Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 520(7545): 114-8, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25539084

RESUMEN

Meiotic recombination is a critical step in gametogenesis for many organisms, enabling the creation of genetically diverse haploid gametes. In each meiotic cell, recombination is initiated by numerous DNA double-strand breaks (DSBs) created by Spo11, the evolutionarily conserved topoisomerase-like protein, but how these DSBs are distributed relatively uniformly across the four chromatids that make up each chromosome pair is poorly understood. Here we employ Saccharomyces cerevisiae to demonstrate distance-dependent DSB interference in cis (in which the occurrence of a DSB suppresses adjacent DSB formation)--a process that is mediated by the conserved DNA damage response kinase, Tel1(ATM). The inhibitory function of Tel1 acts on a relatively local scale, while over large distances DSBs have a tendency to form independently of one another even in the presence of Tel1. Notably, over very short distances, loss of Tel1 activity causes DSBs to cluster within discrete zones of concerted DSB activity. Our observations support a hierarchical view of recombination initiation where Tel1(ATM) prevents clusters of DSBs, and further suppresses DSBs within the surrounding chromosomal region. Such collective negative regulation will help to ensure that recombination events are dispersed evenly and arranged optimally for genetic exchange and efficient chromosome segregation.


Asunto(s)
Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , 3-Isopropilmalato Deshidrogenasa/genética , Oxidorreductasas de Alcohol/genética , Aminohidrolasas/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas Fúngicos/genética , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/metabolismo , Genes Fúngicos/genética , Recombinación Homóloga/genética , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Pirofosfatasas/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
2.
PLoS Pathog ; 9(9): e1003636, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068937

RESUMEN

Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.


Asunto(s)
Reprogramación Celular , Elementos de Facilitación Genéticos , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Marcación de Gen , Herpesvirus Humano 4/metabolismo , Modelos Biológicos , Proteínas Represoras/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Co-Represoras , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/patología , Antígenos Nucleares del Virus de Epstein-Barr/química , Antígenos Nucleares del Virus de Epstein-Barr/genética , Interacciones Huésped-Patógeno , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Exp Cell Res ; 329(1): 124-31, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25116420

RESUMEN

Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Homeostasis/fisiología , Meiosis/fisiología , Animales , Ciclo Celular/fisiología , Humanos
4.
Cancer Cell ; 42(2): 253-265.e12, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38181798

RESUMEN

Despite the remarkable success of anti-cancer immunotherapy, its effectiveness remains confined to a subset of patients-emphasizing the importance of predictive biomarkers in clinical decision-making and further mechanistic understanding of treatment response. Current biomarkers, however, lack the power required to accurately stratify patients. Here, we identify interferon-stimulated, Ly6Ehi neutrophils as a blood-borne biomarker of anti-PD1 response in mice at baseline. Ly6Ehi neutrophils are induced by tumor-intrinsic activation of the STING (stimulator of interferon genes) signaling pathway and possess the ability to directly sensitize otherwise non-responsive tumors to anti-PD1 therapy, in part through IL12b-dependent activation of cytotoxic T cells. By translating our pre-clinical findings to a cohort of patients with non-small cell lung cancer and melanoma (n = 109), and to public data (n = 1440), we demonstrate the ability of Ly6Ehi neutrophils to predict immunotherapy response in humans with high accuracy (average AUC ≈ 0.9). Overall, our study identifies a functionally active biomarker for use in both mice and humans.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Animales , Interferones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neutrófilos/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Biomarcadores , Inmunoterapia
5.
Oncogene ; 42(10): 771-781, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646904

RESUMEN

Chemotherapy remains one of the main treatment modalities for cancer. While chemotherapy is mainly known for its ability to kill tumor cells directly, accumulating evidence indicates that it also acts indirectly by enhancing T cell-mediated anti-tumor immunity sometimes through immunogenic cell death. However, the role of immature immune cells in chemotherapy-induced immunomodulation has not been studied. Here, we utilized a mouse pancreatic cancer model to characterize the effects of gemcitabine chemotherapy on immature bone marrow cells in the context of tumor immunogenicity. Single cell RNA sequencing of hematopoietic stem and progenitor cells revealed a 3-fold increase in megakaryocyte-erythroid progenitors (MEPs) in the bone marrow of gemcitabine-treated mice in comparison to untreated control mice. Notably, adoptive transfer of MEPs to pancreatic tumor-bearing mice significantly reduced tumor growth and increased the levels of anti-tumor immune cells in tumors and peripheral blood. Furthermore, MEPs increased the tumor cell killing activity of CD8 + T cells and NK cells, an effect that was dependent on MEP-secreted CCL5 and CXCL16. Collectively, our findings demonstrate that chemotherapy-induced enrichment of MEPs in the bone marrow compartment contributes to anti-tumor immunity.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Ratones , Animales , Células de la Médula Ósea , Médula Ósea , Células Progenitoras de Megacariocitos y Eritrocitos/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos/patología , Gemcitabina , Neoplasias Pancreáticas/patología , Antineoplásicos/farmacología
6.
Front Immunol ; 13: 903591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874722

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are known to promote tumor growth in part by their immunosuppressive activities and their angiogenesis support. It has been shown that Bv8 blockade inhibits the recruitment of MDSCs to tumors, thereby delaying tumor relapse associated with resistance to antiangiogenic therapy. However, the impact of Bv8 blockade on tumors resistant to the new immunotherapy drugs based on the blockade of immune checkpoints has not been investigated. Here, we demonstrate that granulocytic-MDSCs (G-MDSCs) are enriched in anti-PD1 resistant tumors. Importantly, resistance to anti-PD1 monotherapy is reversed upon switching to a combined regimen comprised of anti-Bv8 and anti-PD1 antibodies. This effect is associated with a decreased level of G-MDSCs and enrichment of active cytotoxic T cells in tumors. The blockade of anti-Bv8 has shown efficacy also in hyperprogressive phenotype of anti-PD1-treated tumors. In vitro, anti-Bv8 antibodies directly inhibit MDSC-mediated immunosuppression, as evidenced by enhanced tumor cell killing activity of cytotoxic T cells. Lastly, we show that anti-Bv8-treated MDSCs secrete proteins associated with effector immune cell function and T cell activity. Overall, we demonstrate that Bv8 blockade inhibits the immunosuppressive function of MDSCs, thereby enhancing anti-tumor activity of cytotoxic T cells and sensitizing anti-PD1 resistant tumors. Our findings suggest that combining Bv8 blockade with anti-PD1 therapy can be used as a strategy for overcoming therapy resistance.


Asunto(s)
Células Supresoras de Origen Mieloide , Línea Celular Tumoral , Terapia de Inmunosupresión , Inmunoterapia , Linfocitos T Citotóxicos
7.
Cancer Res ; 82(2): 278-291, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34666995

RESUMEN

Metastasis is the main cause of cancer-related mortality. Despite intense efforts to understand the mechanisms underlying the metastatic process, treatment of metastatic cancer is still challenging. Here we describe a chemotherapy-induced, host-mediated mechanism that promotes remodeling of the extracellular matrix (ECM), ultimately facilitating cancer cell seeding and metastasis. Paclitaxel (PTX) chemotherapy enhanced rapid ECM remodeling and mechanostructural changes in the lungs of tumor-free mice, and the protein expression and activity of the ECM remodeling enzyme lysyl oxidase (LOX) increased in response to PTX. A chimeric mouse model harboring genetic LOX depletion revealed chemotherapy-induced ECM remodeling was mediated by CD8+ T cells expressing LOX. Consistently, adoptive transfer of CD8+ T cells, but not CD4+ T cells or B cells, from PTX-treated mice to naïve immunodeprived mice induced pulmonary ECM remodeling. Lastly, in a clinically relevant metastatic breast carcinoma model, LOX inhibition counteracted the metastasis-promoting, ECM-related effects of PTX. This study highlights the role of immune cells in regulating ECM and metastasis following chemotherapy, suggesting that inhibiting chemotherapy-induced ECM remodeling represents a potential therapeutic strategy for metastatic cancer. SIGNIFICANCE: Chemotherapy induces prometastatic pulmonary ECM remodeling by upregulating LOX in T cells, which can be targeted with LOX inhibitors to suppress metastasis.See related commentary by Kolonin and Woodward, p. 197.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Neoplasias de la Mama/metabolismo , Linfocitos T CD8-positivos/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Paclitaxel/efectos adversos , Traslado Adoptivo/métodos , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/inmunología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Células MCF-7 , Neoplasias Mamarias Experimentales/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones SCID , Paclitaxel/administración & dosificación , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo
8.
J Immunother Cancer ; 9(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34140316

RESUMEN

BACKGROUND: Metastasis is the major cause of death in patients with cancer. Myeloid skewing of hematopoietic cells is a prominent promoter of metastasis. However, the reservoir of these cells in the bone marrow (BM) compartment and their differentiation pattern from hematopoietic stem and progenitor cells (HSPCs) have not been explored. METHODS: We used a unique model system consisting of tumor cell clones with low metastatic potential or high metastatic potential (met-low and met-high, respectively) to investigate the fate of HSPC differentiation using murine melanoma and breast carcinoma. Single-cell RNA sequencing (scRNA-seq) analysis was performed on HSPC obtained from the BM of met-low and met-high tumors. A proteomic screen of tumor-conditioned medium integrated with the scRNA-seq data analysis was performed to analyze the potential cross talk between cancer cells and HSPCs. Adoptive transfer of tumor-educated HSPC subsets obtained from green fluorescent protein (GFP)+ tagged mice was then carried out to identify the contribution of committed HSPCs to tumor spread. Peripheral mononuclear cells obtained from patients with breast and lung cancer were analyzed for HSPC subsets. RESULTS: Mice bearing met-high tumors exhibited a significant increase in the percentage of HSPCs in the BM in comparison with tumor-free mice or mice bearing met-low tumors. ScRNA-seq analysis of these HSPCs revealed that met-high tumors enriched the monocyte-dendritic progenitors (MDPs) but not granulocyte-monocyte progenitors (GMPs). A proteomic screen of tumor- conditioned medium integrated with the scRNA-seq data analysis revealed that the interleukin 6 (IL-6)-IL-6 receptor axis is highly active in HSPC-derived MDP cells. Consequently, loss of function and gain of function of IL-6 in tumor cells resulted in decreased and increased metastasis and corresponding MDP levels, respectively. Importantly, IL-6-educated MDPs induce metastasis within mice bearing met-low tumors-through further differentiation into immunosuppressive macrophages and not dendritic cells. Consistently, MDP but not GMP levels in peripheral blood of breast and lung cancer patients are correlated with tumor aggressiveness. CONCLUSIONS: Our study reveals a new role for tumor-derived IL-6 in hijacking the HSPC differentiation program toward prometastatic MDPs that functionally differentiate into immunosuppressive monocytes to support the metastatic switch.


Asunto(s)
Células Dendríticas/metabolismo , Interleucina-6/metabolismo , Monocitos/metabolismo , Animales , Diferenciación Celular , Femenino , Humanos , Ratones , Metástasis de la Neoplasia
9.
Nat Commun ; 10(1): 4846, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31649282

RESUMEN

DNA topoisomerases are required to resolve DNA topological stress. Despite this essential role, abortive topoisomerase activity generates aberrant protein-linked DNA breaks, jeopardising genome stability. Here, to understand the genomic distribution and mechanisms underpinning topoisomerase-induced DNA breaks, we map Top2 DNA cleavage with strand-specific nucleotide resolution across the S. cerevisiae and human genomes-and use the meiotic Spo11 protein to validate the broad applicability of this method to explore the role of diverse topoisomerase family members. Our data characterises Mre11-dependent repair in yeast and defines two strikingly different fractions of Top2 activity in humans: tightly localised CTCF-proximal, and broadly distributed transcription-proximal, the latter correlated with gene length and expression. Moreover, single nucleotide accuracy reveals the influence primary DNA sequence has upon Top2 cleavage-distinguishing sites likely to form canonical DNA double-strand breaks (DSBs) from those predisposed to form strand-biased DNA single-strand breaks (SSBs) induced by etoposide (VP16) in vivo.


Asunto(s)
Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Antineoplásicos Fitogénicos/farmacología , Secuencia de Bases , Factor de Unión a CCCTC/genética , ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de los fármacos , Etopósido/farmacología , Humanos , Mapeo Nucleótido
10.
Cell Cycle ; 15(1): 13-21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26730703

RESUMEN

Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control--spatial regulation--detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Meiosis/fisiología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Recombinación Homóloga/fisiología , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA