin sulphate had a predominance of proteobacteria and reduced eosinophil and lymphocyte infiltration, but enterocolitis scores were not reduced. CONCLUSIONS: In zebrafish with oxazolone-induced enterocolitis, components of the intestinal microbiota affect the severity and composition of the intestinal infiltrate.


Asunto(s)
Adyuvantes Inmunológicos , Enterocolitis/microbiología , Enterocolitis/patología , Intestinos/microbiología , Oxazolona , Adyuvantes Inmunológicos/farmacología , Animales , Antibacterianos/uso terapéutico , Colistina/uso terapéutico , Modelos Animales de Enfermedad , Enterocolitis/tratamiento farmacológico , Intestinos/efectos de los fármacos , Intestinos/patología , Oxazolona/farmacología , Vancomicina/uso terapéutico , Pez Cebra
14.
Front Nutr ; 7: 67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671088

RESUMEN

Fucoidan represents fucose-rich sulfated polysaccharides derived from brown seaweeds, which exerts various biological activities applicable for functional foods and therapeutic agents. The objective of the present study was to investigate in vivo effects of fucoidan extracted from Okinawa mozuku (Cladosiphon okamuranus), common edible seaweed in Japan, on immune responses and microbiota composition in zebrafish. We treated larvae and adult zebrafish with Okinawa mozuku (OM) fucoidan by immersion (100 and 500 µg/mL, 3 days) and by feeding (3 weeks), respectively. The effect of OM fucoidan on immune responses in zebrafish larvae was evaluated by live imaging of neutrophils and macrophages as well as quantitative polymerase chain reaction of pro- and anti-inflammatory cytokine genes. Whole microbiota of zebrafish larvae and intestinal microbiota of adult zebrafish treated with OM fucoidan were analyzed by Illumina MiSeq pair-end sequencing of the V3-V4 region of 16S rRNA genes. Fucoidan treatment only slightly affected the composition of the larvae microbiota and the number of neutrophils and macrophages, while pro- and anti-inflammatory cytokine gene expression levels were upregulated in the larvae treated with 500 µg/mL OM fucoidan. In contrast, feeding of OM fucoidan clearly altered the intestinal microbiota composition of adult zebrafish, which was characterized by the emergence and predominance of multiple bacterial operational taxonomic units (OTUs) affiliated with Rhizobiaceae and Comamonadaceae at the expense of E. coli-related Enterobacteriaceae, the dominant OTUs throughout the studied samples. These changes were accompanied by decreased expression levels of pro-inflammatory cytokine il1b in the intestines of the adult zebrafish. Our current study provides the first insights into in vivo modulatory effects of fucoidan on microbiota and immune responses of unchallenged zebrafish, which underscores the potential of fucoidan to play a modulatory role in the diet-microbiota-host interplay.

15.
Front Immunol ; 11: 114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117265

RESUMEN

Aquafeed companies aim to provide solutions to the various challenges related to nutrition and health in aquaculture. Solutions to promote feed efficiency and growth, as well as improving the fish health or protect the fish gut from inflammation may include dietary additives such as prebiotics and probiotics. The general assumption is that feed additives can alter the fish microbiota which, in turn, interacts with the host immune system. However, the exact mechanisms by which feed influences host-microbe-immune interactions in fish still remain largely unexplored. Zebrafish rapidly have become a well-recognized animal model to study host-microbe-immune interactions because of the diverse set of research tools available for these small cyprinids. Genome editing technologies can create specific gene-deficient zebrafish that may contribute to our understanding of immune functions. Zebrafish larvae are optically transparent, which allows for in vivo imaging of specific (immune) cell populations in whole transgenic organisms. Germ-free individuals can be reared to study host-microbe interactions. Altogether, these unique zebrafish features may help shed light on the mechanisms by which feed influences host-microbe-immune interactions and ultimately fish health. In this review, we first describe the anatomy and function of the zebrafish gut: the main surface where feed influences host-microbe-immune interactions. Then, we further describe what is currently known about the molecular pathways that underlie this interaction in the zebrafish gut. Finally, we summarize and critically review most of the recent research on prebiotics and probiotics in relation to alterations of zebrafish microbiota and immune responses. We discuss the advantages and disadvantages of the zebrafish as an animal model for other fish species to study feed effects on host-microbe-immune interactions.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Pez Cebra/inmunología , Alimentación Animal , Animales , Dieta , Humanos , Inmunidad , Intestinos/inmunología , Intestinos/microbiología , Interacciones Microbianas , Microbiota , Modelos Animales , Prebióticos , Probióticos
16.
Virology ; 548: 200-212, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32763491

RESUMEN

The intestinal microbiota is crucial to intestinal homeostasis. Porcine epidemic diarrhea virus (PEDV) is high pathogenic to intestines, causing diarrhea, even death in piglets. To investigate the detailed relationship between PEDV infection and intestinal microbiota, the composition and distribution of intestinal microbiota from pigs were first analyzed using 16S rRNA sequencing technology. The results demonstrated that the composition and distribution of microbes in different intestinal segments were quite similar between 1-week-old and 2-week-old piglets but different from 4-week-old (weaned) piglets. Then piglets at different ages were inoculated with PEDV. The results showed that the 1-week-old piglets exhibited the most severe pathogenicity comparing to the other age groups. Further investigations indicated that Lactobacillus, Escherichia coli, and Lactococcus in the intestinal microbiota of piglets were significantly changed by PEDV infection. These results strengthen our understanding of viruses influencing intestinal microbes and remind us of the potential association between PEDV and intestinal microbes.


Asunto(s)
Infecciones por Coronavirus/virología , Microbioma Gastrointestinal , Virus de la Diarrea Epidémica Porcina/fisiología , Enfermedades de los Porcinos/virología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones por Coronavirus/microbiología , Heces/microbiología , Intestinos/microbiología , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Enfermedades de los Porcinos/microbiología
17.
Front Immunol ; 11: 1701, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849597

RESUMEN

Respiratory syncytial virus (RSV) infections represent a major burden of disease in infants and are the second most prevalent cause of death worldwide. Human milk immunoglobulins provide protection against RSV. However, many infants depend on processed bovine milk-based nutrition, which lacks intact immunoglobulins. We investigated the potential of bovine antibodies to neutralize human RSV and facilitate-cell immune activation. We show cow's milk IgG (bIgG) and Intravenous Immunoglobulin (IVIG) have a similar RSV neutralization capacity, even though bIgG has a lower pre-F to post-F binding ratio compared to human IVIG, with the majority of bIgG binding to pre-F. RSV is better neutralized with human IVIG. Consequently, we enriched RSV specific T cells by culturing human PBMC with a mixture of RSV peptides, and used these T cells to study the effect of bIgG and IVIG on the activation of pre-F-pecific T cells. bIgG facilitated in vitro T cell activation in a similar manner as IVIG. Moreover, bIgG was able to mediate T cell activation and internalization of pathogens, which are prerequisites for inducing an adaptive viral response. Using in vivo mouse experiments, we showed that bIgG is able to bind the murine activating IgG Fc Receptors (FcγR), but not the inhibiting FcγRII. Intranasal administration of the monoclonal antibody palivizumab, but also of bIgG and IVIG prevented RSV infection in mice. The concentration of bIgG needed to prevent infection was ~5-fold higher compared to IVIG. In conclusion, the data presented here indicate that functionally active bIgG facilitates adaptive antiviral T cell responses and prevents RSV infection in vitro and in vivo.


Asunto(s)
Antivirales/farmacología , Inmunoglobulina G/farmacología , Activación de Linfocitos/efectos de los fármacos , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Antivirales/aislamiento & purificación , Bovinos , Línea Celular , Calostro/inmunología , Modelos Animales de Enfermedad , Epítopos , Femenino , Interacciones Huésped-Patógeno , Humanos , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulinas Intravenosas/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Embarazo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/patogenicidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología
19.
ALTEX ; 36(2): 245-260, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30535508

RESUMEN

The present study evaluates the applicability of the zebrafish embryotoxicity test (ZET) to assess prenatal developmental toxicity (PDT) potency of the DMSO-extracts of 9 petroleum substances (PS), with variable polycyclic aromatic hydrocarbon (PAH) content, and 2 gas-to-liquid (GTL) products, without any PAHs but otherwise similar properties to PS. The results showed that all PS extracts induced concentration-dependent in vitro PDT, as quantified in the ZET and that this potency is associated with their 3-5 ring PAH content. In contrast and as expected, GTL products did not induce any effect at all. The potencies obtained in the ZET correlated with those previously reported for the embryonic stem cell test (EST) (R2=0.61), while the correlation with potencies reported in in vivo studies were higher for the EST (R2=0.85) than the ZET (R2=0.69). Combining the results of the ZET with those previously reported for the EST (Kamelia et al., 2017), the aryl hydrocarbon (AhR) CALUX assay (Kamelia et al., 2018), and the PAH content, ranked and clustered the test compounds in line with their in vivo potencies and chemical characteristics. To conclude, our findings indicate that the ZET does not outperform the EST as a stand-alone assay for testing PDT of PS, but confirms the hypothesis that PAHs are the major inducers of PDT by some PS, while they also indicate that the ZET is a useful addition to a battery of in vitro tests able to predict the in vivo PDT of PS.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Pruebas de Toxicidad/métodos , Pez Cebra/embriología , Alternativas a las Pruebas en Animales , Animales , Bioensayo , Células Madre Embrionarias/efectos de los fármacos , Femenino , Petróleo , Embarazo
20.
PLoS One ; 14(12): e0225825, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31830086

RESUMEN

Ageing is associated with a changing immune system, leading to inflammageing (increased levels of inflammation markers in serum) and immunosenescence (reduced immune cells and reduced responses towards pathogens). This results in reduced vaccination responses and increased infections in elderly. Much is known about the adaptive immune system upon ageing, but less is known about the innate immune system. Therefore, the aim of this study was to compare innate immune function of Toll like receptor (TLR)-mediated responses between elderly and young adult women. To this end, elderly and young adult women were compared to study the effect of ageing on the relative prevalence and reactivity to TLR-mediated responses of myeloid- and plasmacytoid dendritic cells (mDC, pDC). In addition, TLR expression and inflammatory markers in serum were investigated. Elderly women had reduced numbers of circulating pDCs. In addition, pDCs and mDCs of elderly women responded differently towards TLR stimulation, especially TLR7/8 mediated stimulation was reduced, compared to young adults. In serum, markers involved in inflammation were generally increased in elderly. In conclusion, this study confirms and extends the knowledge about immunosenescence and inflammageing on innate immunity in elderly women.


Asunto(s)
Envejecimiento/metabolismo , Células Dendríticas/metabolismo , Células Mieloides/metabolismo , Anciano , Anciano de 80 o más Años , Citocinas/sangre , Femenino , Humanos , Mediadores de Inflamación/sangre , Molécula 1 de Adhesión Intercelular/sangre , Espacio Intracelular/metabolismo , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Molécula 1 de Adhesión Celular Vascular/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA