Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Rep ; 36(3): 109409, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289357

RESUMEN

Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.


Asunto(s)
Astrocitos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Médula Espinal/citología , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Fenómenos Electrofisiológicos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Especificidad de Órganos , Transcripción Genética
2.
Cortex ; 118: 212-222, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30808549

RESUMEN

Genetic and clinical studies of speech and language disorders are providing starting points to unravel underlying neurobiological mechanisms. The gene encoding the transcription factor FOXP2 has been the first example of a gene involved in the development and evolution of this human-specific trait. A number of autosomal-dominant FOXP2 mutations are associated with developmental speech and language deficits indicating that gene dosage plays an important role in the disorder. Comparative genomics studies suggest that two human-specific amino acid substitutions in FOXP2 might have been positively selected during human evolution. A knock-in mouse model carrying these two amino acid changes in the endogenous mouse Foxp2 gene (Foxp2hum/hum) shows profound changes in striatum-dependent behaviour and neurophysiology, supporting a functional role for these changes. However, how this affects Foxp2 expression patterns in different striatal regions and compartments has not been assessed. Here, we characterized Foxp2 protein expression patterns in adult striatal tissue in Foxp2hum/hum mice. Consistent with prior reports in wildtype mice, we find that striatal neurons in Foxp2hum/hum mice and wildtype littermates express Foxp2 in a range from low to high levels. However, we observe a shift towards more cells with higher Foxp2 expression levels in Foxp2hum/hum mice, significantly depending on the striatal region and the compartment. As potential behavioural readout of these shifts in Foxp2 levels across striatal neurons, we employed a morphine sensitization assay. While we did not detect differences in morphine-induced hyperlocomotion during acute treatment, there was an attenuated hyperlocomotion plateau during sensitization in Foxp2hum/hum mice. Taken together, these results suggest that the humanized Foxp2 allele in a mouse background is associated with a shift in striatal Foxp2 protein expression pattern.


Asunto(s)
Factores de Transcripción Forkhead/genética , Proteínas Represoras/metabolismo , Habla/fisiología , Animales , Cuerpo Estriado/fisiología , Ratones Transgénicos , Neuronas/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Vocalización Animal/fisiología
4.
Genes Brain Behav ; 14(8): 583-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26250064

RESUMEN

The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Proteínas Represoras/fisiología , Vocalización Animal/fisiología , Sustitución de Aminoácidos , Animales , Evolución Biológica , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Factores de Transcripción Forkhead/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Proteínas Represoras/genética , Ultrasonido
5.
Neuroscience ; 175: 75-84, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21111790

RESUMEN

It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution and influence aspects of speech and language. Recently it was shown that when these substitutions are introduced into the endogenous Foxp2 gene of mice, they increase dendrite length and long-term depression (LTD) in medium spiny neurons of the striatum. Here we investigated if these effects are found in other brain regions. We found that neurons in the cerebral cortex, the thalamus and the striatum have increased dendrite lengths in the humanized mice whereas neurons in the amygdala and the cerebellum do not. In agreement with previous work we found increased LTD in medium spiny neurons, but did not detect alterations of synaptic plasticity in Purkinje cells. We conclude that although Foxp2 is expressed in many brain regions and has multiple roles during mammalian development, the evolutionary changes that occurred in the protein in human ancestors specifically affect brain regions that are connected via cortico-basal ganglia circuits.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/embriología , Evolución Molecular , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neostriado/citología , Neostriado/embriología , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Ganglios Basales/química , Ganglios Basales/metabolismo , Ganglios Basales/fisiología , Corteza Cerebral/crecimiento & desarrollo , Factores de Transcripción Forkhead/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neostriado/crecimiento & desarrollo , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología
6.
Mol Psychiatry ; 12(12): 1129-39, 1057, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17667961

RESUMEN

Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.


Asunto(s)
Cromosomas Humanos Par 2 , Lateralidad Funcional/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Esquizofrenia/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Transformada , Salud de la Familia , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Genotipo , Humanos , Hibridación in Situ/métodos , Cariotipificación , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/patología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Fracciones Subcelulares/ultraestructura
7.
EMBO J ; 20(18): 5091-100, 2001 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-11566874

RESUMEN

The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1-Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1-Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1-Dyn2 complex serves multiple cellular functions.


Asunto(s)
Dineínas/genética , Dineínas/fisiología , Ustilago/crecimiento & desarrollo , Secuencia de Aminoácidos , Núcleo Celular/fisiología , Clonación Molecular , Citoplasma/metabolismo , Dineínas Citoplasmáticas , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología , Datos de Secuencia Molecular , Movimiento , Mutación , Péptidos/metabolismo , Estructura Terciaria de Proteína , ARN de Hongos/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Ustilago/citología , Ustilago/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA