Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EBioMedicine ; 94: 104692, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451904

RESUMEN

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Asunto(s)
Síndrome de Down , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Envejecimiento , Diferenciación Celular , Síndrome de Down/genética , Quinasas DyrK
2.
Front Cell Dev Biol ; 10: 982609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619858

RESUMEN

Immunoglobulin G is posttranslationally modified by the addition of complex N-glycans affecting its function and mediating inflammation at multiple levels. IgG glycome composition changes with age and health in a predictive pattern, presumably due to inflammaging. As a result, a novel biological aging biomarker, glycan clock of age, was developed. Glycan clock of age is the first of biological aging clocks for which multiple studies showed a possibility of clock reversal even with simple lifestyle interventions. However, none of the previous studies determined to which extent the glycan clock can be turned, and how much is fixed by genetic predisposition. To determine the contribution of genetic and environmental factors to phenotypic variation of the glycan clock, we performed heritability analysis on two TwinsUK female cohorts. IgG glycans from monozygotic and dizygotic twin pairs were analyzed by UHPLC and glycan age was calculated using the glycan clock. In order to determine additive genetic, shared, and unique environmental contributions, a classical twin design was applied. Heritability of the glycan clock was calculated for participants of one cross-sectional and one longitudinal cohort with three time points to assess the reliability of measurements. Heritability estimate for the glycan clock was 39% on average, suggesting a moderate contribution of additive genetic factors (A) to glycan clock variation. Remarkably, heritability estimates remained approximately the same in all time points of the longitudinal study, even though IgG glycome composition changed substantially. Most environmental contributions came from shared environmental factors (C), with unique environmental factors (E) having a minor role. Interestingly, heritability estimates nearly doubled, to an average of 71%, when we included age as a covariant. This intervention also inflated the estimates of unique environmental factors contributing to glycan clock variation. A complex interplay between genetic and environmental factors defines alternative IgG glycosylation during aging and, consequently, dictates the glycan clock's ticking. Apparently, environmental factors (including lifestyle choices) have a strong impact on the biological age measured with the glycan clock, which additionally clarifies why this aging clock is one of the most potent biomarkers of biological aging.

3.
Aging (Albany NY) ; 14(2): 623-659, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073279

RESUMEN

Biological age (BA), a measure of functional capacity and prognostic of health outcomes that discriminates between individuals of the same chronological age (chronAge), has been estimated using a variety of biomarkers. Previous comparative studies have mainly used epigenetic models (clocks), we use ~1000 participants to compare fifteen omics ageing clocks, with correlations of 0.21-0.97 with chronAge, even with substantial sub-setting of biomarkers. These clocks track common aspects of ageing with 95% of the variance in chronAge being shared among clocks. The difference between BA and chronAge - omics clock age acceleration (OCAA) - often associates with health measures. One year's OCAA typically has the same effect on risk factors/10-year disease incidence as 0.09/0.25 years of chronAge. Epigenetic and IgG glycomics clocks appeared to track generalised ageing while others capture specific risks. We conclude BA is measurable and prognostic and that future work should prioritise health outcomes over chronAge.


Asunto(s)
Envejecimiento , Epigénesis Genética , Envejecimiento/genética , Relojes Biológicos , Biomarcadores , Metilación de ADN , Epigenómica , Humanos
4.
Exp Suppl ; 112: 259-287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34687013

RESUMEN

Defining the genetic components that control glycosylation of the human immunoglobulin G (IgG) is an ongoing effort, which has so far been addressed by means of heritability, linkage and genome-wide association studies (GWAS). Unlike the synthesis of proteins, N-glycosylation biosynthesis is not a template-driven process, but rather a complex process regulated by both genetic and environmental factors. Current heritability studies have shown that while up to 75% of the variation in levels of some IgG glycan traits can be explained by genetics, some glycan traits are completely defined by environmental influences. Advances in both high-throughput genotyping and glycan quantification methods have enabled genome-wide association studies that are increasingly used to estimate associations of millions of single-nucleotide polymorphisms and glycosylation traits. Using this method, 18 genomic regions have so far been robustly associated with IgG N-glycosylation, discovering associations with genes encoding glycosyltransferases, but also transcription factors, co-factors, membrane transporters and other genes with no apparent role in IgG glycosylation. Further computational analyses have shown that IgG glycosylation is likely to be regulated through the expression of glycosyltransferases, but have also for the first time suggested which transcription factors are involved in the process. Moreover, it was also shown that IgG glycosylation and inflammatory diseases share common underlying causal genetic variants, suggesting that studying genetic regulation of IgG glycosylation helps not only to better understand this complex process but can also contribute to understanding why glycans are changed in disease. However, further studies are needed to unravel whether changes in IgG glycosylation are causing these diseases or the changes in the glycome are caused by the disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Inmunoglobulina G , Glicosilación , Glicosiltransferasas/genética , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Polisacáridos
5.
Front Immunol ; 12: 680227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113353

RESUMEN

Glycans attached to immunoglobulin G (IgG) directly affect this antibody effector functions and regulate inflammation at several levels. The composition of IgG glycome changes significantly with age. In women, the most notable change coincides with the perimenopausal period. Aiming to investigate the effect of estrogen on IgG glycosylation, we analysed IgG and total serum glycomes in 36 healthy premenopausal women enrolled in a randomized controlled trial of the gonadotropin-releasing hormone analogue (GnRHAG) leuprolide acetate to lower gonadal steroids to postmenopausal levels and then randomized to transdermal placebo or estradiol (E2) patch. The suppression of gonadal hormones induced significant changes in the IgG glycome, while E2 supplementation was sufficient to prevent changes. The observed glycan changes suggest that depletion of E2 primarily affects B cell glycosylation, while liver glycosylation stays mostly unchanged. To determine whether previously identified IgG GWAS hits RUNX1, RUNX3, SPINK4, and ELL2 are involved in downstream signaling mechanisms, linking E2 with IgG glycosylation, we used the FreeStyle 293-F transient system expressing IgG antibodies with stably integrated CRISPR/dCas9 expression cassettes for gene up- and downregulation. RUNX3 and SPINK4 upregulation using dCas9-VPR resulted in a decreased IgG galactosylation and, in the case of RUNX3, a concomitant increase in IgG agalactosylation.


Asunto(s)
Estradiol/farmacología , Inmunoglobulina G/metabolismo , Adulto , Línea Celular , Femenino , Glicosilación/efectos de los fármacos , Hormonas Esteroides Gonadales/metabolismo , Humanos , Inmunoglobulina G/inmunología , Persona de Mediana Edad , Polisacáridos/metabolismo , Transducción de Señal/efectos de los fármacos
6.
EBioMedicine ; 74: 103730, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34883445

RESUMEN

BACKGROUND: parent-of-origin effects (POE) play important roles in complex disease and thus understanding their regulation and associated molecular and phenotypic variation are warranted. Previous studies mainly focused on the detection of genomic regions or phenotypes regulated by POE. Understanding whether POE may be modified by environmental or genetic exposures is important for understanding of the source of POE-associated variation, but only a few case studies addressing modifiable POE exist. METHODS: in order to understand this high order of POE regulation, we screened 101 genetic and environmental factors such as 'predicted mRNA expression levels' of DNA methylation/imprinting machinery genes and environmental exposures. POE-mQTL-modifier interaction models were proposed to test the potential of these factors to modify POE at DNA methylation using data from Generation Scotland: The Scottish Family Health Study(N=2315). FINDINGS: a set of vulnerable/modifiable POE-CpGs were identified (modifiable-POE-regulated CpGs, N=3). Four factors, 'lifetime smoking status' and 'predicted mRNA expression levels' of TET2, SIRT1 and KDM1A, were found to significantly modify the POE on the three CpGs in both discovery and replication datasets. We further identified plasma protein and health-related phenotypes associated with the methylation level of one of the identified CpGs. INTERPRETATION: the modifiable POE identified here revealed an important yet indirect path through which genetic background and environmental exposures introduce their effect on DNA methylation, motivating future comprehensive evaluation of the role of these modifiers in complex diseases. FUNDING: NSFC (81971270),H2020-MSCA-ITN(721815), Wellcome (204979/Z/16/Z,104036/Z/14/Z), MRC (MC_UU_00007/10, MC_PC_U127592696), CSO (CZD/16/6,CZB/4/276, CZB/4/710), SFC (HR03006), EUROSPAN (LSHG-CT-2006-018947), BBSRC (BBS/E/D/30002276), SYSU, Arthritis Research UK, NHLBI, NIH.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Epigenómica/métodos , Histona Demetilasas/genética , Sirtuina 1/genética , Islas de CpG , Regulación de la Expresión Génica , Impresión Genómica , Humanos , Estilo de Vida , Fenotipo , Sitios de Carácter Cuantitativo
7.
JCI Insight ; 5(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32897876

RESUMEN

ZIP8 is a metal transporter with a role in manganese (Mn) homeostasis. A common genetic variant in ZIP8 (rs13107325; A391T) ranks in the top 10 of pleiotropic SNPs identified in GWAS; A391T has associations with an increased risk of schizophrenia, obesity, Crohn's disease, and reduced blood Mn. Here, we used CRISPR/Cas9-mediated knockin (KI) to generate a mouse model of ZIP8 A391T (Zip8 393T-KI mice). Recapitulating the SNP association with blood Mn, blood Mn was reduced in Zip8 393T-KI mice. There was restricted abnormal tissue Mn homeostasis, with decreases in liver and kidney Mn and a reciprocal increase in biliary Mn, providing in vivo evidence of hypomorphic Zip8 function. Upon challenge in a chemically induced colitis model, male Zip8 393T-KI mice exhibited enhanced disease susceptibility. ZIP8 391-Thr associated with reduced triantennary plasma N-glycan species in a population-based cohort to define a genotype-specific glycophenotype hypothesized to be linked to Mn-dependent glycosyltransferase activity. This glycophenotype was maintained in a cohort of patients with Crohn's disease. These data and the pleiotropic disease associations with ZIP8 391-Thr suggest underappreciated roles of Mn homeostasis in complex human disease.


Asunto(s)
Proteínas de Transporte de Catión/genética , Enfermedad de Crohn/genética , Riñón/metabolismo , Manganeso/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Sulfato de Dextran/toxicidad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Homeostasis/genética , Humanos , Riñón/patología , Hígado/metabolismo , Hígado/patología , Masculino , Manganeso/sangre , Ratones , Polimorfismo de Nucleótido Simple/genética
8.
Acta Med Acad ; 48(2): 129-139, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31718213

RESUMEN

OBJECTIVES: In silico bioinformatical analysis suggested that the expression of two genes, CCL5 (C-C Motif Chemokine Receptor 5) and ep300 (Histone acetyltransferase p300), could be used as potential new biomarkers in differentiation between periapical granulomas and radicular cysts. Thus, we hypothesized that gene expression of CCL5 and ep300 in periapical lesions would classify the lesions as either granuloma or cyst. MATERIALS: Patient samples (n=122) included 46 periapical granulomas, 38 radicular cysts and 38 healthy gingival samples as controls. Real-time PCR analysis of CCL5 and ep300 transcripts was compared to SDHA (Succinate dehydrogenase complex, subunit A) as the reference. Clinical parameters (e.g., intensity of inflammation and lesion size) were measured and correlated with CCL5 and ep300 expression. ROC (Receiver operating characteristic) and logistic regression analyses were used to establish the diagnostic character of ΔCt values. RESULTS: Granulomas and radicular cysts had significantly higher expression of CCL5 and ep300 compared to controls (P<0.05). However, no differences were observed when comparing granulomas and radicular cysts. ROC analyses showed that CCL5 and ep300 have good diagnostic accuracy, but low accuracy for distinguishing between the lesions. CONCLUSIONS: This study confirmed that expression of CCL5 and ep300 is relevant for the pathogenesis of periapical inflammatory lesions but cannot be used as a distinctive marker between these lesions.


Asunto(s)
Quimiocina CCL5/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Granuloma Periapical/diagnóstico , Quiste Radicular/diagnóstico , Biomarcadores/metabolismo , Diagnóstico Diferencial , Encía/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA