Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360794

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.


Asunto(s)
Neuronas Motoras/enzimología , Atrofia Muscular Espinal/enzimología , Unión Neuromuscular/enzimología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Modelos Animales de Enfermedad , Activación Enzimática , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Proteínas Tirosina Quinasas Receptoras/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
2.
iScience ; 26(11): 108362, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965143

RESUMEN

Heterozygous mutations in the granulin (GRN) gene are a leading cause of frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Polymorphisms in TMEM106B have been associated with disease risk in GRN mutation carriers and protective TMEM106B variants associated with reduced levels of TMEM106B, suggesting that lowering TMEM106B might be therapeutic in the context of FTLD. Here, we tested the impact of full deletion and partial reduction of TMEM106B in mouse and iPSC-derived human cell models of GRN deficiency. TMEM106B deletion did not reverse transcriptomic or proteomic profiles in GRN-deficient microglia, with a few exceptions in immune signaling markers. Neither homozygous nor heterozygous Tmem106b deletion normalized disease-associated phenotypes in Grn -/-mice. Furthermore, Tmem106b reduction by antisense oligonucleotide (ASO) was poorly tolerated in Grn -/-mice. These data provide novel insight into TMEM106B and GRN function in microglia cells but do not support lowering TMEM106B levels as a viable therapeutic strategy for treating FTD-GRN.

3.
Ann Clin Transl Neurol ; 9(1): 50-66, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35014217

RESUMEN

OBJECTIVE: Dual leucine zipper kinase (DLK), which regulates the c-Jun N-terminal kinase pathway involved in axon degeneration and apoptosis following neuronal injury, is a potential therapeutic target in amyotrophic lateral sclerosis (ALS). This first-in-human study investigated safety, tolerability, and pharmacokinetics (PK) of oral GDC-0134, a small-molecule DLK inhibitor. Plasma neurofilament light chain (NFL) levels were explored in GDC-0134-treated ALS patients and DLK conditional knockout (cKO) mice. METHODS: The study included placebo-controlled, single and multiple ascending-dose (SAD; MAD) stages, and an open-label safety expansion (OLE) with adaptive dosing for up to 48 weeks. RESULTS: Forty-nine patients were enrolled. GDC-0134 (up to 1200 mg daily) was well tolerated in the SAD and MAD stages, with no serious adverse events (SAEs). In the OLE, three study drug-related SAEs occurred: thrombocytopenia, dysesthesia (both Grade 3), and optic ischemic neuropathy (Grade 4); Grade ≤2 sensory neurological AEs led to dose reductions/discontinuations. GDC-0134 exposure was dose-proportional (median half-life = 84 h). Patients showed GDC-0134 exposure-dependent plasma NFL elevations; DLK cKO mice also exhibited plasma NFL compared to wild-type littermates. INTERPRETATION: This trial characterized GDC-0134 safety and PK, but no adequately tolerated dose was identified. NFL elevations in GDC-0134-treated patients and DLK cKO mice raised questions about interpretation of biomarkers affected by both disease and on-target drug effects. The safety profile of GDC-0134 was considered unacceptable and led to discontinuation of further drug development for ALS. Further work is necessary to understand relationships between neuroprotective and potentially therapeutic effects of DLK knockout/inhibition and NFL changes in patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Proteínas de Neurofilamentos/sangre , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Adulto , Anciano , Esclerosis Amiotrófica Lateral/sangre , Animales , Biomarcadores/sangre , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/deficiencia , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Inhibidores de Proteínas Quinasas/farmacocinética
4.
J Med Chem ; 58(20): 8182-99, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26431428

RESUMEN

Recent data suggest that inhibition of dual leucine zipper kinase (DLK, MAP3K12) has therapeutic potential for treatment of a number of indications ranging from acute neuronal injury to chronic neurodegenerative disease. Thus, high demand exists for selective small molecule DLK inhibitors with favorable drug-like properties and good CNS penetration. Herein we describe a shape-based scaffold hopping approach to convert pyrimidine 1 to a pyrazole core with improved physicochemical properties. We also present the first crystal structures of DLK. By utilizing a combination of property and structure-based design, we identified inhibitor 11, a potent, selective, and brain-penetrant inhibitor of DLK with activity in an in vivo nerve injury model.


Asunto(s)
Encéfalo/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Animales , Barrera Hematoencefálica , Descubrimiento de Drogas , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Enfermedades Neurodegenerativas/tratamiento farmacológico , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Difracción de Rayos X
5.
J Med Chem ; 58(1): 401-18, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25341110

RESUMEN

Dual leucine zipper kinase (DLK, MAP3K12) was recently identified as an essential regulator of neuronal degeneration in multiple contexts. Here we describe the generation of potent and selective DLK inhibitors starting from a high-throughput screening hit. Using proposed hinge-binding interactions to infer a binding mode and specific design parameters to optimize for CNS druglike molecules, we came to focus on the di(pyridin-2-yl)amines because of their combination of desirable potency and good brain penetration following oral dosing. Our lead inhibitor GNE-3511 (26) displayed concentration-dependent protection of neurons from degeneration in vitro and demonstrated dose-dependent activity in two different animal models of disease. These results suggest that specific pharmacological inhibition of DLK may have therapeutic potential in multiple indications.


Asunto(s)
Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Degeneración Nerviosa/prevención & control , Enfermedades Neurodegenerativas/prevención & control , Inhibidores de Proteínas Quinasas/farmacología , Animales , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Modelos Químicos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Ratas
6.
J Cell Biol ; 202(5): 747-63, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23979718

RESUMEN

Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, specific sites throughout the length of DLK underwent phosphorylation by c-Jun N-terminal kinases (JNKs), which have been shown to be downstream targets of DLK pathway activity. These phosphorylation events resulted in increased DLK abundance via reduction of DLK ubiquitination, which was mediated by the E3 ubiquitin ligase PHR1 and the de-ubiquitinating enzyme USP9X. Abundance of DLK in turn controlled the levels of downstream JNK signaling and apoptosis. Through this feedback mechanism, the ubiquitin-proteasome system is able to provide an additional layer of regulation of retrograde stress signaling to generate a global cellular response to localized external insults.


Asunto(s)
Apoptosis , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Células Receptoras Sensoriales/enzimología , Células Receptoras Sensoriales/patología , Ubiquitinación , Animales , Apoptosis/efectos de los fármacos , Axones/efectos de los fármacos , Axones/patología , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Peso Molecular , Compresión Nerviosa , Factor de Crecimiento Nervioso/farmacología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Fosforilación/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacos
7.
J Cell Biol ; 194(5): 751-64, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21893599

RESUMEN

The c-Jun N-terminal kinase (JNK) signaling pathway is essential for neuronal degeneration in multiple contexts but also regulates neuronal homeostasis. It remains unclear how neurons are able to dissociate proapoptotic JNK signaling from physiological JNK activity. In this paper, we show that the mixed lineage kinase dual leucine zipper kinase (DLK) selectively regulates the JNK-based stress response pathway to mediate axon degeneration and neuronal apoptosis without influencing other aspects of JNK signaling. This specificity is dependent on interaction of DLK with the scaffolding protein JIP3 to form a specialized JNK signaling complex. Local activation of DLK-based signaling in the axon results in phosphorylation of c-Jun and apoptosis after redistribution of JNK to the cell body. In contrast, regulation of axon degeneration by DLK is c-Jun independent and mediated by distinct JNK substrates. DLK-null mice displayed reduced apoptosis in multiple neuronal populations during development, demonstrating that prodegenerative DLK signaling is required in vivo.


Asunto(s)
Apoptosis/fisiología , Sistema Nervioso Central/embriología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Axones/metabolismo , Axones/patología , Axones/fisiología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ganglios Espinales/patología , Proteínas de Homeodominio/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/deficiencia , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Factor de Crecimiento Nervioso/deficiencia , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Unión Proteica/fisiología , Inhibidores de Proteínas Quinasas/farmacocinética , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño/genética , Médula Espinal/embriología , Médula Espinal/metabolismo , Médula Espinal/patología , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA