Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030474

RESUMEN

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Asunto(s)
Antifúngicos , Candida auris , Quitinasas , Pruebas de Sensibilidad Microbiana , Nanopartículas , Quitinasas/farmacología , Quitinasas/metabolismo , Quitinasas/química , Antifúngicos/farmacología , Antifúngicos/química , Nanopartículas/química , Candida auris/efectos de los fármacos , Candida auris/genética , Enzimas Inmovilizadas/química , Talaromyces/efectos de los fármacos , Talaromyces/química , Talaromyces/enzimología , Farmacorresistencia Fúngica Múltiple , Hidrólisis , Quitina/química , Quitina/farmacología
2.
Mycopathologia ; 189(4): 65, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990436

RESUMEN

Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.


Asunto(s)
Antifúngicos , Biopelículas , Candida auris , Ferroptosis , Perfilación de la Expresión Génica , Humanos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida auris/genética , Candida auris/efectos de los fármacos , Antifúngicos/farmacología , Ferroptosis/efectos de los fármacos , Fluconazol/farmacología , Caspofungina/farmacología , Piel/microbiología , Interacciones Huésped-Patógeno
3.
Appl Microbiol Biotechnol ; 107(16): 5225-5240, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358811

RESUMEN

Sponges are habitats for a diverse community of microorganisms. Sponges provide shelter, whereas microbes provide a complementary defensive mechanism. Here, a symbiotic bacterium, identified as Bacillus spp., was isolated from a marine sponge following culture enrichment. Fermentation-assisted metabolomics using thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) indicated that marine simulated nutrition and temperature was the optimum in metabolite production represented by the highest number of metabolites and the diverse chemical classes when compared to other culture media. Following large-scale culture in potato dextrose broth (PDB) and dereplication, compound M1 was isolated and identified as octadecyl-1-(2',6'-di-tert-butyl-1'-hydroxyphenyl) propionate. M1, at screening concentrations up to 10 mg/ml, showed no activity against prokaryotic bacteria including Staphylococcus aureus and Escherichia coli, while 1 mg/ml of M1 was sufficient to cause a significant killing effect on eukaryotic cells including Candida albicans, Candida auris, and Rhizopus delemar fungi and different mammalian cells. M1 exhibited MIC50 0.97 ± 0.006 and 7.667 ± 0.079 mg/ml against C. albicans and C. auris, respectively. Like fatty acid esters, we hypothesize that M1 is stored in a less harmful form and upon pathogenic attack is hydrolyzed to a more active form as a defensive metabolite. Subsequently, [3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid] (DTBPA), the hydrolysis product of M1, exhibited ~ 8-fold and 18-fold more antifungal activity than M1 against C. albicans and C. auris, respectively. These findings indicated the selectivity of that compound as a defensive metabolite towards the eukaryotic cells particularly the fungi, a major infectious agent to sponges. Metabolomic-assisted fermentation can provide a significant understanding of a triple marine-evolved interaction. KEY POINTS: • Bacillus species, closely related to uncultured Bacillus, is isolated from Gulf marine sponge • Metabolomic-assisted fermentations showed diverse metabolites • An ester with a killing effect against eukaryotes but not prokaryotes is isolated.


Asunto(s)
Bacillus , Poríferos , Animales , Bacterias/metabolismo , Antifúngicos/química , Evolución Biológica , Candida albicans , Mamíferos
4.
Curr Microbiol ; 80(9): 295, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37486431

RESUMEN

Candida auris has emerged as a significant nosocomial fungal pathogen with a high risk of pathogenicity. Since the initial detection of C. auris in 2009, it gained lots of attention with a recent alert by the Centers for Disease Control and Prevention (CDC) due to its high infectivity and drug resistance. Several studies showed the capability of C. auris to secrete lytic enzymes, germinate, and form a biofilm that eventually results in interactions with the host cells, leading to serious infections. Other studies demonstrated a decrease in susceptibility of C. auris strains to available antifungals, which may be caused by mutations within the target genes, or the drug efflux pumps. However, the contribution of C. auris heterogeneity in pathogenicity and drug resistance is not well studied. Here, we shed light on the factors contributing to the development of heterogeneity in C. auris. These include phenotypic changes, biofilm formation, mechanisms of drug resistance, host invasion, mode of transmission, and expression of virulence factors. C. auris exhibits different phenotypes, particularly aggregative, and non-aggregative forms that play an important role in fungal heterogeneity, which significantly affects drug resistance and pathogenicity. Collectively, heterogeneity in C. auris significantly contributes to ineffective treatment, which in turn affects the fungal pathogenicity and drug resistance. Therefore, understanding the underlying reasons for C. auris heterogeneity and applying effective antifungal stewardship could play a major role in controlling this pathogen.


Asunto(s)
Candida auris , Candida , Candida/genética , Antifúngicos/farmacología , Biopelículas , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana
5.
Phytother Res ; 36(7): 2921-2939, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35596627

RESUMEN

Flavonoids are phenolic compounds naturally found in plants and commonly consumed in diets. Herein, flavonoids were sequentially evaluated by a comparative in silico study associated with systematic literature search. This was followed by an in vitro study and enzyme inhibition assays against vital SARS-CoV-2 proteins including spike (S) protein, main protease (Mpro ), RNA-dependent RNA-polymerase (RdRp), and human transmembrane serine protease (TMPRSS2). The results obtained revealed 10 flavonoids with potential antiviral activity. Out of them, silibinin showed promising selectivity index against SARS-CoV-2 in vitro. Screening against S protein discloses the highest inhibition activity of silibinin. Mapping the activity of silibinin indicated its excellent binding inhibition activity against SARS-CoV-2 S protein, Mpro and RdRP at IC50 0.029, 0.021, and 0.042 µM, respectively, while it showed no inhibition activity against TMPRSS2 at its IC50(SARS-CoV-2) . Silibinin was tested safe on human mammalian cells at >7-fold its IC50(SARS-CoV-2) . Additionally, silibinin exhibited >90% virucidal activity at 0.031 µM. Comparative molecular docking (MD) showed that silibinin possesses the highest binding affinity to S protein and RdRP at -7.78 and -7.15 kcal/mol, respectively. MDs showed that silibinin exhibited stable interaction with key amino acids of SARS-CoV-2 targets. Collectively, silibinin, an FDA-approved drug, can significantly interfere with SARS-CoV-2 entry and replication through multi-targeting activity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Flavonoides/farmacología , Humanos , Simulación del Acoplamiento Molecular , ARN , ARN Polimerasa Dependiente del ARN , Silibina/farmacología , Glicoproteína de la Espiga del Coronavirus , Revisiones Sistemáticas como Asunto
6.
Med Mycol ; 59(12): 1243-1256, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34612496

RESUMEN

Candida auris is an emergent nosocomial multi-drug-resistant yeast that represents a global health threat. Recently, C. auris clinical isolates with caspofungin resistance were identified. Mutation in FKS1 gene was determined as a mechanism of resistance. However, the ability of C. auris to develop acquired and cross-resistance has never been investigated. Herein, this resistance ability due to caspofungin and associate mechanisms were investigated. C. auris clinical isolate was successively cultured for ten generations in the presence of caspofungin compared to fluconazole-treatment and untreated controls. This was followed by the analysis of target gene expression and phenotypic changes. The obtained results showed that caspofungin-treated C. auris exhibited elevated MIC50(caspofungin), slower growth, elevated chitin content, overexpression of caspofungin target genes, and cross-resistance to fluconazole. Interestingly, caspofungin exposure induced cell-cell adhesion and biofilm formation. C. auris gradually lost caspofungin resistance after removal of antifungal pressure, while keeping the overexpression of fungal cell wall-related genes including ALS5. We propose that C. auris ageing in the presence of caspofungin caused the development of persistent phenotypic changes in the fungal cell wall, leading to acquired and physical cross-resistance mechanisms. Surprisingly, formulation of caspofungin in zinc oxide nanoparticles prevented the aforementioned behavioral changes regardless of the pathogen generations. LAY SUMMARY: Candida auris developed resistance against caspofungin. Our data indicated that this resistance mechanism is unique because of changes in the genes related to cell wall adhesions. Formulation of caspofungin in ZnO nanoparticles was able to overcome these phenotypic changes.


Asunto(s)
Nanopartículas , Óxido de Zinc , Animales , Antifúngicos/farmacología , Candida/genética , Candida auris , Caspofungina , Pared Celular , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana/veterinaria , Fenotipo
7.
Bioorg Med Chem Lett ; 43: 128099, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984473

RESUMEN

SARS-CoV-2 caused dramatic health, social and economic threats to the globe. With this threat, the expectation of future outbreak, and the shortage of anti-viral drugs, scientists were challenged to develop novel antivirals. The objective of this study is to develop novel anti-SARS-CoV-2 compounds with dual activity by targeting valuable less-mutated enzymes. Here, we have mapped the binding affinity of >500,000 compounds for potential activity against SARS-CoV-2 main protease (Mpro), papain protease (PLpro) and human furin protease. The enzyme inhibition activity of most promising hits was screened and tested in vitro on SARS-CoV-2 clinical isolate incubated with Vero cells. Computational modelling and toxicity of the compounds were validated. The results revealed that 16 compounds showed potential binding activity against Mpro, two of them showed binding affinity against PLpro and furin protease. Respectively, compounds 7 and 13 showed inhibition activity against Mpro at IC50 0.45 and 0.11 µM, against PLpro at IC50 0.085 and 0.063 µM, and against furin protease at IC50 0.29 µM. Computational modelling validated the binding affinity against all proteases. Compounds 7 and 13 showed significant inhibition activity against the virus at IC50 0.77 and 0.11 µM, respectively. Both compounds showed no toxicity on mammalian cells. The data obtained indicated that compounds 7 and 13 exhibited potent dual inhibition activity against SARS-CoV-2. The dual activity of both compounds can be of great promise not only during the current pandemic but also for future outbreaks since the compounds' targets are of limited mutation and critical importance to the viral infection.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Péptido Hidrolasas/metabolismo , SARS-CoV-2/efectos de los fármacos , Antivirales/química , COVID-19/enzimología , Humanos , Estructura Molecular , Terapia Molecular Dirigida , Péptido Hidrolasas/química , SARS-CoV-2/enzimología
8.
Arch Pharm (Weinheim) ; 354(9): e2100120, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34085721

RESUMEN

Medicinal plants are valuable sources of different active constituents that are known to have important pharmacological activities including anticancer effects. Lupeol, a pentacyclic triterpenoid, present in many medicinal plants, has a wide range of biological activities. Although the anticancer activity of lupeol was reported, the published data are inconsistent and the clear mechanism of action has never been assigned. The current study aims at investigating the anticancer specificity and mechanism of lupeol isolated from Avicennia marina, which grows in the desert of the United Arab Emirates. The compound was purified by chromatography and identified by spectroscopy. Compared with a negative control, lupeol caused significant (p < .001) growth inhibitory activity on MCF-7 and Hep3B parental and resistant cells by 45%, 46%, 72%, and 35%, respectively. The mechanism of action of lupeol was further explored by measuring its effect on key players in cancer development and progression, BCL-2 anti-apoptotic and BAX pro-apoptotic proteins. Lupeol significantly (p < .01) downregulated BCL-2 gene expression in parental and resistant Hep3B cells by 33 and 3.5 times, respectively, contributing to the induction of apoptosis in Hep3B cells, whereas it caused no effect on BAX. Furthermore, the immunoblotting analysis revealed that lupeol cleaved the executioner caspase-3 into its active form. Interestingly, lupeol showed no significant effect on the proliferation of monocytes, whereas it caused an increase in the sub-G1 population and a reduction in the apoptosis rates of monocytes at 48 and 72 h, indicative of no immuno-inflammatory responses. Collectively, lupeol can be considered as promising effective and safe anticancer agent, particularly against Hep3B cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Avicennia/química , Triterpenos Pentacíclicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Células MCF-7 , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Triterpenos Pentacíclicos/aislamiento & purificación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factores de Tiempo
9.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34445763

RESUMEN

Unfortunately, COVID-19 is still a threat to humankind and has a dramatic impact on human health, social life, the world economy, and food security. With the limited number of suggested therapies under clinical trials, the discovery of novel therapeutic agents is essential. Here, a previously identified anti-SARS-CoV-2 compound named Compound 13 (1,2,5-Oxadiazole-3-carboximidic acid, 4,4'-(methylenediimino) bis,bis[[(2-hydroxyphenyl)methylene]hydrazide) was subjected to an iterated virtual screening against SARS-CoV-2 Mpro using a combination of Ligand Designer and PathFinder. PathFinder, a computational reaction enumeration tool, was used for the rapid generation of enumerated structures via default reaction library. Ligand designer was employed for the computerized lead optimization and selection of the best structural modification that resulted in a favorable ligand-protein complex. The obtained compounds that showed the best binding to Mpro were re-screened against TMPRSS2, leading to the identification of 20 shared compounds. The compounds were further visually inspected, which resulted in the identification of five shared compounds M1-5 with dual binding affinity. In vitro evaluation and enzyme inhibition assay indicated that M3, an analogue of Compound 13 afforded by replacing the phenolic moiety with pyridinyl, possesses an improved antiviral activity and safety. M3 displayed in vitro antiviral activity with IC50 0.016 µM and Mpro inhibition activity with IC50 0.013 µM, 7-fold more potent than the parent Compound 13 and potent than the antivirals drugs that are currently under clinical trials. Moreover, M3 showed potent activity against human TMPRSS2 and furin enzymes with IC50 0.05, and 0.08 µM, respectively. Molecular docking, WaterMap analysis, molecular dynamics simulation, and R-group analysis confirmed the superiority of the binding fit to M3 with the target enzymes. WaterMap analysis calculated the thermodynamic properties of the hydration site in the binding pocket that significantly affects the biological activity. Loading M3 on zinc oxide nanoparticles (ZnO NPs) increased the antiviral activity of the compound 1.5-fold, while maintaining a higher safety profile. In conclusion, lead optimized discovery following an iterated virtual screening in association with molecular docking and biological evaluation revealed a novel compound named M3 with promising dual activity against SARS-CoV-2. The compound deserves further investigation for potential clinical-based studies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores de Proteasas/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Pruebas de Enzimas , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Serina Endopeptidasas/metabolismo
10.
Molecules ; 25(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213931

RESUMEN

Candida is the most common fungal class, causing both superficial and invasive diseases in humans. Although Candida albicans is the most common cause of fungal infections in humans, C. auris is a new emergent serious pathogen causing complications similar to those of C. albicans. Both C. albicans and C. auris are associated with high mortality rates, mainly because of their multidrug-resistance patterns against most available antifungal drugs. Although several compounds were designed against C. albicans, very few or none were tested on C. auris. Therefore, it is urgent to develop novel effective antifungal drugs that can accommodate not only C. albicans, but also other Candida spp., particularly newly emergent one, including C. auris. Inspired by the significant broad-spectrum antifungal activities of the essential oil cuminaldehyde and the reported wide incorporation of azoles in the antifungal drugs, a series of compounds (UoST1-11) was designed and developed. The new compounds were designed to overcome the toxicity of the aldehyde group of cuminaldehyde and benefit from the antifungal selectivity of azoles. The new developed UoST compounds showed significant anti-Candida activities against both Candida species. The best candidate compound, UoST5, was further formulated into polymeric nanoparticles (NPs). The new formula, UoST5-NPs, showed similar activities to the nanoparticles-free drug, while providing only 25% release after 24 h, maintainng prolonged activity up to 48 h and affording no toxicity. In conclusion, new azole formulations with significantly enhanced activities against C. albicans and C. auris, while maintaining prolonged action and no toxicities at lower concentrations, were developed.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida/efectos de los fármacos , Aceites Volátiles/química , Farmacorresistencia Fúngica Múltiple , Pruebas de Sensibilidad Microbiana
11.
Appl Environ Microbiol ; 81(24): 8402-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26431970

RESUMEN

Bacteria in the genus Streptomyces and its close relatives are prolific producers of secondary metabolites with antibiotic activity. Genome sequencing of these bacteria has revealed a rich source of potentially new antibiotic pathways, whose products have never been observed. Moreover, these new pathways can provide novel genes that could be used in combinatorial biosynthesis approaches to generate unnatural analogues of existing antibiotics. We explore here the use of multiple orthologous integrating plasmid systems, based on the int/attP loci from phages TG1, SV1, and ϕBT1, to express the polyketide synthase (PKS) for erythromycin in a heterologous Streptomyces host. Streptomyces strains containing the three polyketide synthase genes eryAI, eryAII, and eryAIII expressed from three different integrated plasmids produced the aglycone intermediate, 6-deoxyerythronolide B (6-dEB). A further pair of integrating plasmids, both derived from the ϕC31 int/attP locus, were constructed carrying a gene cassette for glycosylation of the aglycone intermediates, with or without the tailoring gene, eryF, required for the synthesis of erythronolide B (EB). Liquid chromatography-mass spectrometry of the metabolites indicated the production of angolosaminyl-6-dEB and angolosaminyl-EB. The advantages of using multiplexed integrating plasmids for engineering expression and for combinatorial biosynthesis were demonstrated.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Eritromicina/metabolismo , Plásmidos/genética , Streptomyces/metabolismo , Proteínas Bacterianas/biosíntesis , Cromatografía Liquida , Eritromicina/análogos & derivados , Eritromicina/biosíntesis , Ingeniería Genética , Glicosilación , Espectrometría de Masas , Complejos Multienzimáticos/metabolismo , Familia de Multigenes/genética , Streptomyces/genética
12.
BMC Biotechnol ; 14: 51, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24885867

RESUMEN

BACKGROUND: Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely, particularly for cloning genes in Streptomyces spp. RESULTS: We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails to generate stable integrants in S. venezuelae, the natural host for phage SV1. CONCLUSION: pBF3 promises to be a useful addition to the range of integrating vectors currently available for Streptomyces molecular genetics.


Asunto(s)
Bacteriófagos/genética , Vectores Genéticos/metabolismo , Streptomyces/metabolismo , Sitios de Ligazón Microbiológica/genética , Secuencia de Bases , Integrasas/química , Integrasas/genética , Integrasas/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
13.
Mycologia ; : 1-21, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024116

RESUMEN

Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.

14.
Sci Rep ; 14(1): 253, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167685

RESUMEN

Breast cancer is one of the leading causes of death in females, mainly because of metastasis. Oncometabolites, produced via metabolic reprogramming, can influence metastatic signaling cascades. Accordingly, and based on our previous results, we propose that metabolites from highly metastatic breast cancer cells behave differently from less-metastatic cells and may play a significant role in metastasis. For instance, we aim to identify these metabolites and their role in breast cancer metastasis. Less metastatic cells (MCF-7) were treated with metabolites secreted from highly metastatic cells (MDA-MB-231) and the gene expression of three epithelial-to-mesenchymal transition (EMT) markers including E-cadherin, N-cadherin and vimentin were examined. Some metabolites secreted from MDA-MB-231 cells significantly induced EMT activity. Specifically, hypoxanthine demonstrated a significant EMT effect and increased the migration and invasion effects of MCF-7 cells through a hypoxia-associated mechanism. Hypoxanthine exhibited pro-angiogenic effects via increasing the VEGF and PDGF gene expression and affected lipid metabolism by increasing the gene expression of PCSK-9. Notably, knockdown of purine nucleoside phosphorylase, a gene encoding for an important enzyme in the biosynthesis of hypoxanthine, and inhibition of hypoxanthine uptake caused a significant decrease in hypoxanthine-associated EMT effects. Collectively for the first time, hypoxanthine was identified as a novel metastasis-associated metabolite in breast cancer cells and represents a promising target for diagnosis and therapy.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Espectroscopía de Protones por Resonancia Magnética , Células MCF-7 , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Hipoxantinas/farmacología
15.
Curr Pharm Biotechnol ; 24(12): 1568-1575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36809955

RESUMEN

BACKGROUND: Rhizopus delemar, the main causative pathogen for the lethal mucormycosis and a severe threat during the COVID-19 pandemic, is resistant to most antifungals, including fluconazole, a known selective antifungal drug. On the other hand, antifungals are known to enhance fungal melanin synthesis. Rhizopus melanin plays an important role in fungal pathogenesis and in escaping the human defense mechanism, thus complicating the use of current antifungal drugs and fungal eradication. Because of drug resistance and the slow discovery of effective antifungals, sensitizing the activity of older ones seems a more promising strategy. METHODS: In this study, a strategy was employed to revive the use and enhance the effectiveness of fluconazole against R. delemar. UOSC-13, a compound synthesized in-house to target the Rhizopus melanin, was combined with fluconazole either as is or after encapsulation in poly (lactic-coglycolic acid) nanoparticles (PLG-NPs). Both combinations were tested for the growth of R. delemar, and the MIC50 values were calculated and compared. RESULTS: The activity of fluconazole was found to be enhanced several folds following the use of both combined treatment and nanoencapsulation. The combination of fluconazole with UOSC-13 caused a 5-fold reduction in the MIC50 value of fluconazole. Furthermore, encapsulating UOSC-13 in PLG-NPs enhanced the activity of fluconazole by an additional 10 folds while providing a wide safety profile. CONCLUSION: Consistent with previous reports, the encapsulation of fluconazole without sensitization showed no significant difference in activity. Collectively, sensitization of fluconazole represents a promising strategy to revive the use of outdated antifungal drugs back in the market.


Asunto(s)
COVID-19 , Fluconazol , Humanos , Fluconazol/farmacología , Fluconazol/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Melaninas , Pandemias , Rhizopus , Pruebas de Sensibilidad Microbiana
16.
Polymers (Basel) ; 15(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111983

RESUMEN

The aim of this study was to evaluate the adhesion and biofilm formation of Candida albicans (C. albicans) on conventionally fabricated, milled, and 3D-printed denture base resin materials in order to determine the susceptibility of denture contamination during clinical use. Specimens were incubated with C. albicans (ATCC 10231) for 1 and 24 h. Adhesion and biofilm formation of C. albicans were assessed using the field emission scanning electron microscopy (FESEM). The XTT (2,3-(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) assay was used for the quantification of fungal adhesion and biofilm formation. The data were analyzed using GraphPad Prism 8.02 for windows. One-way ANOVA with Tukey's post hoc testing were performed with a statistical significance level set at α = 0.05. The quantitative XTT biofilm assay revealed significant differences in the biofilm formation of C. albicans between the three groups in the 24 h incubation period. The highest proportion of biofilm formation was observed in the 3D-printed group, followed by the conventional group, while the lowest candida biofilm formation was observed in the milled group. The difference in biofilm formation among the three tested dentures was statistically significant (p < 0.001). The manufacturing technique has an influence on the surface topography and microbiological properties of the fabricated denture base resin material. Additive 3D-printing technology results in increased candida adhesion and the roughest surface topography of maxillary resin denture base as compared to conventional flask compression and CAD/CAM milling techniques. In a clinical setting, patients wearing additively manufactured maxillary complete dentures are thus more susceptible to the development of candida-associated denture stomatitis and accordingly, strict oral hygiene measures and maintenance programs should be emphasized to patients.

17.
Colloids Surf B Biointerfaces ; 227: 113357, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210795

RESUMEN

Functionalized metal oxide nanoparticles (NPs) have demonstrated specific binding affinity to antigens or receptors presented on the cancer cell surface, favouring selective targeting and minimizing side effects during the chemotherapy. Placenta-specific protein 1 (PLAC-1) is a small cell surface protein overexpressed in certain types of breast cancer (BC); therefore, it can be used as a therapeutic target. The objective of this study is to develop NPs that can bind PLAC-1 and hence can inhibit the progression and metastatic potential of BC cells. Zinc oxide (ZnO) NPs were coated with a peptide (GILGFVFTL), which possesses a strong binding ability to PLAC-1. The physical attachment of the peptide to ZnO NPs was verified through various physicochemical and morphological characterization techniques. The selective cytotoxicity of the designed NPs was investigated using PLAC-1-bearing MDA-MB 231 human BC cell line and compared to LS-180 cells that do not express PLAC-1. The anti-metastatic and pro-apoptotic effects of the functionalized NPs on MDA-MB 231 cells were examined. Confocal microscopy was used to investigate the mechanism of NPs uptake by MDA-MB 231 cells. Compared to non-functionalized NPs, peptide functionalization significantly improved the targeting and uptake of the designed NPs by PLAC-1-expressing cancer cells with significant pro-apoptotic and anti-metastatic effects. The uptake of peptide functionalized ZnO NPs (ZnO-P NPs) occurred via peptide-PLAC1 interaction-assisted clathrin-mediated endocytosis. These findings highlight the potential targeted therapy of ZnO-P NPs against PLAC-1-expressing breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Nanopartículas , Proteínas Gestacionales , Óxido de Zinc , Humanos , Femenino , Óxido de Zinc/farmacología , Óxido de Zinc/química , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas/química , Nanopartículas del Metal/química , Péptidos/farmacología
18.
J Colloid Interface Sci ; 630(Pt A): 698-713, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274405

RESUMEN

Colorectal cancer (CRC) accounts for approximately 10% of all new cancer cases worldwide with significant morbidity and mortality. The current imaging techniques are lacking diagnostic precision while traditional chemotherapeutic strategies are limited by their adverse side effects and poor response in advanced stages. Targeted nanoparticles (NPs) can specifically bind to surface antigens on cancer cells and provide effective delivery of diagnostic and chemotherapeutic agent. Placenta-specific protein 1 (PLAC-1) is overexpressed in CRC and can be used as a target for detection and treatment of the disease. The aim of this work was to develop a targeted nanotheranostic agent for early diagnosis and inhibition of the malignant progression and metastasis of CRC. Graphene oxide quantum dots (QD) were covalently labeled with a peptide (GILGFVFTL) having high affinity to PLAC-1. The covalent coupling between the QD and the peptide was confirmed using a series of physicochemical and morphological characterization techniques. Confocal microscopy was used to evaluate the uptake of QD and QD-P in HCT-29, HT-116 and LS-180 CRC cell lines. Selective targeting of antigen PLAC-1 overexpressed on HT-29 and HCT-116 cells was measured by immunofluorescence. Cell proliferation, cell invasion and extent of PLAC-1 expression in CRC cells after treatment with QD and QD-P were determined. The prepared QD-P showed a significant increase in targeting and specific uptake in cells expressing the antigen PLAC-1 compared to non-functionalized QD. Treatment with QD-P also increased the cell cytotoxicity, reduced the invasiveness of HT-29 and HCT-116 cells by 38% and 62%, respectively, and downregulated the expression of PLAC-1 by 53% and 33%, respectively. These results highlight the potential use of QD-P as a theranostic agent for the detection and treatment of CRC cells expressing the antigen PLAC-1.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Medicina de Precisión , Péptidos/química , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/tratamiento farmacológico
19.
Int J Biol Macromol ; 253(Pt 2): 126706, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673144

RESUMEN

Helicobacter pylori (H. pylori) is a causative agent of various gastrointestinal diseases and eradication mainly relies on antibiotic treatment, with (AMX) being a key component. However, rising antibiotic resistance in H. pylori necessitates the use of antibiotics combination therapy, often disrupting gut microbiota equilibrium leading to further health complications. This study investigates a novel strategy utilizing AMX-loaded chitosan nanoparticles (AMX-CS NPs), co-administered with prebiotic inulin to counteract H. pylori infection while preserving microbiota health. Following microbroth dilution method, AMX displayed efficacy against H. pylori, with a MIC50 of 48.34 ± 3.3 ng/mL, albeit with a detrimental impact on Lactobacillus casei (L. casei). The co-administration of inulin (500 µg/mL) with AMX restored L. casei viability while retaining the lethal effect on H. pylori. Encapsulation of AMX in CS-NPs via ionic gelation method, resulted in particles of 157.8 ± 3.85 nm in size and an entrapment efficiency (EE) of 86.44 ± 2.19 %. Moreover, AMX-CS NPs showed a sustained drug release pattern over 72 h with no detectable toxicity on human dermal fibroblasts cell lines. Encapsulation of AMX into CS NPs also reduced its MIC50 against H. pylori, while its co-administration with inulin maintained L. casei viability. Interestingly, treatment with AMX-CS NPs also reduced the expression of the efflux pump gene hefA in H. pylori. This dual treatment strategy offers a promising approach for more selective antimicrobial treatment, minimizing disruption to healthy microbial communities while effectively addressing pathogenic threats.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Nanopartículas , Humanos , Amoxicilina/farmacología , Quitosano/farmacología , Inulina/farmacología , Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Farmacorresistencia Microbiana
20.
J Microencapsul ; 29(7): 650-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22533485

RESUMEN

The aim of this study was to incorporate human recombinant erythropoietin (EPO) in biodegradable polymeric nanoparticles targeting a prolonged-release effect. EPO-loaded poly(DL-lactide-co-glycolide) nanoparticles were prepared using double emulsion method (w/o/w) with least process-related stress on the encapsulated drug. The nanoparticles have been fully characterized including in vitro release profile. The biological activity was assessed in vivo using BALB-c mice. The produced particles appeared spherical in shape with smooth regular surfaces and had an average particle size of 225.9 ± 3.8 nm. The entrapment efficiency was 33.3%. The in vitro release profile exhibited a biphasic mode with a burst of 50% cumulative drug release, followed by a slow rate of release over 24 h, reaching a maximum of 82%. The bioassay results showed that EPO-loaded nanoparticles were able to maintain the physiological activity of EPO for 14 days after single subcutaneous injection compared with pure and marketed EPO formulae (EPREX®).


Asunto(s)
Eritropoyetina/farmacología , Eritropoyetina/farmacocinética , Nanopartículas , Animales , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Emulsiones/farmacocinética , Emulsiones/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA