Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 106: 111-136, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31018155

RESUMEN

Thyroid hormones (THs; T3 and T4) play a role in development of cardiovascular, reproductive, immune and nervous systems. Thus, interpretation of TH changes from rodent studies (during pregnancy, in fetuses, neonates, and adults) is critical in hazard characterization and risk assessment. A roundtable session at the 2017 Society of Toxicology (SOT) meeting brought together academic, industry and government scientists to share knowledge and different perspectives on technical and data interpretation issues. Data from a limited group of laboratories were compiled for technical discussions on TH measurements, including good practices for reliable serum TH data. Inter-laboratory historical control data, derived from immunoassays or mass spectrometry methods, revealed: 1) assay sensitivities vary within and across methodologies; 2) TH variability is similar across animal ages; 3) laboratories generally achieve sufficiently sensitive TH quantitation levels, although issues remain for lower levels of serum TH and TSH in fetuses and postnatal day 4 pups; thus, assay sensitivity is critical at these life stages. Best practices require detailed validation of rat serum TH measurements across ages to establish assay sensitivity and precision, and identify potential matrix effects. Finally, issues related to data interpretation for biological understanding and risk assessment were discussed, but their resolution remains elusive.


Asunto(s)
Glándula Tiroides/efectos de los fármacos , Tiroxina/efectos adversos , Triyodotironina/efectos adversos , Animales , Humanos , Inmunoensayo , Espectrometría de Masas , Medición de Riesgo , Tiroxina/administración & dosificación , Triyodotironina/administración & dosificación
2.
Cerebellum ; 14(6): 624-31, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25700682

RESUMEN

The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformations are almost exclusively found along the primary fissure and are indicative of deficits of neuronal migration during cerebellar development. In the present report, we test the prediction that genetically engineered rats on Sprague-Dawley or Long-Evans backgrounds will also exhibit the same cerebellar malformations. Consistent with our hypothesis, we found that three different transgenic lines on two different backgrounds had cerebellar malformations. Heterotopia in transgenic rats had identical cytoarchitecture as that observed in wild-type rats including altered morphology of Bergmann glia. In light of the possibility that heterotopia could affect results from behavioral studies, these data suggest that histological analyses be performed in studies of cerebellar function or development when using genetically engineered rats on these backgrounds in order to have more careful interpretation of experimental findings.


Asunto(s)
Vermis Cerebeloso/anomalías , Ratas Transgénicas , Animales , Vermis Cerebeloso/patología , Neuroglía/patología , Ratas Long-Evans , Ratas Sprague-Dawley , Especificidad de la Especie
3.
Toxicol Sci ; 198(1): 128-140, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38070162

RESUMEN

Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.


Asunto(s)
Hipotiroidismo , MicroARNs , Síndromes de Neurotoxicidad , Animales , Femenino , Masculino , Embarazo , Ratas , Encéfalo , Hipotiroidismo/inducido químicamente , MicroARNs/genética , Síndromes de Neurotoxicidad/etiología , Hormonas Tiroideas , Tiroxina , Regulación hacia Arriba
4.
Environ Int ; 190: 108838, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38963985

RESUMEN

Known as "forever chemicals", per- and polyfluoroalkyl substances (PFAS) are synthetic compounds used in consumer goods but pose significant public health concerns, including disruption of the thyroid system. As thyroid hormones (THs) are required for normal brain development, PFAS may also be developmental neurotoxicants. However, this is not well understood. Here we examine the endocrine and neurodevelopmental consequences of perfluorohexane sulfonate (PFHxS) exposure in pregnant, lactating, and developing rats, and compare its effects to an anti-thyroid pharmaceutical (propylthiouracil, PTU) that induces thyroid-mediated developmental neurotoxicity. We show that PFHxS dramatically reduces maternal serum thyroxine (T4), nearly equivalently to PTU (-55 and -51%, respectively). However, only PTU increases thyroid stimulating hormone. The lactational transfer of PFHxS is significant and reduces pup serum T4 across the postnatal period. Surprisingly, brain THs are only minimally decreased by PFHxS, whereas PTU drastically diminishes them. Evaluation of brain TH action by phenotyping, RNA-Sequencing, and quantification of radial glia cell morphology supports that PTU interrupts TH signaling while PFHxS has limited to no effect. These data show that PFHxS induces abnormal serum TH profiles; however, there were no indications of hypothyroidism in the postnatal brain. We suggest the stark differences between the neurodevelopmental effects of PFHxS and a typical antithyroid agent may be due to its interaction with TH distributing proteins like transthyretin.

5.
Toxicol Sci ; 198(1): 113-127, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38145495

RESUMEN

The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.


Asunto(s)
Compuestos de Amonio Cuaternario , Resiliencia Psicológica , Glándula Tiroides , Embarazo , Femenino , Ratas , Animales , Percloratos/toxicidad , Percloratos/metabolismo , Animales Recién Nacidos , Hormonas Tiroideas
6.
Toxics ; 11(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38133428

RESUMEN

Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements induced by pharmaceuticals that reduce the hormone synthesis enzyme thyroperoxidase. In this report, we extend these observations to the environmental contaminant perchlorate, an agent that interferes with thyroid status by inhibiting iodine uptake into the thyroid gland. Pregnant rat dams were administered perchlorate in their drinking water (0, 30, 100, 300, 1000 ppm) from gestational day (GD) 6 until the weaning of pups on postnatal day (PN) 21. Serum T4 was reduced in dams and fetuses in late gestation and remained lower in lactating dams. Pup serum and brain T4, however, were not reduced beyond PN0, and small PVHs were evident in the brains of offspring when assessed on PN14. To emulate the developmental time window of the brain in humans, a second study was conducted in which pups from perchlorate-exposed dams were administered perchlorate orally from PN0 to PN6. This treatment reduced serum and brain T4 in the pup and resulted in large PVH. A third study extended the period of serum and brain TH suppression in pups by coupling maternal perchlorate exposure with maternal dietary iodine deficiency (ID). No PVHs were evident in the pups from ID dams, small PVHs were observed in the offspring of dams exposed to 300 ppm of perchlorate, and very large PVHs were present in the brains of pups born to dams receiving ID and perchlorate. These findings underscore the importance of the inclusion of serum hormone profiles in pregnant dams and fetuses in in vivo screens for thyroid-system-disrupting chemicals and indicate that chemical-induced decreases in fetal rat serum that resolve in the immediate postnatal period may still harbor considerable concern for neurodevelopment in humans.

7.
Neurotoxicol Teratol ; 100: 107303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37777095

RESUMEN

Identifying xenobiotics that interrupt the thyroid axis has significant public health implications, given that thyroid hormones are required for brain development. As such, some developmental and reproductive toxicology (DART) studies now require or recommend serum total thyroxine (T4) measurements in pregnant, lactating, and developing rats. However, serum T4 concentrations are normally low in the fetus and pup which makes quantification difficult. These challenges can be circumvented by technologies like mass spectrometry, but these approaches are expensive and not always widely available. To demonstrate the feasibility of measuring T4 using a commercially available assay, we examine technical replicates of rat serum samples measured both by liquid chromatography mass spectrometry (LC/MS/MS) and radioimmunoassay (RIA). These samples were obtained from rats on gestational day 20 (dams and fetuses) or postnatal day 5 (pups), following maternal exposure to the goitrogen propylthiouracil (0-3 ppm) to incrementally decrease T4. We show that with assay modification, it is possible to measure serum T4 using low sample volumes (25-50 µL) by an RIA, including in the GD20 fetus exposed to propylthiouracil. This proof-of-concept study demonstrates the technical feasibility of measuring serum T4 in DART studies.


Asunto(s)
Tiroxina , Triyodotironina , Embarazo , Femenino , Ratas , Animales , Propiltiouracilo , Radioinmunoensayo/métodos , Espectrometría de Masas en Tándem/métodos , Lactancia , Feto
8.
Front Endocrinol (Lausanne) ; 14: 1090081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843608

RESUMEN

Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity. As radial glia mediate cell migration and originate in a progenitor cell niche called the ventricular zone (VZ), we hypothesized that TH action may control cell signaling in this region. Here we addressed this hypothesis by employing laser capture microdissection and RNA-Seq to evaluate the VZ during a known period of TH sensitivity. Pregnant rats were exposed to a low dose of propylthiouracil (PTU, 0.0003%) through the drinking water during pregnancy and lactation. Dam and pup THs were quantified postnatally and RNA-Seq of the VZ performed in neonates. The PTU exposure resulted in a modest increase in maternal thyroid stimulating hormone and reduced thyroxine (T4). Exposed neonates exhibited hypothyroidism and T4 and triiodothyronine (T3) were also reduced in the telencephalon. RNA-Seq identified 358 differentially expressed genes in microdissected VZ cells of hypothyroid neonates as compared to controls (q-values ≤0.05). Pathway analyses showed processes like maintenance of the extracellular matrix and cytoskeleton, cell adhesion, and cell migration were significantly affected by hypothyroidism. Immunofluorescence also demonstrated that collagen IV, F-actin, radial glia, and adhesion proteins were reduced in the VZ. Immunohistochemistry of integrin αvß3 and isoforms of both thyroid receptors (TRα/TRß) showed highly overlapping expression patterns, including enrichment in the VZ. Taken together, our results show that TH action targets multiple components of cell junctions in the VZ, and this may be mediated by both genomic and nongenomic mechanisms. Surprisingly, this work also suggests that the blood-brain and blood-cerebrospinal fluid barriers may also be affected in hypothyroid newborns.


Asunto(s)
Hipotiroidismo , Tiroxina , Embarazo , Femenino , Ratas , Animales , Animales Recién Nacidos , Tiroxina/metabolismo , Antitiroideos , Hormonas Tiroideas/metabolismo , Hipotiroidismo/metabolismo , Encéfalo/metabolismo , Uniones Intercelulares/metabolismo
9.
Toxicol Sci ; 188(1): 117-130, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35385113

RESUMEN

Iodine is essential for the production of thyroid hormones. Perchlorate is an environmental contaminant that interferes with iodine uptake into the thyroid gland to reduce thyroid hormone synthesis. As thyroid hormones are critical for brain development, exposure to perchlorate during pregnancy is of concern for the developing fetal brain. In this study, we (1) define profiles of thyroid hormone in the maternal and fetal compartments of pregnant rats in response to inhibition of the sodium-iodide symporter (NIS) by perchlorate and (2) expand inquiry previously limited to serum to include fetal thyroid gland and brain. Perchlorate was added to the drinking water (0, 1, 30, 300, and 1000 ppm) of pregnant rat dams from gestational days (GD) 6-20. On GD20, blood, thyroid gland, and brain were collected from the fetus and dam for thyroid hormone and molecular analyses. Thyroid gland and serum thyroid hormones were dose-dependently reduced, with steeper declines evident in the fetus than in the dam. The thyroid gland revealed perturbations of thyroid hormone-action with greater sensitivity in the fetus than the dam. Thyroid hormones and thyroid hormone-responsive gene expression were reduced in the fetal cortex portending effects on brain development. These findings are the first quantitative assessments of perchlorate-induced deficits in the fetal thyroid gland and fetal brain. We provide a conceptual framework to develop a quantitative NIS adverse outcome pathway for serum thyroid hormone deficits and the potential to impact the fetal brain. Such a framework may also serve to facilitate the translation of in vitro bioactivity to the downstream in vivo consequences of NIS inhibition in the developing fetus.


Asunto(s)
Yodo , Glándula Tiroides , Animales , Encéfalo , Femenino , Feto , Percloratos/metabolismo , Percloratos/toxicidad , Embarazo , Ratas , Hormonas Tiroideas
10.
Neurotoxicol Teratol ; 93: 107117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35908584

RESUMEN

To date, approximately 200 chemicals have been tested in US Environmental Protection Agency (EPA) or Organization for Economic Co-operation and Development (OECD) developmental neurotoxicity (DNT) guideline studies, leaving thousands of chemicals without traditional animal information on DNT hazard potential. To address this data gap, a battery of in vitro DNT new approach methodologies (NAMs) has been proposed. Evaluation of the performance of this battery will increase the confidence in its use to determine DNT chemical hazards. One approach to evaluate DNT NAM performance is to use a set of chemicals to evaluate sensitivity and specificity. Since a list of chemicals with potential evidence of in vivo DNT has been established, this study aims to develop a curated list of "negative" chemicals for inclusion in a "DNT NAM evaluation set". A workflow, including a literature search followed by an expert-driven literature review, was used to systematically screen 39 chemicals for lack of DNT effect. Expert panel members evaluated the scientific robustness of relevant studies to inform chemical categorizations. Following review, the panel discussed each chemical and made categorical determinations of "Favorable", "Not Favorable", or "Indeterminate" reflecting acceptance, lack of suitability, or uncertainty given specific limitations and considerations, respectively. The panel determined that 10, 22, and 7 chemicals met the criteria for "Favorable", "Not Favorable", and "Indeterminate", for use as negatives in a DNT NAM evaluation set. Ultimately, this approach not only supports DNT NAM performance evaluation but also highlights challenges in identifying large numbers of negative DNT chemicals.


Asunto(s)
Síndromes de Neurotoxicidad , Pruebas de Toxicidad , Animales , Síndromes de Neurotoxicidad/etiología , Proyectos de Investigación , Pruebas de Toxicidad/métodos , Estados Unidos , United States Environmental Protection Agency
11.
Toxicol Sci ; 183(1): 195-213, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34460931

RESUMEN

Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.


Asunto(s)
Fluorocarburos , Triclosán , Animales , Femenino , Fluorocarburos/toxicidad , Embarazo , Propiltiouracilo/toxicidad , Ratas , Glándula Tiroides , Tiroxina , Triclosán/toxicidad
12.
Mol Cell Endocrinol ; 518: 110663, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760043

RESUMEN

It is well documented that thyroid hormone (TH) action is critical for normal brain development and is mediated by both nuclear and extranuclear pathways. Given this dependence, the impact of environmental endocrine disrupting chemicals that interfere with thyroid signaling is a major concern with direct implications for children's health. However, identifying thyroid disrupting chemicals in vivo is primarily reliant on serum thyroxine (T4) measurements within greater developmental and reproductive toxicity assessments. These studies do not examine known TH-dependent phenotypes in parallel, which complicates chemical evaluation. Additionally, there exist no recommendations regarding what degree of serum T4 dysfunction is adverse, and little consideration is given to quantifying TH action within the developing brain. This review summarizes current testing strategies in rodent models and discusses new approaches for evaluating the developmental neurotoxicity of thyroid disrupting chemicals. This includes assays to identify adverse cellular effects of the brain by both immunohistochemistry and gene expression, which would compliment serum T4 measures. While additional experiments are needed to test the full utility of these approaches, incorporation of these cellular and molecular assays could enhance chemical evaluation in the regulatory arena.


Asunto(s)
Disruptores Endocrinos/toxicidad , Trastornos del Neurodesarrollo/inducido químicamente , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/fisiología , Animales , Bioensayo/métodos , Bioensayo/tendencias , Modelos Animales de Enfermedad , Humanos , Trastornos del Neurodesarrollo/etiología , Roedores , Transducción de Señal/efectos de los fármacos , Pruebas de Función de la Tiroides/métodos , Pruebas de Función de la Tiroides/tendencias , Glándula Tiroides/patología , Glándula Tiroides/fisiología , Hormonas Tiroideas/farmacología
13.
Endocrinology ; 161(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32615585

RESUMEN

Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Disruptores Endocrinos/toxicidad , Síndromes de Neurotoxicidad/prevención & control , Glándula Tiroides/efectos de los fármacos , Animales , Niño , Humanos , Neurogénesis/efectos de los fármacos , Ratas , Glándula Tiroides/fisiología
14.
Sci Rep ; 10(1): 2672, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060323

RESUMEN

Thyroid hormones are critical for mammalian brain development. Thus, chemicals that can affect thyroid hormone signaling during pregnancy are of great concern. Perfluorohexane sulfonate (PFHxS) is a widespread environmental contaminant found in human serum, breastmilk, and other tissues, capable of lowering serum thyroxine (T4) in rats. Here, we investigated its effects on the thyroid system and neurodevelopment following maternal exposure from early gestation through lactation (0.05, 5 or 25 mg/kg/day PFHxS), alone or in combination with a mixture of 12 environmentally relevant endocrine disrupting compounds (EDmix). PFHxS lowered thyroid hormone levels in both dams and offspring in a dose-dependent manner, but did not change TSH levels, weight, histology, or expression of marker genes of the thyroid gland. No evidence of thyroid hormone-mediated neurobehavioral disruption in offspring was observed. Since human brain development appear very sensitive to low T4 levels, we maintain that PFHxS is of potential concern to human health. It is our view that current rodent models are not sufficiently sensitive to detect adverse neurodevelopmental effects of maternal and perinatal hypothyroxinemia and that we need to develop more sensitive brain-based markers or measurable metrics of thyroid hormone-dependent perturbations in brain development.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Disruptores Endocrinos/farmacología , Hipotiroidismo/genética , Efectos Tardíos de la Exposición Prenatal/sangre , Hormonas Tiroideas/genética , Animales , Desarrollo Embrionario/genética , Disruptores Endocrinos/toxicidad , Femenino , Fluorocarburos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Hipotiroidismo/sangre , Hipotiroidismo/inducido químicamente , Masculino , Exposición Materna/efectos adversos , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ácidos Sulfónicos/farmacología , Ácidos Sulfónicos/toxicidad , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Hormonas Tiroideas/sangre , Tirotropina/sangre , Tiroxina/sangre
15.
Toxicol Sci ; 173(2): 280-292, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31697382

RESUMEN

Thyroperoxidase (TPO) is an enzyme essential for thyroid hormone (TH) synthesis and a target site for a number of xenobiotics that disrupt TH homeostasis. An in vitro high-throughput screening assay for TPO inhibition, the Amplex UltraRed-TPO (AUR-TPO), has been used to screen the ToxCast chemical libraries for this action. Output from this assay would be most useful if it could be readily translated into an in vivo response, namely a reduction of TH in serum. To this end, the relationship between TPO inhibition in vitro and serum TH decreases was examined in rats exposed to 2 classic TPO inhibitors, propylthiouracil (PTU) and methimazole (MMI). Serum and gland PTU, MMI, and TH levels were quantified using tandem liquid chromatography mass spectrometry. Thyroperoxidase activity was determined in thyroid gland microsomes treated with PTU or MMI in vitro and ex vivo from thyroid gland microsomes prepared from exposed animals. A quantitative model was constructed by contrasting in vitro and ex vivo AUR-TPO results and the in vivo time-course and dose-response analysis. In vitro:ex vivo correlations of AUR-TPO outputs indicated that less than 30% inhibition of TPO in vitro was sufficient to reduce serum T4 by 20%, a degree of regulatory significance. Although further testing of model estimates using other TPO inhibitors is essential for verification of these initial findings, the results of this study provide a means to translate in vitro screening assay results into predictions of in vivo serum T4 changes to inform risk assessment.


Asunto(s)
Yoduro Peroxidasa/antagonistas & inhibidores , Yoduro Peroxidasa/metabolismo , Propiltiouracilo/metabolismo , Glándula Tiroides/enzimología , Hormonas Tiroideas/sangre , Animales , Masculino , Metimazol/análisis , Metimazol/sangre , Metimazol/farmacología , Propiltiouracilo/análisis , Propiltiouracilo/sangre , Propiltiouracilo/farmacología , Ratas , Ratas Long-Evans , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/análisis
16.
Sci Rep ; 9(1): 4662, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874585

RESUMEN

Cortical heterotopias are clusters of ectopic neurons in the brain and are associated with neurodevelopmental disorders like epilepsy and learning disabilities. We have previously characterized the robust penetrance of a heterotopia in a rat model, induced by thyroid hormone (TH) disruption during gestation. However, the specific mechanism by which maternal TH insufficiency results in this birth defect remains unknown. Here we first determined the developmental window susceptible to endocrine disruption and describe a cellular mechanism responsible for heterotopia formation. We show that five days of maternal goitrogen treatment (10 ppm propylthiouracil) during the perinatal period (GD19-PN2) induces a periventricular heterotopia in 100% of the offspring. Beginning in the early postnatal brain, neurons begin to aggregate near the ventricles of treated animals. In parallel, transcriptional and architectural changes of this region were observed including decreased Sonic hedgehog (Shh) expression, abnormal cell adhesion, and altered radial glia morphology. As the ventricular epithelium is juxtaposed to two sources of brain THs, the cerebrospinal fluid and vasculature, this progenitor niche may be especially susceptible to TH disruption. This work highlights the spatiotemporal vulnerabilities of the developing brain and demonstrates that a transient period of TH perturbation is sufficient to induce a congenital abnormality.


Asunto(s)
Antitiroideos/efectos adversos , Hipotiroidismo/metabolismo , Células-Madre Neurales/metabolismo , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Femenino , Hipotiroidismo/fisiopatología , Masculino , Exposición Materna , Neuronas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Long-Evans , Hormonas Tiroideas/metabolismo
17.
Environ Health Perspect ; 127(9): 95001, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31487205

RESUMEN

BACKGROUND: Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES: We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION: There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Ambientales/toxicidad , Glándula Tiroides/efectos de los fármacos , Animales , Bioensayo , Humanos , Hormonas Tiroideas
18.
Endocrinology ; 149(5): 2527-36, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18276755

RESUMEN

Thyroid hormone (TH) may control the ratio of oligodendrocytes to astrocytes in white matter by acting on a common precursor of these two cell types. If so, then TH should produce an equal but opposite effect on the density of these two cells types across all TH levels. To test this, we induced graded TH insufficiency by treating pregnant rats with increasing doses of propylthiouracil. Propylthiouracil induced a dose-dependent decrease in serum T(4) in postnatal d 15 pups, a dose-dependent decrease in the density of MAG-positive oligodendrocytes, and an equal increase in the density of glial fibrillary acidic protein-positive astrocytes in both the corpus callosum and anterior commissure. Linear regression analyses demonstrated a strong correlation between glial densities and serum T(4); this correlation was positive for astrocytes and negative for oligodendrocytes. Surprisingly, oligodendrocyte density in the corpus callosum was more sensitive to changes in TH than in the anterior commissure, as indicated by the slope of the regressions. Furthermore, we measured an overall reduction in the cellular density that was independent of changes in myelin-associated glycoprotein and glial fibrillary acidic protein-positive cells. These data strongly support the interpretation that TH controls the balance of production of oligodendrocytes and astrocytes in major white matter tracts of the developing brain by acting on a common precursor of these cell types. Moreover, these findings indicate that major white matter tracts may differ in their sensitivity to TH insufficiency.


Asunto(s)
Astrocitos/fisiología , Encéfalo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Oligodendroglía/fisiología , Tiroxina/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Recuento de Células , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Feniltiourea/farmacología , Embarazo , Ratas , Ratas Long-Evans , Células Madre/efectos de los fármacos , Células Madre/fisiología , Tiroxina/sangre
19.
Environ Health Perspect ; 116(6): 752-60, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18560531

RESUMEN

BACKGROUND: Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. OBJECTIVES: The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. METHODS: Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. RESULTS: At the highest perchlorate dose, triiodothyronine (T(3)) and thyroxine (T(4)) were reduced in pups on postnatal day 21. T(4) in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T(4) were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T(3). Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. CONCLUSIONS: Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate.


Asunto(s)
Hipocampo/efectos de los fármacos , Percloratos/toxicidad , Transmisión Sináptica/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Hipocampo/fisiología , Masculino , Embarazo , Ratas , Ratas Long-Evans , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre
20.
Neurotoxicology ; 67: 73-83, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29684405

RESUMEN

Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction.


Asunto(s)
Antitiroideos/toxicidad , Potenciales Evocados Visuales/efectos de los fármacos , Propiltiouracilo/toxicidad , Hormonas Tiroideas/sangre , Animales , Electrorretinografía/efectos de los fármacos , Electrorretinografía/tendencias , Potenciales Evocados Visuales/fisiología , Femenino , Masculino , Embarazo , Ratas , Ratas Long-Evans , Retina/efectos de los fármacos , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA