Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nano Lett ; 12(9): 4437-43, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22889199

RESUMEN

We report on the conditions necessary for the electrical injection of spin-polarized electrons into indium nitride nanowires synthesized from the bottom up by molecular beam epitaxy. The presented results mark the first unequivocal evidence of spin injection into III-V semiconductor nanowires. Utilizing a newly developed preparation scheme, we are able to surmount shadowing effects during the metal deposition. Thus, we avoid strong local anisotropies that arise if the ferromagnetic leads are wrapping around the nanowire. Using a combination of various complementary techniques, inter alia the local Hall effect, we carried out a comprehensive investigation of the coercive fields and switching behaviors of the cobalt micromagnetic spin probes. This enables the identification of a range of aspect ratios in which the mechanism of magnetization reversal is single domain switching. Lateral nanowire spin valves were prepared. The spin relaxation length is demonstrated to be about 200 nm, which provides an incentive to pursue the route toward nanowire spin logic devices.


Asunto(s)
Cristalización/métodos , Galvanoplastia/métodos , Indio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Semiconductores , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
2.
Nanotechnology ; 23(8): 085702, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22293460

RESUMEN

We present a Raman scattering study of the anharmonic phonon decay of the [Formula: see text], [Formula: see text] and E1(LO) phonons in InN nanowires over the 80-400 K temperature range. While the temperature-dependent anharmonic decay in the nanowires is similar to that found for bulk InN, the background contribution to the phonon lifetime is strongly reduced as a result of the improved crystalline quality. High-resolution measurements reveal a remarkably long lifetime of the [Formula: see text] mode. From the comparison between the [Formula: see text] frequencies measured in the nanowires with those of the thin film we obtain the deformation potentials for the [Formula: see text] mode.

3.
Nanotechnology ; 23(46): 465301, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23092897

RESUMEN

Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased µ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect.

4.
Nanotechnology ; 22(9): 095603, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21270490

RESUMEN

GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.


Asunto(s)
Cristalización/métodos , Galio/química , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Catálisis , Simulación por Computador , Gases/química , Calor , Ensayo de Materiales , Óxidos/química , Tamaño de la Partícula , Propiedades de Superficie
5.
Nanotechnology ; 22(12): 125704, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21317500

RESUMEN

High quality, well-separated, homogeneous sizes and high aspect ratio Si-doped InN nanowires (NWs) were grown by catalyst-free molecular beam epitaxy (MBE) after optimization of the growth conditions. To this end, statistical analysis of NW density and size distribution was performed. The high crystal quality and smooth NW surfaces were observed by high resolution transmission electron microscopy. Spectral photoluminescence has shown the increase of the band filling effect with Si flux, indicating successful n-type doping. A Raman LO scattering mode appears with a pronounced low energy tail, also reported for highly doped InN films.

6.
Nanotechnology ; 21(31): 315702, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20634570

RESUMEN

In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

7.
Sci Rep ; 10(1): 12962, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737341

RESUMEN

In this study we report on the investigation of epitaxially grown Sb2Te3 by employing Fourier-Transform transmission Spectroscopy (FTS) with laser-induced Coherent Synchrotron Radiation (CSR) in the Terahertz (THz) spectral range. Static spectra in the range between 20 and 120 cm-1 highlight a peculiar softening of an in-plane IR-active phonon mode upon temperature decrease, as opposed to all Raman active modes which instead show a hardening upon temperature decrease in the same energy range. The phonon mode softening is found to be accompanied by an increase of free carrier concentration. A strong coupling of the two systems (free carriers and phonons) is observed and further evidenced by exciting the same phonon mode at 62 cm-1 within an ultrafast pump-probe scheme employing a femtosecond laser as pump and a CSR single cycle THz pulse as probe. Separation of the free carrier contribution and the phonon resonance in the investigated THz range reveals that, both damping of the phonon mode and relaxation of hot carriers in the time domain happen on the same time scale of 5 ps. This relaxation is about a factor of 10 slower than expected from the Lorentz time-bandwidth limit. The results are discussed in the framework of phonon scattering at thermal and laser induced transient free carriers.

8.
Nanotechnology ; 20(40): 405206, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19738304

RESUMEN

Electrical transport properties of undoped and n-type doped InN nanowires grown by molecular beam epitaxy were studied by current-voltage and back-gate field-effect transistor measurements. The current-voltage characteristics show ohmic behavior in the temperature range between 4 and 300 K. Down to about 120 K a linear decrease in resistance with temperature is observed. The investigation of a large number of nanowires revealed for undoped as well as doped wires an approximately linear relation between the normalized conductance and diameter for wires with a diameter below 100 nm. This shows that the main conduction takes place in the tubular surface accumulation layer of the wires. In contrast, for doped wires with a diameter larger than 100 nm a quadratic dependence of conduction on the diameter was found, which is attributed to bulk conductance as the main contribution. The successful doping of the wires is confirmed by an enhanced conduction and by the results of the back-gate field-effect transistor measurements.


Asunto(s)
Conductividad Eléctrica , Nanotecnología/métodos , Nanocables/química , Temperatura
9.
Sci Rep ; 9(1): 9047, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227738

RESUMEN

We study the isolated contribution of hole localization for well-known charge carrier recombination properties observed in conventional, polar InGaN quantum wells (QWs). This involves the interplay of charge carrier localization and non-radiative transitions, a non-exponential decay of the emission and a specific temperature dependence of the emission, denoted as "s-shape". We investigate two dimensional In0.25Ga0.75N QWs of single monolayer (ML) thickness, stacked in a superlattice with GaN barriers of 6, 12, 25 and 50 MLs. Our results are based on scanning and high-resolution transmission electron microscopy (STEM and HR-TEM), continuous-wave (CW) and time-resolved photoluminescence (TRPL) measurements as well as density functional theory (DFT) calculations. We show that the recombination processes in our structures are not affected by polarization fields and electron localization. Nevertheless, we observe all the aforementioned recombination properties typically found in standard polar InGaN quantum wells. Via decreasing the GaN barrier width to 6 MLs and below, the localization of holes in our QWs is strongly reduced. This enhances the influence of non-radiative recombination, resulting in a decreased lifetime of the emission, a weaker spectral dependence of the decay time and a reduced s-shape of the emission peak. These findings suggest that single exponential decay observed in non-polar QWs might be related to an increasing influence of non-radiative transitions.

10.
Sci Rep ; 7(1): 2616, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572581

RESUMEN

GeSbTe-based materials exhibit multiple crystalline phases, from disordered rocksalt, to rocksalt with ordered vacancy layers, and to the stable trigonal phase. In this paper we investigate the role of the interfaces on the structural and electrical properties of Ge2Sb2Te5. We find that the site of nucleation of the metastable rocksalt phase is crucial in determining the evolution towards vacancy ordering and the stable phase. By properly choosing the substrate and the capping layers, nucleation sites engineering can be obtained, thus promoting or preventing the vacancy ordering in the rocksalt structure or the conversion into the trigonal phase. The vacancy ordering occurs at lower annealing temperatures (170 °C) for films deposited in the amorphous phase on silicon (111), compared to the case of SiO2 substrate (200 °C), or in presence of a capping layer (330 °C). The mechanisms governing the nucleation have been explained in terms of interfacial energies. Resistance variations of about one order of magnitude have been measured upon transition from the disordered to the ordered rocksalt structure and then to the trigonal phase. The possibility to control the formation of the crystalline phases characterized by marked resistivity contrast is of fundamental relevance for the development of multilevel phase change data storage.

11.
J Phys Condens Matter ; 18(26): 5825-34, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690799

RESUMEN

GaN nanocolumnar structures were grown by plasma-assisted molecular beam epitaxy (PAMBE) and also fabricated by electron cyclotron resonance reactive ion etching (ECR-RIE) of a compact GaN film parallel to the [111] direction of the Si(111) substrates. Scanning electron microscopy shows that the nanocolumns fabricated by PAMBE have a length of about 300-500 nm with diameters ranging from 20 to 150 nm while nanowhiskers formed by RIE have diameters of 40-80 nm and a height between 1.4 and 1.7 µm. A comparative study of the vibrational spectrum (including optical and interface phonons) of the nanostructures using conventional macro-Raman and micro-Raman scattering as well as surface-enhanced Raman scattering is presented.

12.
Sci Rep ; 6: 28560, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27340085

RESUMEN

A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in the metastable cubic phase in accordance with the Fm3 space group. For the trigonal phase, instead, a partial symmetry break due to Ge/Sb mixed anion layers is observed. By studying the crystallization process upon annealing with both the techniques, we identify temperature regions corresponding to the occurrence of different phases as well as the transition from one phase to the next. Activation energies of 0.43 eV and 0.08 eV for the electron conduction are obtained for both cubic and trigonal phases, respectively. In addition a metal-insulator transition is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase.

13.
J Phys Condens Matter ; 26(9): 095802, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24525714

RESUMEN

Quantum corrections to the conductivity due to the weak antilocalization (WAL) and electron-electron interaction (EEI) effects are investigated in Sb-Te layers to evaluate the number of independent conduction channels in the topological insulator system. We separate the two contributions in the logarithmic temperature dependence of conductivity relying on their distinct response to a magnetic field. For the WAL effect, the amplitude parameter α being -1 observed in magnetoconductivity is confirmed. The magnitude of the EEI contribution is too large to be produced by one transport channel. The mixing between the surface and bulk states is thus indicated to be weak in the Sb-Te system. In addition, the disorder scattering appears to be less influential for the EEI effect than for the WAL effect.

14.
J Phys Condens Matter ; 25(34): 345801, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23883483

RESUMEN

Sb-Te layers having various compositions between Sb2Te3 and Sb2Te are grown using molecular beam epitaxy. The structural and electrical properties of the layers change gradually with composition but exhibit a discontinuity involving a bistability. The holes in the layers are generated by Sb bilayers intercalated between Sb2Te3 quintuple layers and their mobility is governed by the scattering from the parent acceptors. Magnetoresistance for compositions around SbTe is linear, for which the reduction of the parabolic component due to low mobility is crucial. Density functional calculations predict Sb2Te3 and SbTe to be topological insulators (TIs) resembling Bi2Se3 and Bi2Te3, respectively. The prefactor of the weak antilocalization effect is α =- 1 regardless of the composition. The Sb-Te system is thus a family of TIs possessing undisturbed surface states for which the location of the Dirac point with respect to the bulk band gap is adjustable.

15.
Nano Lett ; 8(9): 3056-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18687013

RESUMEN

The influence of n-doping on the electrical transport properties of GaN nanowires is investigated by photoconductivity measurements on wires with different diameters. The electrical transport in nanowires is extremely sensitive to the wire diameter because of the size dependent barrier for surface recombination. This effect is used to determine the doping level of the nanowires and to complete and consolidate our previously developed surface recombination model for GaN nanowires.


Asunto(s)
Galio/química , Nanocables , Electrónica , Microscopía Electrónica de Rastreo , Óptica y Fotónica
16.
ACS Nano ; 2(2): 287-92, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19206629

RESUMEN

GaN nanowires with diameters ranging between 50 and 500 nm were investigated by electrical and photoinduced current techniques to determine the influence of their size on the opto-electronic behavior of nanodevices. The conductivity, photoconductivity, and persistent photoconductivity behavior of GaN nanowires are observed to strongly depend on the wire diameter. In particular, by spectral photoconductivity measurements, three main sub-band-gap optoelectronic transitions were detected, ascribed to the localized states giving rise to the characteristic blue, green, and yellow bands of GaN. Photoconductivity with below-band-gap excitation varies orders of magnitude with the wire diameter, similarly to that observed for near-band-edge excitation. Moreover, yellow-band-related signal shows a superlinear behavior with respect to the band-edge signal, offering new information for the modeling of the carrier recombination mechanism along the nanowires. The photoconductivity results agree well with a model which takes into account a uniform distribution of the localized states inside the wire and their direct recombination with the electrons in the conduction band.


Asunto(s)
Cristalización/métodos , Electroquímica/métodos , Galio/química , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Fotoquímica/métodos , Conductividad Eléctrica , Galio/efectos de la radiación , Luz , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
17.
Nanotechnology ; 19(27): 275708, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-21828720

RESUMEN

We present acoustic charge transport in GaN nanowires (GaN NWs). The GaN NWs were grown by molecular beam epitaxy (MBE) on silicon(111) substrates. The nanowires were removed from the silicon substrate, aligned using surface acoustic waves (SAWs) on the piezoelectric substrate LiNbO(3) and finally contacted by electron beam lithography. Then, a SAW was used to create an acoustoelectric current in the GaN NWs which was detected as a function of radio-frequency (RF) wave frequency and its power. The presented method and our experimental findings open up a route towards new acoustic charge transport nanostructure devices in a wide bandgap material such as GaN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA