Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2215777120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585464

RESUMEN

TRPML3 is a Ca2+/Na+ release channel residing in both phagophores and endolysosomal membranes. It is activated by PI3P and PI3,5P2. Its activity can be enhanced by high luminal pH and by replacing luminal Na+ with K+. Here, we report that big-conductance Ca2+-activated potassium (BK) channels form a positive feedback loop with TRPML3. Ca2+ release via TRPML3 activates BK, which in turn facilitates TRPML3-mediated Ca2+ release, potentially through removing luminal Na+ inhibition. We further show that TRPML3/BK and mammalian target of rapamycin (mTOR) form another positive feedback loop to facilitate autophagy induction in response to nutrient starvation, i.e., mTOR inhibition upon nutrient starvation activates TRPML3/BK, and this further reduces mTOR activity, thereby increasing autophagy induction. Mechanistically, the feedback regulation between TRPML3/BK and mTOR is mediated by PI3P, an endogenous TRPML3 activator that is enriched in phagophores and is up-regulated by mTOR reduction. Importantly, bacterial infection activates TRPML3 in a BK-dependent manner, and both TRPML3 and BK are required for mTOR suppression and autophagy induction responding to bacterial infection. Suppressing either TRPML3 or BK helps bacteria survival whereas increasing either TRPML3 or BK favors bacterial clearance. Considering that TRPML3/BK is inhibited by low luminal pH but activated by high luminal pH and PI3P in phagophores, we suggest that TRPML3/BK and mTOR form a positive feedback loop via PI3P to ensure efficient autophagy induction in response to nutrient deprivation and bacterial infection. Our study reveals a role of TRPML3-BK coupling in controlling cellular homeostasis and intracellular bacterial clearance via regulating mTOR signaling.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Sirolimus , Retroalimentación , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Autofagia , Bacterias , Serina-Treonina Quinasas TOR
2.
Cell Mol Life Sci ; 78(12): 5213-5223, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34023918

RESUMEN

Positively charged amino acid side-chains play important roles in anion binding and permeation through the CFTR chloride channel. One pore-lining lysine residue in particular (K95) has been shown to be indispensable for anion binding, conductance, and selectivity. Here, we use functional investigation of CFTR to show that a nearby arginine (R134) plays a functionally analogous role. Removal of this positive charge (in the R134Q mutant) drastically reduces single-channel conductance, weakens binding of both permeant and blocking anions, and abolishes the normal anion conductance selectivity pattern. Each of these functional effects was reversed by a second-site mutation (S1141K) that introduces an ectopic positive charge to a nearby pore-lining residue. Substituted cysteine accessibility experiments confirm that R134-but not nearby residues in the same transmembrane helix-is accessible within the pore lumen. These results suggest that K95 and R134, which are very close together within the inner vestibule of the pore, play analogous, important roles, and that both are required for the normal anion binding and anion conductance properties of the pore. Nevertheless, that fact that both positive charges can be "transplanted" to other sites in the inner vestibule with little effect on channel permeation properties indicates that it is the overall number of charges-rather than their exact locations-that controls pore function.


Asunto(s)
Aniones/metabolismo , Arginina/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Lisina/metabolismo , Mutación , Animales , Arginina/química , Arginina/genética , Células Cultivadas , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Lisina/química , Lisina/genética , Técnicas de Placa-Clamp , Conformación Proteica
3.
J Biol Chem ; 295(46): 15597-15621, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32878988

RESUMEN

Branched-chain α-keto acids (BCKAs) are catabolites of branched-chain amino acids (BCAAs). Intracellular BCKAs are cleared by branched-chain ketoacid dehydrogenase (BCKDH), which is sensitive to inhibitory phosphorylation by BCKD kinase (BCKDK). Accumulation of BCKAs is an indicator of defective BCAA catabolism and has been correlated with glucose intolerance and cardiac dysfunction. However, it is unclear whether BCKAs directly alter insulin signaling and function in the skeletal and cardiac muscle cell. Furthermore, the role of excess fatty acids (FAs) in perturbing BCAA catabolism and BCKA availability merits investigation. By using immunoblotting and ultra-performance liquid chromatography MS/MS to analyze the hearts of fasted mice, we observed decreased BCAA-catabolizing enzyme expression and increased circulating BCKAs, but not BCAAs. In mice subjected to diet-induced obesity (DIO), we observed similar increases in circulating BCKAs with concomitant changes in BCAA-catabolizing enzyme expression only in the skeletal muscle. Effects of DIO were recapitulated by simulating lipotoxicity in skeletal muscle cells treated with saturated FA, palmitate. Exposure of muscle cells to high concentrations of BCKAs resulted in inhibition of insulin-induced AKT phosphorylation, decreased glucose uptake, and mitochondrial oxygen consumption. Altering intracellular clearance of BCKAs by genetic modulation of BCKDK and BCKDHA expression showed similar effects on AKT phosphorylation. BCKAs increased protein translation and mTORC1 activation. Pretreating cells with mTORC1 inhibitor rapamycin restored BCKA's effect on insulin-induced AKT phosphorylation. This study provides evidence for FA-mediated regulation of BCAA-catabolizing enzymes and BCKA content and highlights the biological role of BCKAs in regulating muscle insulin signaling and function.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/antagonistas & inhibidores , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/sangre , Animales , Línea Celular , Dieta Alta en Grasa , Regulación hacia Abajo/efectos de los fármacos , Insulina/farmacología , Cetoácidos/sangre , Cetoácidos/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Miocardio/metabolismo , Palmitatos/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Biochem J ; 477(1): 137-160, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31820786

RESUMEN

Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy with critical roles in several cancers. Lysosomal autophagy promotes cancer survival through the degradation of toxic molecules and the maintenance of adequate nutrient supply. Doxorubicin (DOX) is the standard of care treatment for triple-negative breast cancer (TNBC); however, chemoresistance at lower doses and toxicity at higher doses limit its usefulness. By targeting pathways of survival, DOX can become an effective antitumor agent. In this study, we examined the role of TFEB in TNBC and its relationship with autophagy and DNA damage induced by DOX. In TNBC cells, TFEB was hypo-phosphorylated and localized to the nucleus upon DOX treatment. TFEB knockdown decreased the viability of TNBC cells while increasing caspase-3 dependent apoptosis. Additionally, inhibition of the TFEB-phosphatase calcineurin sensitized cells to DOX-induced apoptosis in a TFEB dependent fashion. Regulation of apoptosis by TFEB was not a consequence of altered lysosomal function, as TFEB continued to protect against apoptosis in the presence of lysosomal inhibitors. RNA-Seq analysis of MDA-MB-231 cells with TFEB silencing identified a down-regulation in cell cycle and homologous recombination genes while interferon-γ and death receptor signaling genes were up-regulated. In consequence, TFEB knockdown disrupted DNA repair following DOX, as evidenced by persistent γH2A.X detection. Together, these findings describe in TNBC a novel lysosomal independent function for TFEB in responding to DNA damage.


Asunto(s)
Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Reparación del ADN , Lisosomas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Doxorrubicina/farmacología , Técnicas de Silenciamiento del Gen , Humanos
5.
Adv Exp Med Biol ; 1131: 747-770, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646533

RESUMEN

The pioneering work of Richard Altman on the presence of mitochondria in cells set in motion a field of research dedicated to uncovering the secrets of the mitochondria. Despite limitations in studying the structure and function of the mitochondria, advances in our understanding of this organelle prompted the development of potential treatments for various diseases, from neurodegenerative conditions to muscular dystrophy and cancer. As the powerhouses of the cell, the mitochondria represent the essence of cellular life and as such, a selective advantage for cancer cells. Much of the function of the mitochondria relies on Ca2+ homeostasis and the presence of effective Ca2+ signaling to maintain the balance between mitochondrial function and dysfunction and subsequently, cell survival. Ca2+ regulates the mitochondrial respiration rate which in turn increases ATP synthesis, but too much Ca2+ can also trigger the mitochondrial apoptosis pathway; however, cancer cells have evolved mechanisms to modulate mitochondrial Ca2+ influx and efflux in order to sustain their metabolic demand and ensure their survival. Therefore, targeting the mitochondrial Ca2+ signaling involved in the bioenergetic and apoptotic pathways could serve as potential approaches to treat cancer patients. This chapter will review the role of Ca2+ signaling in mediating the function of the mitochondria and its involvement in health and disease with special focus on the pathophysiology of cancer.


Asunto(s)
Señalización del Calcio , Calcio , Mitocondrias , Neoplasias , Apoptosis , Calcio/metabolismo , Señalización del Calcio/fisiología , Homeostasis , Humanos , Mitocondrias/fisiología , Neoplasias/fisiopatología
6.
J Biol Chem ; 293(15): 5649-5658, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29475947

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that apparently has evolved from an ancestral active transporter. Key to the CFTR's switch from pump to channel function may have been the appearance of one or more "lateral portals." Such portals connect the cytoplasm to the transmembrane channel pore, allowing a continuous pathway for the electrodiffusional movement of Cl- ions. However, these portals remain the least well-characterized part of the Cl- transport pathway; even the number of functional portals is uncertain, and if multiple portals do exist, their relative functional contributions are unknown. Here, we used patch-clamp recording to identify the contributions of positively charged amino acid side chains located in CFTR's cytoplasmic transmembrane extensions to portal function. Mutagenesis-mediated neutralization of several charged side chains reduced single-channel Cl- conductance. However, these same mutations differentially affected channel blockade by cytoplasmic suramin and Pt(NO2)42- anions. We considered and tested several models by which the contribution of these positively charged side chains to one or more independent or non-independent portals to the pore could affect Cl- conductance and interactions with blockers. Overall, our results suggest the existence of a single portal that is lined by several positively charged side chains that interact electrostatically with both Cl- and blocking anions. We further propose that mutations at other sites indirectly alter the function of this single portal. Comparison of our functional results with recent structural information on CFTR completes our picture of the overall molecular architecture of the Cl- permeation pathway.


Asunto(s)
Membrana Celular/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mutación , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Transporte Iónico/fisiología , Dominios Proteicos
7.
J Biol Chem ; 293(10): 3637-3650, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29343514

RESUMEN

A lack of effective treatment is one of the main factors contributing to gastric cancer-related death. Discovering effective targets and understanding their underlying anti-cancer mechanism are key to achieving the best response to treatment and to limiting side effects. Although recent studies have shown that the cation channel transient receptor potential melastatin-2 (TRPM2) is crucial for cancer cell survival, the exact mechanism remains unclear, limiting its therapeutic potential. Here, using molecular and functional assays, we investigated the role of TRPM2 in survival of gastric cancer cells. Our results indicated that TRPM2 knockdown in AGS and MKN-45 cells decreases cell proliferation and enhances apoptosis. We also observed that the TRPM2 knockdown impairs mitochondrial metabolism, indicated by a decrease in basal and maximal mitochondrial oxygen consumption rates and ATP production. These mitochondrial defects coincided with a decrease in autophagy and mitophagy, indicated by reduced levels of autophagy- and mitophagy-associated proteins (i.e. ATGs, LC3A/B II, and BNIP3). Moreover, we found that TRPM2 modulates autophagy through a c-Jun N-terminal kinase (JNK)-dependent and mechanistic target of rapamycin-independent pathway. We conclude that in the absence of TRPM2, down-regulation of the JNK-signaling pathway impairs autophagy, ultimately causing the accumulation of damaged mitochondria and death of gastric cancer cells. Of note, by inhibiting cell proliferation and promoting apoptosis, the TRPM2 down-regulation enhanced the efficacy of paclitaxel and doxorubicin in gastric cancer cells. Collectively, we provide compelling evidence that TRPM2 inhibition may benefit therapeutic approaches for managing gastric cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Apoptosis , Autofagia , Mitofagia , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Canales Catiónicos TRPM/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Antibióticos Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Registros Electrónicos de Salud , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Fosforilación Oxidativa/efectos de los fármacos , Paclitaxel/farmacología , Interferencia de ARN , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Análisis de Supervivencia , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
8.
Biochem Cell Biol ; 97(1): 58-67, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29768134

RESUMEN

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that senses and integrates environmental information into cellular regulation and homeostasis. Accumulating evidence has suggested a master role of mTOR signalling in many fundamental aspects of cell biology and organismal development. mTOR deregulation is implicated in a broad range of pathological conditions, including diabetes, cancer, neurodegenerative diseases, myopathies, inflammatory, infectious, and autoimmune conditions. Here, we review recent advances in our knowledge of mTOR signalling in mammalian physiology. We also discuss the impact of mTOR alteration in human diseases and how targeting mTOR function can treat human diseases.


Asunto(s)
Homeostasis , Complejos Multiproteicos/metabolismo , Neoplasias/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos
9.
Cell Physiol Biochem ; 52(4): 742-757, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30933439

RESUMEN

BACKGROUND/AIMS: The oxidative stress sensor transient receptor potential melastatin-2 (TRPM2) ion channel has recently gained attention in many types of cancer. The lung tissue is highly susceptible to oxidative stress-mediated injury and diseases; therefore, we aimed to determine whether TRPM2 plays an essential role in protecting lung cancer cells from oxidative damage while promoting cancer cell survival and metastasis. METHODS: We used two non-small cell lung (NSCLC) cell lines A549 and H1299 as a lung cancer model. We investigated the functional expression of TRPM2 using electrophysiology, qRT-PCR and Western blots. CFSE and flow cytometry were used to study TRPM2 role in proliferation, cell cycle and apoptosis. Gap closure chambers and Three-Tiered Chemotaxis Chamber were used to study the role of TRPM2 in metastasis. SCID mice were used to study the role of TRPM2 in lung tumor growth and metastasis. RESULTS: we demonstrate that TRPM2 is functionally expressed in NSCLC cells and that its downregulation significantly inhibits cell proliferation and promotes apoptosis. These results were concomitant with an induction in DNA damage and G2/M cell cycle arrest. TRPM2 silencing inhibits also lung cancer cells invasion ability and alters EMT processes. Mechanistically, TRPM2 downregulation causes an increase in the intracellular levels of reactive oxygen (ROS) and nitrogen (RNS) species, which in turn causes DNA damage and JNK activation leading to G2/M arrest, and an ultimate cell death. Finally, TRPM2 downregulation suppresses the growth of human lung tumour xenograft in SCID mice and TRPM2 depleted tumours exhibited a significant reduction in the mRNA expression level of EMT markers compared to the control tumors. CONCLUSION: Our data provide new insights on the functional expression of TRPM2 in lung cancer, its essential role in tumour growth and metastasis through the control of JNK signaling pathway, and that TRPM2 could be exploited for targeted lung cancer therapies.


Asunto(s)
Apoptosis , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Antracenos/farmacología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Puntos de Control de la Fase M del Ciclo Celular , Sistema de Señalización de MAP Quinasas , Ratones , Ratones SCID , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
10.
J Neurosci Res ; 97(11): 1469-1482, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31379045

RESUMEN

Recent years have led to increased effort to describe and understand the peripheral nervous system and its influence on central mechanisms and behavior in gastropod molluscs. This study revealed that an antibody raised against keyhole limpet hemocyanin (KLH) cross-reacts with an antigen(s) found extensively in both the central and the peripheral nervous systems of Biomphalaria alexandrina. The results revealed KLH-like immunoreactive (LIR) neurons in the cerebral, pedal, buccal, left pleural, right parietal, and visceral ganglion within the CNS with fibers projecting throughout all the peripheral nerves. Numerous KLH-LIR peripheral sensory neurons located in the foot, lips, tentacles, mantle, esophagus, and penis exhibited a bipolar morphology with long tortuous dendrites. KLH-LIR cells were also present in the eye and statocyst, thus suggesting the labeling of multiple sensory modalities/cell types. KLH-LIR cells did not co-localize with tyrosine hydroxylase (TH)-LIR cells, which have previously been described in this and other gastropods. The results thus provide descriptions of thousands of peripheral sensory neurons, not previously described in detail. Future research should seek to pair sensory modalities with peripheral cell type and attempt to further elucidate the nature of KLH-like reactivity. These findings also emphasize the need for caution when analyzing results obtained through use of antibodies raised against haptens conjugated to carrier proteins, suggesting the need for stringent controls to help limit potential confounds caused by cross-reactivity. In addition, this study is the first to describe neuronal cross-reactivity with KLH in Biomphalaria, which could provide a substrate for host-parasite interactions with a parasitic trematode, Schistosoma.


Asunto(s)
Biomphalaria/metabolismo , Ganglios de Invertebrados/metabolismo , Hemocianinas/análisis , Neuronas/metabolismo , Animales , Anticuerpos/administración & dosificación , Hemocianinas/inmunología , Inmunohistoquímica
11.
Cell Mol Life Sci ; 75(16): 3027-3038, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29441426

RESUMEN

Cystic fibrosis can be treated by potentiators, drugs that interact directly with the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel to increase its open probability. These substances likely target key conformational changes occurring during channel opening and closing, however, the molecular bases of these conformational changes, and their susceptibility to manipulation are poorly understood. We have used patch clamp recording to identify changes in the three-dimensional organization of the extracellularly accessible parts of the CFTR protein during channel opening and closing. State-dependent formation of both disulfide bonds and Cd2+ bridges occurred for pairs of cysteine side-chains introduced into the extreme extracellular ends of transmembrane helices (TMs) 1, 6, and 12. Between each of these three TMs, we found that both disulfide bonds and metal bridges formed preferentially or exclusively in the closed state and that these inter-TM cross-links stabilized the closed state. These results indicate that the extracellular ends of these TMs are close together when the channel is closed and that they separate from each other when the channel opens. These findings identify for the first time key conformational changes in the extracellular parts of the CFTR protein that can potentially be manipulated to control channel activity.


Asunto(s)
Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Activación del Canal Iónico , Conformación Proteica , Animales , Células CHO , Cricetinae , Cricetulus , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Humanos , Metales/química , Metales/metabolismo , Modelos Moleculares , Mutación
12.
Int J Food Sci Nutr ; 69(5): 513-523, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29063824

RESUMEN

Obesity is a complex condition classically characterised by excessive body fat accumulation and represents one of the most important public health problems worldwide. Although several epidemiological studies have shown that elevated BMI is associated with higher morbidity, and with increased rate of death from all causes and from cardiovascular disease, accumulating evidence suggests that being overweight or obese may be protective (the so-called obesity paradox), at least in chronic diseases. These observations, not only question the validity of the BMI system, but also raise the intriguing question of whether we should redefine what the normal range of BMI is in individuals suffering from a chronic disease. In the present article, we review the available information on the association between elevated BMI and increased morbidity and mortality including obesity-related paradoxes, explore key aspects of the role and limitations of BMI as a measure of increased adiposity and outline potential solutions to address the current controversies regarding the impact of obesity on human health.


Asunto(s)
Índice de Masa Corporal , Obesidad/diagnóstico , Composición Corporal , Humanos , Factores de Riesgo , Análisis de Supervivencia
13.
Biochim Biophys Acta Biomembr ; 1859(5): 1049-1058, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28235470

RESUMEN

The anion selectivity and conductance of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are determined predominantly by interactions between permeant anions and the narrow region of the channel pore. This narrow region has therefore been described as functioning as the "selectivity filter" of the channel. Multiple pore-lining transmembrane segments (TMs) have previously been shown to contribute to the selectivity filter region. However, little is known about the three-dimensional organization of this region, or how multiple TMs combine to determine its functional properties. In the present study we have used patch clamp recording to identify changes in channel function associated with the formation of disulfide cross-links between cysteine residues introduced into different TMs within the selectivity filter. Cysteine introduced at position L102 in TM1 was able to form disulfide bonds with F337C and T338C in TM6, two positions that are known to play key roles in determining anion permeation properties. Consistent with this proximal arrangement of L102, F337 and T338, different mutations at L102 altered anion selectivity and conductance properties in a way that suggests that this residue plays an important role in determining selectivity filter function, albeit a much lesser role than that of F337. These results suggest an asymmetric three-dimensional arrangement of the key selectivity filter region of the pore, as well as having important implications regarding the molecular mechanism of anion permeation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Animales , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Disulfuros/química , Ditiotreitol/farmacología , Leucina/química , Técnicas de Placa-Clamp
14.
Cell Mol Life Sci ; 73(9): 1917-25, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26659082

RESUMEN

Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.


Asunto(s)
Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Citoplasma/metabolismo , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/farmacología , Animales , Dominio Catalítico , Línea Celular , Cricetinae , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Iones/química , Iones/metabolismo , Mutagénesis , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína
15.
J Biol Chem ; 290(25): 15855-15865, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25944907

RESUMEN

As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm.


Asunto(s)
Membrana Celular/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Cloruros/química , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Transporte Iónico/fisiología , Estructura Secundaria de Proteína
16.
J Biol Chem ; 289(41): 28149-59, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25143385

RESUMEN

Opening and closing of the cystic fibrosis transmembrane conductance regulator are controlled by ATP binding and hydrolysis by the cytoplasmic nucleotide-binding domains. Different conformational changes in the channel pore have been described during channel opening and closing; however, the relative importance of these changes to the process of gating the pore is not known. We have used patch clamp recording to identify high affinity Cd(2+) bridges formed between pairs of pore-lining cysteine residues introduced into different transmembrane α-helices (TMs). Seven Cd(2+) bridges were identified forming between cysteines in TMs 6 and 12. Interestingly, each of these Cd(2+) bridges apparently formed only in closed channels, and their formation stabilized the closed state. In contrast, a single Cd(2+) bridge identified between cysteines in TMs 1 and 12 stabilized the channel open state. Analysis of the pattern of Cd(2+) bridge formation in different channel states suggests that lateral separation and convergence of different TMs, rather than relative rotation or translation of different TMs, is the key conformational change that causes the channel pore to open and close.


Asunto(s)
Cadmio/química , Cloruros/química , Cisteína/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Animales , Células CHO , Cadmio/metabolismo , Cationes Bivalentes , Cloruros/metabolismo , Cricetulus , Cisteína/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Expresión Génica , Activación del Canal Iónico , Transporte Iónico , Potenciales de la Membrana , Modelos Moleculares , Mutación , Técnicas de Placa-Clamp , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
17.
Pflugers Arch ; 466(3): 477-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23955087

RESUMEN

The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) α-helices, arranged in 2 symmetrical groups of 6. However, those TMs that line the channel pore are not completely defined. We used patch clamp recording to compare the accessibility of cysteine-reactive reagents to cysteines introduced into different TMs. Several residues in TM11 were accessible to extracellular and/or intracellular cysteine reactive reagents; however, no reactive cysteines were identified in TMs 5 or 11. Two accessible residues in TM11 (T1115C and S1118C) were found to be more readily modified from the extracellular solution in closed channels, but more readily modified from the intracellular solution in open channels, as previously reported for T338C in TM6. However, the effects of mutagenesis at S1118 (TM11) on a range of pore functional properties were relatively minor compared to the large effects of mutagenesis at T338 (TM6). Our results suggest that the CFTR pore is lined by TM11 but not by TM5 or TM7. Comparison with previous works therefore suggests that the pore is lined by TMs 1, 6, 11, and 12, suggesting that the structure of the open channel pore is asymmetric in terms of the contributions of different TMs. Although TMs 6 and 11 appear to undergo similar conformational changes during channel opening and closing, the influence of these two TMs on the functional properties of the narrowest region of the pore is clearly unequal.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Activación del Canal Iónico , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
18.
Biochem Cell Biol ; 92(6): 481-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25367045

RESUMEN

Cystic fibrosis, the most common lethal genetic disease affecting young people in North America, is caused by failure of the chloride ion channel known as CFTR (cystic fibrosis transmembrane conductance regulator). CFTR belongs to the large family of ATP-binding cassette (ABC) membrane transporters. In CFTR, ATP-driven events at the nucleotide-binding domains (NBDs) open and close a gate that controls chloride permeation. However, the conformational changes concomitant with opening and closing of the CFTR gate are unknown. Diverse techniques including substituted cysteine accessibility method, disulfide cross-linking, and patch-clamp recording have been used to explore CFTR channel structure. Here, we consider the architecture of both the open and the closed CFTR channel. We review how CFTR channel structure changes between the closed and the open channel conformations and portray the relative function of both cytoplasmic and vestigial gates during the gating cycle. Understanding how the CFTR channel gates chloride permeation is central for understanding how CFTR defects lead to CF. Such knowledge opens the door for novel ways to maximize CFTR channel activity in a CF setting.


Asunto(s)
Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico , Mutagénesis , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Transporte Iónico/genética , Conformación Proteica
19.
Front Physiol ; 14: 1217828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576339

RESUMEN

TRPM2 is a versatile and essential signaling molecule that plays diverse roles in Ca2+ homeostasis and oxidative stress signaling, with implications in various diseases. Research evidence has shown that TRPM2 is a promising therapeutic target. However, the decision of whether to activate or inhibit TRPM2 function depends on the context and specific disease. A deeper understanding of the molecular mechanisms governing TRPM2 activation and regulation could pave the way for the development of innovative therapeutics targeting TRPM2 to treat a broad range of diseases. In this review, we examine the structural and biophysical details of TRPM2, its involvement in neurological and cardiovascular diseases, and its role in inflammation and immune system function. In addition, we provide a comprehensive overview of the current knowledge of TRPM2 signaling pathways in cancer, including its functions in bioenergetics, oxidant defense, autophagy, and response to anticancer drugs.

20.
Biophys J ; 103(8): 1719-26, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23083715

RESUMEN

High unitary Cl(-) conductance in the cystic fibrosis transmembrane conductance regulator Cl(-) channel requires a functionally unique, positively charged lysine residue (K95) in the inner vestibule of the channel pore. Here we used a mutagenic approach to investigate the ability of other sites in the pore to host this important positive charge. The loss of conductance observed in the K95Q mutation was >50% rescued by substituting a lysine for each of five different pore-lining amino acids, suggesting that the exact location of the fixed positive charge is not crucial to support high conductance. Moving the positive charge also restored open-channel blocker interactions that are lost in K95Q. Introducing a second positive charge in addition to that at K95 did not increase conductance at any site, but did result in a striking increase in the strength of block by divalent Pt(NO(2))(4)(2-) ions. Based on the site dependence of these effects, we propose that although the exact location of the positive charge is not crucial for normal pore properties, transplanting this charge to other sites results in a diminution of its effectiveness that appears to depend on its location along the axis of the pore.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Activación del Canal Iónico , Electricidad Estática , Animales , Línea Celular , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Lisina/química , Lisina/genética , Mutación Missense , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA