Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Clin Genet ; 105(5): 581-583, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38379111

RESUMEN

A case of mosaic MTOR-associated hemimegalencephaly and hypomelanosis of Ito, died at 33 probably because of sudden unexpected death in epilepsy. Assessment of the variant allele fraction (VAF) in different tissues postmortem showed high variability not correlated with clinical features, representing the most detailed assessment of VAFs in different tissues to date.


Asunto(s)
Hipopigmentación , Humanos , Hipopigmentación/genética , Alelos , Autopsia , Serina-Treonina Quinasas TOR
3.
Clin Genet ; 104(5): 554-563, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580112

RESUMEN

The PIK3CA-related overgrowth spectrum (PROS) encompasses various conditions caused by mosaic activating PIK3CA variants. PIK3CA somatic variants are also involved in various cancer types. Some generalized overgrowth syndromes are associated with an increased risk of Wilms tumor (WT). In PROS, abdominal ultrasound surveillance has been advocated to detect WT. We aimed to determine the risk of embryonic and other types of tumors in patients with PROS in order to evaluate surveillance relevance. We searched the clinical charts from 267 PROS patients for the diagnosis of cancer, and reviewed the medical literature for the risk of cancer. In our cohort, six patients developed a cancer (2.2%), and Kaplan Meier analyses estimated cumulative probabilities of cancer occurrence at 45 years of age was 5.6% (95% CI = 1.35%-21.8%). The presence of the PIK3CA variant was only confirmed in two out of four tumor samples. In the literature and our cohort, six cases of Wilms tumor/nephrogenic rests (0.12%) and four cases of other cancers have been reported out of 483 proven PIK3CA patients, in particular the p.(His1047Leu/Arg) variant. The risk of WT in PROS being lower than 5%, this is insufficient evidence to recommend routine abdominal imaging. Long-term follow-up studies are needed to evaluate the risk of other cancer types, as well as the relationship with the extent of tissue mosaicism and the presence or not of the variant in the tumor samples.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Mutación , Detección Precoz del Cáncer , Trastornos del Crecimiento/diagnóstico , Tumor de Wilms/diagnóstico , Tumor de Wilms/epidemiología , Tumor de Wilms/genética , Fosfatidilinositol 3-Quinasa Clase I/genética
4.
Genet Med ; 23(8): 1484-1491, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833411

RESUMEN

PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex.


Asunto(s)
Hipopigmentación , Megalencefalia , Humanos , Hipopigmentación/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mosaicismo , Fenotipo , Serina-Treonina Quinasas TOR/genética
5.
Clin Genet ; 99(5): 650-661, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33415748

RESUMEN

Megalencephaly-CApillary malformation-Polymicrogyria (MCAP) syndrome results from somatic mosaic gain-of-function variants in PIK3CA. Main features are macrocephaly, somatic overgrowth, cutaneous vascular malformations, connective tissue dysplasia, neurodevelopmental delay, and brain anomalies. The objectives of this study were to describe the clinical and radiological features of MCAP, to suggest relevant clinical endpoints applicable in future trials of targeted drug therapy. Based on a French collaboration, we collected clinical features of 33 patients (21 females, 12 males, median age of 9.9 years) with MCAP carrying mosaic PIK3CA pathogenic variants. MRI images were reviewed for 21 patients. The main clinical features reported were macrocephaly at birth (20/31), postnatal macrocephaly (31/32), body/facial asymmetry (21/33), cutaneous capillary malformations (naevus flammeus 28/33, cutis marmorata 17/33). Intellectual disability was present in 15 patients. Among the MRI images reviewed, the neuroimaging findings were megalencephaly (20/21), thickening of corpus callosum (16/21), Chiari malformation (12/21), ventriculomegaly/hydrocephaly (10/21), cerebral asymmetry (6/21) and polymicrogyria (2/21). This study confirms the main known clinical features that defines MCAP syndrome. Taking into account the phenotypic heterogeneity in MCAP patients, in the context of emerging clinical trials, we suggest that patients should be evaluated based on the main neurocognitive expression on each patient.


Asunto(s)
Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/fisiopatología , Ensayos Clínicos como Asunto , Megalencefalia/diagnóstico por imagen , Megalencefalia/fisiopatología , Neuroimagen , Enfermedades Cutáneas Vasculares/diagnóstico por imagen , Enfermedades Cutáneas Vasculares/fisiopatología , Telangiectasia/congénito , Anomalías Múltiples/tratamiento farmacológico , Adolescente , Adulto , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios de Cohortes , Femenino , Predicción , Humanos , Imagen por Resonancia Magnética , Masculino , Megalencefalia/tratamiento farmacológico , Enfermedades Cutáneas Vasculares/tratamiento farmacológico , Telangiectasia/diagnóstico por imagen , Telangiectasia/tratamiento farmacológico , Telangiectasia/fisiopatología , Adulto Joven
6.
Cell Mol Life Sci ; 77(3): 511-529, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31218450

RESUMEN

The sperm acrosome is a lysosome-related organelle that develops using membrane trafficking from the Golgi apparatus as well as the endolysosomal compartment. How vesicular trafficking is regulated in spermatids to form the acrosome remains to be elucidated. VPS13B, a RAB6-interactor, was recently shown involved in endomembrane trafficking. Here, we report the generation of the first Vps13b-knockout mouse model and show that male mutant mice are infertile due to oligoasthenoteratozoospermia. This phenotype was explained by a failure of Vps13b deficient spermatids to form an acrosome. In wild-type spermatids, immunostaining of Vps13b and Rab6 revealed that they transiently locate to the acrosomal inner membrane. Spermatids lacking Vps13b did not present with the Golgi structure that characterizes wild-type spermatids and showed abnormal targeting of PNA- and Rab6-positive Golgi-derived vesicles to Eea1- and Lamp2-positive structures. Altogether, our results uncover a function of Vps13b in the regulation of the vesicular transport between Golgi apparatus, acrosome, and endolysosome.


Asunto(s)
Acrosoma/metabolismo , Transporte Biológico/fisiología , Aparato de Golgi/metabolismo , Espermatogénesis/fisiología , Proteínas de Transporte Vesicular/metabolismo , Animales , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Transporte de Proteínas/fisiología , Espermátides/metabolismo , Espermatozoides/metabolismo
7.
J Med Genet ; 57(12): 808-819, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32409512

RESUMEN

INTRODUCTION: Pigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko's lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions. MATERIALS AND METHODS: Subsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM. RESULTS: We describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko's lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants. CONCLUSION: This series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Trastornos de la Pigmentación/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/complicaciones , Epilepsia/patología , Femenino , Genes Ligados a X/genética , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Mosaicismo , Patología Molecular/normas , Trastornos de la Pigmentación/complicaciones , Trastornos de la Pigmentación/patología , Secuenciación del Exoma , Adulto Joven
8.
Am J Med Genet C Semin Med Genet ; 184(1): 129-135, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31965688

RESUMEN

PRDM16 (positive regulatory domain 16) is localized in the critical region for cardiomyopathy in patients with deletions of chromosome 1p36, as defined by Gajecka et al., American Journal of Medical Genetics, 2010, 152A, 3074-3083, and encodes a zinc finger transcription factor. We present the first fetal case of left ventricular non-compaction (LVNC) with a PRDM16 variant. The third-trimester obstetric ultrasound revealed a hydropic fetus with hydramnios and expanded hypokinetic heart. After termination of pregnancy, foetopathology showed a eutrophic fetus with isolated cardiomegaly. Endocardial fibroelastosis was associated with non-compaction of the myocardium of the left ventricle. Exome sequencing (ES) identified a de novo unreported p.(Gln353*) heterozygous nonsense variant in PRDM16. ES also identified two rare variants of unknown significance, according to the American College of Medical Genetics and Genomics guidelines, in the titin gene (TTN): a de novo missense p.(Lys14773Asn) variant and a c.33043+5A>G variant inherited from the mother. Along with the PRDM16 de novo probably pathogenic variant, TTN VOUS variants could possibly contribute to the severity and early onset of the cardiac phenotype. Because of the genetic heterogeneity of cardiomyopathies, large panels or even ES could be considered as the main approaches for the molecular diagnosis, particularly in fetal presentations, where multiple hits seem to be common.


Asunto(s)
Cardiomiopatías/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Factores de Transcripción/genética , Adulto , Cardiomiopatías/diagnóstico , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/patología , Femenino , Genes Modificadores/genética , Heterogeneidad Genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/patología , Humanos , Recién Nacido , Presentación en Trabajo de Parto , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Embarazo , Secuenciación del Exoma
9.
Hum Genet ; 139(4): 461-472, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31980905

RESUMEN

SKI pathogenic variations are associated with Shprintzen-Goldberg Syndrome (SGS), a rare systemic connective tissue disorder characterized by craniofacial, skeletal and cardiovascular features. So far, the clinical description, including intellectual disability, has been relatively homogeneous, and the known pathogenic variations were located in two different hotspots of the SKI gene. In the course of diagnosing Marfan syndrome and related disorders, we identified nine sporadic probands (aged 2-47 years) carrying three different likely pathogenic or pathogenic variants in the SKI gene affecting the same amino acid (Thr180). Seven of these molecular events were confirmed de novo. All probands displayed a milder morphological phenotype with a marfanoid habitus that did not initially lead to a clinical diagnosis of SGS. Only three of them had learning disorders, and none had intellectual disability. Six out of nine presented thoracic aortic aneurysm, which led to preventive surgery in the oldest case. This report extends the phenotypic spectrum of variants identified in the SKI gene. We describe a new mutational hotspot associated with a marfanoid syndrome with no intellectual disability. Cardiovascular involvement was confirmed in a significant number of cases, highlighting the importance of accurately diagnosing SGS and ensuring appropriate medical treatment and follow-up.


Asunto(s)
Aracnodactilia , Craneosinostosis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Síndrome de Marfan , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Adolescente , Adulto , Aracnodactilia/diagnóstico , Aracnodactilia/genética , Aracnodactilia/metabolismo , Niño , Preescolar , Craneosinostosis/diagnóstico , Craneosinostosis/genética , Craneosinostosis/metabolismo , Femenino , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Persona de Mediana Edad , Patología Molecular
10.
Clin Genet ; 98(1): 43-55, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32279304

RESUMEN

X-linked intellectual disability (XLID) is a genetically heterogeneous condition involving more than 100 genes. To date, 35 pathogenic variants have been reported in the lysine specific demethylase 5C (KDM5C) gene. KDM5C variants are one of the major causes of moderate to severe XLID. Affected males present with short stature, distinctive facial features, behavioral disorders, epilepsy, and spasticity. For most of these variants, related female carriers have been reported, but phenotypic descriptions were poor. Here, we present clinical and molecular features of 19 females carrying 10 novel heterozygous variants affecting KDM5C function, including five probands with de novo variants. Four heterozygous females were asymptomatic. All affected individuals presented with learning disabilities or ID (mostly moderate), and four also had a language impairment mainly affecting expression. Behavioral disturbances were frequent, and endocrine disorders were more frequent in females. In conclusion, our findings provide evidence of the role of KDM5C in ID in females highlighting the increasing implication of XLID genes in females, even in sporadic affected individuals. Disease expression of XLID in females should be taken into consideration for genetic counseling.


Asunto(s)
Epilepsia/genética , Genes Ligados a X/genética , Variación Genética/genética , Histona Demetilasas/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Adulto , Preescolar , Femenino , Heterocigoto , Humanos , Masculino , Fenotipo , Adulto Joven
11.
Hum Mol Genet ; 26(23): 4680-4688, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973148

RESUMEN

The main identified function of BCL2 protein is to prevent cell death by apoptosis. Mouse knock-out for Bcl2 demonstrates growth retardation, severe polycystic kidney disease (PKD), grey hair and lymphopenia, and die prematurely after birth. Here, we report a 40-year-old male referred to for abdominal and thoracic aortic dissection with associated aortic root aneurysm, PKD, lymphocytopenia with a history of T cell lymphoblastic lymphoma, white hair since the age of 20, and learning difficulties. PKD, which was also detected in the father and sister, was related to an inherited PKD1 mutation. The combination of PKD with grey hair and lymphocytopenia was also reminiscent of Bcl2-/- mouse phenotype. BCL2 gene transcript and protein level were observed to be dramatically decreased in patient peripheral blood T-cells and in his aorta vascular wall cells, which was not detected in parents and sister T-cells, suggesting an autosomal recessive inheritance. Accordingly, spontaneous apoptosis of patient T-cells was increased and could be rescued through stimulation with an anti-CD3 antibody. Direct sequencing of BCL2 gene exons, promoter and 3'UTR region as well as BCL2 mRNA sequencing failed in identifying any pathogenic variant. Array-CGH was also normal and whole exome sequencing of the patient, parents and sister DNA did not detect any significant variant in genes encoding BCL2-interacting proteins. miRNA array identified an up-regulation of miR-181a, which is a known regulator of BCL2 expression. Altogether, miR-181a-mediated decrease in BCL2 gene expression could be a modifying factor that aggravates the phenotype of a PKD1 constitutive variant.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Canales Catiónicos TRPP/genética , Adulto , Animales , Apoptosis/genética , Regulación hacia Abajo , Exones , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Linaje , Fenotipo , Riñón Poliquístico Autosómico Dominante/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Canales Catiónicos TRPP/metabolismo , Regulación hacia Arriba
12.
Genet Med ; 21(9): 2025-2035, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30723320

RESUMEN

PURPOSE: Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. METHODS: Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individuals either by exome sequencing or LSS Sanger sequencing. Splicing defects were assessed by transcript analysis and minigene assay. RESULTS: We reported ten APMR individuals from six unrelated families with biallelic variants in LSS. We additionally identified one affected individual with a single rare variant in LSS and an allelic imbalance suggesting a second event. Among the identified variants, two were truncating, seven were missense, and two were splicing variants. Quantification of cholesterol and its precursors did not reveal noticeable imbalance. CONCLUSION: In the cholesterol biosynthesis pathway, lanosterol synthase leads to the cyclization of (S)-2,3-oxidosqualene into lanosterol. Our data suggest LSS as a major gene causing a rare recessive neuroectodermal syndrome.


Asunto(s)
Alopecia/genética , Colesterol/metabolismo , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Transferasas Intramoleculares/genética , Edad de Inicio , Alopecia/complicaciones , Alopecia/patología , Niño , Preescolar , Colesterol/genética , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/patología , Epilepsia/complicaciones , Epilepsia/genética , Epilepsia/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Lanosterol/genética , Lanosterol/metabolismo , Masculino , Mutación , Linaje , Fenotipo , Escualeno/análogos & derivados , Escualeno/metabolismo , Secuenciación del Exoma
13.
Hum Reprod ; 34(4): 612-622, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30865273

RESUMEN

STUDY QUESTION: Do assisted reproductive technologies (ARTs) impact on the expression of transposable elements (TEs) in preimplantation embryos? SUMMARY ANSWER: The expression of all TE families is globally increased with mouse embryo culture with differences according to culture medium composition. WHAT IS KNOWN ALREADY: Mammalian genomes are subject to global epigenetic reprogramming during early embryogenesis. Whether ARTs could have consequences on this period of acute epigenetic sensitivity is the matter of intense research. So far, most studies have examined the impact of ARTs on the regulation of imprinted genes. However, very little attention has been given to the control of TEs, which exceed by far the number of genes and account for half of the mammalian genomic mass. This is of particular interest as TEs have the ability to modulate gene structure and expression, and show unique regulatory dynamics during the preimplantation period. STUDY DESIGN, SIZE, DURATION: Here, we evaluated for the first time the impact of ART procedures (superovulation, in-vitro fertilisation and embryo culture) on the control of different TE types throughout preimplantation development of mouse embryos. We also made use of a mouse model carrying a LINE-1 retrotransposition-reporter transgene to follow parental patterns of transmission and mobilisation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Hybrid B6CBA/F1 mice were used for the expression analyses. Relative TE expression was evaluated by using the nCounter quantification methodology (Nanostring®). This quantitative method allowed us to simultaneously follow 15 TE targets. Another technique of quantification (RTqPCR) was also used.A mouse model carrying a LINE-1 retrotransposition-reporter transgene (LINE-1 GF21) was used to follow parental patterns of transmission and mobilisation. MAIN RESULTS AND THE ROLE OF CHANCE: We found that the superovulation step did not modify the dynamics nor the level of TE transcription across the preimplantation period. However, upon in-vitro culture, TE expression was globally increased at the blastocyst stage in comparison with in-vivo development. Finally, by monitoring the transmission and mobilisation of a transgenic LINE-1 transposon, we found that in-vitro fertilisation may alter the mendelian rate of paternal inheritance. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Even though the Nanostring results concerning the dynamics of transcription throughout preimplantation development were based on pools of embryos originating from several females, only two pools were analysed per developmental stage. However, at the blastocyst stage, consistent expressional results were found between the Nanostring technology and the other technique of quantification used, RTqPCR. WIDER IMPLICATIONS OF THE FINDINGS: Our findings highlight the sensitivity of TEs to the ART environment and their great potential as biomarkers of culture medium-based effects. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by funding from the 'Agence de la Biomedecine', 'Conseil Régional de Bourgogne' and 'RCT grant from INSERM-DGOS'. The authors have no conflicts of interest to declare.


Asunto(s)
Blastocisto/metabolismo , Elementos Transponibles de ADN/genética , Técnicas de Cultivo de Embriones , Fertilización In Vitro/efectos adversos , Animales , Biomarcadores , Medios de Cultivo/química , Desarrollo Embrionario/genética , Femenino , Expresión Génica , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Retroelementos/genética , Transgenes/genética
14.
Genet Med ; 20(6): 645-654, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29095811

RESUMEN

PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics-50% of patients still have no molecular diagnosis after a long and stressful diagnostic "odyssey." Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for patients enrolled in the third year are not yet available.ResultsOf the 416 patients included, data for 156 without a diagnosis were reanalyzed. We obtained 24 (15.4%) additional diagnoses: 12 through the usual diagnostic process (7 new publications, 4 initially misclassified, and 1 copy-number variant), and 12 through translational research by international data sharing. The final yield of positive results was 27.9% through a strict diagnostic approach, and 2.9% through an additional research strategy.ConclusionThis article highlights the effectiveness of periodically combining diagnostic reinterpretation of clinical WES data with translational research involving data sharing for candidate genes.


Asunto(s)
Anomalías Congénitas/genética , Secuenciación del Exoma/métodos , Discapacidad Intelectual/genética , Bases de Datos Genéticas , Exoma , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Enfermedades Raras/genética , Estudios Retrospectivos , Análisis de Secuencia de ADN/métodos
15.
Hum Mol Genet ; 24(12): 3314-21, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25736213

RESUMEN

Like genetic mutations, DNA methylation anomalies or epimutations can disrupt gene expression and lead to human diseases. However, unlike genetic mutations, epimutations can in theory be reverted through developmental epigenetic reprograming, which should limit their transmission across generations. Following the request for a parental project of a patient diagnosed with Silver-Russell syndrome (SRS), and the availability of both somatic and spermatozoa DNA from the proband and his father, we had the exceptional opportunity to evaluate the question of inheritance of an epimutation. We provide here for the first time evidence for efficient reversion of a constitutive epimutation in the spermatozoa of an SRS patient, which has important implication for genetic counseling.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Células Germinativas/metabolismo , Síndrome de Silver-Russell/genética , Adulto , Islas de CpG , Exoma , Femenino , Regulación de la Expresión Génica , Orden Génico , Sitios Genéticos , Impresión Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Fenotipo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Síndrome de Silver-Russell/diagnóstico
16.
Hum Mol Genet ; 24(23): 6603-13, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26358774

RESUMEN

Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity.


Asunto(s)
Adipogénesis , Distribución de la Grasa Corporal , Diabetes Mellitus Tipo 2/fisiopatología , Dedos/anomalías , Insulina/fisiología , Discapacidad Intelectual/fisiopatología , Microcefalia/fisiopatología , Hipotonía Muscular/fisiopatología , Miopía/fisiopatología , Obesidad/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/fisiopatología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Femenino , Dedos/fisiopatología , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Microcefalia/complicaciones , Persona de Mediana Edad , Modelos Biológicos , Hipotonía Muscular/complicaciones , Mutación , Miopía/complicaciones , Obesidad/complicaciones , Degeneración Retiniana , Riesgo , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Adulto Joven
17.
Genet Med ; 19(9): 989-997, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28151489

RESUMEN

PURPOSE: Postzygotic activating mutations of PIK3CA cause a wide range of mosaic disorders collectively referred to as PIK3CA-related overgrowth spectrum (PROS). We describe the diagnostic yield and characteristics of PIK3CA sequencing in PROS. METHODS: We performed ultradeep next-generation sequencing (NGS) of PIK3CA in various tissues from 162 patients referred to our clinical laboratory and assessed diagnostic yield by phenotype and tissue tested. RESULTS: We identified disease-causing mutations in 66.7% (108/162) of patients, with mutant allele levels as low as 1%. The diagnostic rate was higher (74%) in syndromic than in isolated cases (35.5%; P = 9.03 × 10-5). We identified 40 different mutations and found strong oncogenic mutations more frequently in patients without brain overgrowth (50.6%) than in those with brain overgrowth (15.2%; P = 0.00055). Mutant allele levels were higher in skin and overgrown tissues than in blood and buccal samples (P = 3.9 × 10-25), regardless of the phenotype. CONCLUSION: Our data demonstrate the value of ultradeep NGS for molecular diagnosis of PROS, highlight its substantial allelic heterogeneity, and confirm that optimal diagnosis requires fresh skin or surgical samples from affected regions. Our findings may be of value in guiding future recommendations for genetic testing in PROS and other mosaic conditions.Genet Med advance online publication 02 February 2017.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios de Asociación Genética , Pruebas Genéticas , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Mutación , Adolescente , Adulto , Alelos , Sustitución de Aminoácidos , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Manejo de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Mosaicismo , Fenotipo , Diagnóstico Prenatal , Análisis de Secuencia de ADN , Adulto Joven
19.
Proc Natl Acad Sci U S A ; 111(29): 10592-7, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002492

RESUMEN

The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-ß1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-ß signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1(hi)) and myeloid-lymphoid-balanced (Tgfbr1(lo)) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-ß signaling, leading to HSC aging.


Asunto(s)
Senescencia Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento/metabolismo , Animales , Antígenos CD/metabolismo , Separación Celular , Senescencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Células Mieloides/metabolismo , Fenotipo , Poliubiquitina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Superficie Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta1/farmacología , Ubiquitinación/efectos de los fármacos
20.
Hum Mol Genet ; 23(9): 2391-9, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24334764

RESUMEN

Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver-derived proteins, were normal. We also showed that intercellular cell adhesion molecule 1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS-PAGE in peripheral blood mononuclear cells from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal-lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal-lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology.


Asunto(s)
Dedos/anomalías , Discapacidad Intelectual/metabolismo , Microcefalia/metabolismo , Hipotonía Muscular/metabolismo , Miopía/metabolismo , Obesidad/metabolismo , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Discapacidades del Desarrollo/metabolismo , Electroforesis en Gel de Poliacrilamida , Fibroblastos/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interferencia de ARN , Degeneración Retiniana , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA