Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839686

RESUMEN

Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer's disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known. To identify such targets, we conducted a screen of small molecule compounds with known pharmacology using human myeloid cells, searching for those that enhance TREM2 protein at the cell surface. Inhibitors of the kinases MEK1/2 displayed the strongest and most consistent increases in cell surface TREM2 protein, identifying a previously unreported pathway for TREM2 regulation. Unexpectedly, inhibitors of the downstream effector ERK kinases did not have the same effect, suggesting that noncanonical MEK signaling regulates TREM2 trafficking. In addition, siRNA knockdown experiments confirmed that decreased MEK1 and MEK2 were required for this recruitment. In iPSC-derived microglia, MEK inhibition increased cell surface TREM2 only modestly, so various cytokines were used to alter iPSC microglia phenotype, making cells more sensitive to MEK inhibitor-induced TREM2 recruitment. Of those tested, only IFN-gamma priming prior to MEK inhibitor treatment resulted in greater TREM2 recruitment. These data identify the first known mechanisms for increasing surface TREM2 protein and TREM2-regulated function in human myeloid cells and are the first to show a role for MEK1/MEK2 signaling in TREM2 activity.


Asunto(s)
Membrana Celular/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Receptores Inmunológicos/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Bencimidazoles/farmacología , Benzotiazoles/farmacología , Membrana Celular/efectos de los fármacos , Colchicina/farmacología , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Interferón gamma/farmacología , Interleucinas/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/citología , Microglía/efectos de los fármacos , Nitrilos/farmacología , Cultivo Primario de Células , Piridonas/farmacología , Pirimidinonas/farmacología , Quinazolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Células THP-1 , Factor de Crecimiento Transformador beta/farmacología , Zearalenona/análogos & derivados , Zearalenona/farmacología
2.
Anal Chem ; 93(17): 6792-6800, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33885291

RESUMEN

Mass spectrometry (MS) can provide high sensitivity and specificity for biochemical assays without the requirement of labels, eliminating the risk of assay interference. However, its use had been limited to lower-throughput assays due to the need for chromatography to overcome ion suppression from the sample matrix. Direct analysis without chromatography has the potential for high throughput if sensitivity is sufficient despite the presence of a matrix. Here, we report and demonstrate a novel direct analysis high-throughput MS system based on infrared matrix-assisted desorption electrospray ionization (IR-MALDESI) that has a potential acquisition rate of 33 spectra/s. We show the development of biochemical assays in standard buffers for wild-type isocitrate dehydrogenase 1 (IDH1), diacylglycerol kinase zeta (DGKζ), and p300 histone acetyltransferase (P300) to demonstrate the suitability of this system for a broad range of high-throughput lead discovery assays. A proof-of-concept pilot screen of ∼3k compounds is also shown for IDH1 and compared to a previously reported fluorescence-based assay. We were able to obtain reliable data at a speed amenable for high-throughput screening of large-scale compound libraries.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Bioensayo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Bioorg Med Chem Lett ; 28(3): 437-440, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29287958

RESUMEN

NAMPT expression is elevated in many cancers, making this protein a potential target for anticancer therapy. We have carried out both NMR based and TR-FRET based fragment screens against human NAMPT and identified six novel binders with a range of potencies. Co-crystal structures were obtained for two of the fragments bound to NAMPT while for the other four fragments force-field driven docking was employed to generate a bound pose. Based on structural insights arising from comparison of the bound fragment poses to that of bound FK866 we were able to synthetically elaborate one of the fragments into a potent NAMPT inhibitor.


Asunto(s)
Acrilamidas/farmacología , Citocinas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Piperidinas/farmacología , Acrilamidas/síntesis química , Acrilamidas/química , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad
4.
SLAS Technol ; 29(4): 100163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39047813

RESUMEN

Over the last 5 years, IR-MALDESI-MS (Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry) has been demonstrated for use in a range of high-throughput biochemical and cellular assays with remarkable sample acquisition rates up to 22 Hz for a single 384-well assay plate. With such high single plate acquisition rates, the rate limiting step becomes how fast subsequent plates can be presented to the MS for analysis. To make this transfer as fast as possible while maintaining safe operation in a laboratory environment, we developed a collaborative robotic plate transfer system (CRPTS) that combines a 6-axis robot with dual plate grippers, a 7th axis conveyor stage, and a 420-plate capacity sample loading window. As a demonstration of the throughput and flexibility of CRPTS, we performed a biochemical assay that monitored the oxidation of tris(2-carboxyethyl)phosphine (TCEP) to screen for nuisance compounds. Using continuous and step motion scan profiles, we analyzed 158,799 compounds contained in 448 assay plates over the course of 12.5 h (Z-Factor=0.87) and 17.5 h (Z-factor=0.99), respectively. Extrapolating these results enables the screening of a million compounds within 6-7 working days.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Robótica , Robótica/instrumentación , Robótica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
5.
SLAS Discov ; 29(6): 100179, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151824

RESUMEN

The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Pruebas de Enzimas , Ensayos Analíticos de Alto Rendimiento , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Antivirales/farmacología , Antivirales/química , Pruebas de Enzimas/métodos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , COVID-19/virología , Tratamiento Farmacológico de COVID-19
6.
J Pharmacol Toxicol Methods ; 123: 107468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37553032

RESUMEN

In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.


Asunto(s)
Descubrimiento de Drogas , Bases de Datos Factuales
7.
ACS Chem Biol ; 18(4): 942-948, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37043689

RESUMEN

Cellular pharmacodynamic assays are crucial aspects of lead optimization programs in drug discovery. These assays are sometimes difficult to develop, oftentimes distal from the target and frequently low throughput, which necessitates their incorporation in the drug discovery funnel later than desired. The earlier direct pharmacodynamic modulation of a target can be established, the fewer resources are wasted on compounds that are acting via an off-target mechanism. Mass spectrometry is a versatile tool that is often used for direct, proximal cellular pharmacodynamic assay analysis, but liquid chromatography-mass spectrometry methods are low throughput and are unable to fully support structure-activity relationship efforts in early medicinal chemistry programs. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is an ambient ionization method amenable to high-throughput cellular assays, capable of diverse analyte detection, ambient and rapid laser sampling processes, and low cross-contamination. Here, we demonstrate the capability of IR-MALDESI for the detection of diverse analytes directly from cells and report the development of a high-throughput, label-free, proximal cellular pharmacodynamic assay using IR-MALDESI for the discovery of glutaminase inhibitors and a biochemical assay for hit confirmation. We demonstrate the throughput with a ∼100,000-compound cellular screen. Hits from the screening were confirmed by retesting in dose-response with mass spectrometry-based cellular and biochemical assays. A similar workflow can be applied to other targets with minimal modifications, which will speed up the discovery of cell active lead series and minimize wasted chemistry resources on off-target mechanisms.


Asunto(s)
Glutaminasa , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Glutaminasa/antagonistas & inhibidores , Rayos Láser , Proteínas , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
8.
ACS Chem Biol ; 18(3): 583-594, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36795767

RESUMEN

Biomolecular condensates formed by liquid-liquid phase separation have been implicated in multiple diseases. Modulation of condensate dynamics by small molecules has therapeutic potential, but so far, few condensate modulators have been disclosed. The SARS-CoV-2 nucleocapsid (N) protein forms phase-separated condensates that are hypothesized to play critical roles in viral replication, transcription, and packaging, suggesting that N condensation modulators might have anti-coronavirus activity across multiple strains and species. Here, we show that N proteins from all seven human coronaviruses (HCoVs) vary in their tendency to undergo phase separation when expressed in human lung epithelial cells. We developed a cell-based high-content screening platform and identified small molecules that both promote and inhibit condensation of SARS-CoV-2 N. Interestingly, these host-targeted small molecules exhibited condensate-modulatory effects across all HCoV Ns. Some have also been reported to exhibit antiviral activity against SARS-CoV-2, HCoV-OC43, and HCoV-229E viral infections in cell culture. Our work reveals that the assembly dynamics of N condensates can be regulated by small molecules with therapeutic potential. Our approach allows for screening based on viral genome sequences alone and might enable rapid paths to drug discovery with value for confronting future pandemics.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Humanos , SARS-CoV-2 , Proteínas de la Nucleocápside
9.
J Med Chem ; 66(6): 3852-3865, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36877935

RESUMEN

Compounds that inhibit glutathione peroxidase 4 (GPX4) hold promise as cancer therapeutics in their ability to induce a form of nonapoptotic cell death called ferroptosis. Our research identified 24, a structural analog of the potent GPX4 inhibitor RSL3, that has much better plasma stability (t1/2 > 5 h in mouse plasma). The bioavailability of 24 provided efficacious plasma drug concentrations with IP dosing, thus enabling in vivo studies to assess tolerability and efficacy. An efficacy study in mouse using a GPX4-sensitive tumor model found that doses of 24 up to 50 mg/kg were tolerated for 20 days but had no effect on tumor growth, although partial target engagement was observed in tumor homogenate.


Asunto(s)
Ferroptosis , Neoplasias , Ratones , Animales , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Disponibilidad Biológica
10.
J Biol Chem ; 286(51): 43951-43958, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020937

RESUMEN

Eukaryotic elongation factor-2 kinase (eEF2K) relays growth and stress signals to protein synthesis through phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2). 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) is a widely accepted inhibitor of mammalian eEF2K and an efficacious anti-proliferation agent against different cancer cells. It implied that eEF2K could be an efficacious anticancer target. However, eEF2K siRNA was ineffective against cancer cells including those sensitive to NH125. To test if pharmacological intervention differs from siRNA interference, we identified a highly selective small molecule eEF2K inhibitor A-484954. Like siRNA, A-484954 had little effect on cancer cell growth. We carefully examined the effect of NH125 and A-484954 on phosphorylation of eEF2, the known cellular substrate of eEF2K. Surprisingly, NH125 increased eEF2 phosphorylation, whereas A-484954 inhibited the phosphorylation as expected for an eEF2K inhibitor. Both A-484954 and eEF2K siRNA inhibited eEF2K and reduced eEF2 phosphorylation with little effect on cancer cell growth. These data demonstrated clearly that the anticancer activity of NH125 was more correlated with induction of eEF2 phosphorylation than inhibition of eEF2K. Actually, induction of eEF2 phosphorylation was reported to correlate with inhibition of cancer cell growth. We compared several known inducers of eEF2 phosphorylation including AMPK activators and an mTOR inhibitor. Interestingly, stronger induction of eEF2 phosphorylation correlated with more effective growth inhibition. We also explored signal transduction pathways leading to NH125-induced eEF2 phosphorylation. Preliminary data suggested that NH125-induced eEF2 phosphorylation was likely mediated through multiple pathways. These observations identified an opportunity for a new multipathway approach to anticancer therapies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Imidazoles/farmacología , Factor 2 de Elongación Peptídica/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , eIF-2 Quinasa/metabolismo
11.
Sci Rep ; 12(1): 14561, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028520

RESUMEN

Anti-IL17A therapies have proven effective for numerous inflammatory diseases including psoriasis, axial spondylitis and psoriatic arthritis. Modulating and/or antagonizing protein-protein interactions of IL17A cytokine binding to its cell surface receptors with oral therapies offers the promise to bring forward biologics-like efficacy in a pill to patients. We used an NMR-based fragment screen of recombinant IL17A to uncover starting points for small molecule IL17A antagonist discovery. By examining chemical shift perturbations in 2D [1H, 13C-HSQC] spectra of isotopically labeled IL17A, we discovered fragments binding the cytokine at a previously undescribed site near the IL17A C-terminal region, albeit with weak affinity (> 250 µM). Importantly this binding location was distinct from previously known chemical matter modulating cytokine responses. Subsequently through analog screening, we identified related compounds that bound symmetrically in this novel site with two copies. From this observation we employed a linking strategy via structure-based drug design and obtained compounds with increased binding affinity (< 50 nM) and showed functional inhibition of IL17A-induced cellular signaling (IC50~1 µM). We also describe a fluorescence-based probe molecule suitable to discern/screen for additional molecules binding in this C-terminal site.


Asunto(s)
Artritis Psoriásica , Espondiloartritis Axial , Interleucina-17 , Psoriasis , Citocinas , Diseño de Fármacos , Humanos , Interleucina-17/antagonistas & inhibidores
12.
ACS Chem Biol ; 17(3): 556-566, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35188729

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1) is an MAP4K family member within the Ste20-like serine/threonine branch of the kinome. HPK1 expression is limited to hematopoietic cells and has a predominant role as a negative regulator of T cell function. Because of the central/dominant role in negatively regulating T cell function, HPK1 has long been in the center of interest as a potential pharmacological target for immune therapy. The development of a small molecule HPK1 inhibitor remains challenging because of the need for high specificity relative to other kinases, including additional MAP4K family members, that are required for efficient immune cell activation. Here, we report the identification of the selective and potent HPK1 chemical probe, A-745. In unbiased cellular kinase-binding assays, A-745 demonstrates an excellent cellular selectivity binding profile within pharmacologically relevant concentrations. This HPK1 selectivity translates to an in vitro immune cell activation phenotype reminiscent of Hpk1-deficient and Hpk1-kinase-dead T cells, including augmented proliferation and cytokine production. The results from this work give a path forward for further developmental efforts to generate additional selective and potent small molecule HPK1 inhibitors with the pharmacological properties for immunotherapy.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Linfocitos T , Factores Inmunológicos , Inmunoterapia , Transducción de Señal
13.
J Pharmacol Exp Ther ; 334(3): 863-74, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20504915

RESUMEN

Enhancement of alpha7 nicotinic acetylcholine receptor (nAChR) activity is considered a therapeutic approach for ameliorating cognitive deficits present in Alzheimer's disease and schizophrenia. In this study, we describe the in vitro profile of a novel selective alpha7 nAChR agonist, 5-(6-[(3R)-1-azabicyclo[2,2,2]oct-3-yloxy]pyridazin-3-yl)-1H-indole (ABT-107). ABT-107 displayed high affinity binding to alpha7 nAChRs [rat or human cortex, [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1]heptane (A-585539), K(i) = 0.2-0.6 nM or [(3)H]methyllycaconitine (MLA), 7 nM] that was at least 100-fold selective versus non-alpha7 nAChRs and other receptors. Functionally, ABT-107 did not evoke detectible currents in Xenopus oocytes expressing human or nonhuman alpha3beta4, chimeric (alpha6/alpha3)beta4, or 5-HT(3A) receptors, and weak or negligible Ca(2+) responses in human neuroblastoma IMR-32 cells (alpha3* function) and human alpha4beta2 and alpha4beta4 nAChRs expressed in human embryonic kidney 293 cells. ABT-107 potently evoked human and rat alpha7 nAChR current responses in oocytes (EC(50), 50-90 nM total charge, approximately 80% normalized to acetylcholine) that were enhanced by the positive allosteric modulator (PAM) 4-[5-(4-chloro-phenyl)-2-methyl-3-propionyl-pyrrol-1-yl]-benzenesulfonamide (A-867744). In rat hippocampus, ABT-107 alone evoked alpha7-like currents, which were inhibited by the alpha7 antagonist MLA. In dentate gyrus granule cells, ABT-107 enhanced spontaneous inhibitory postsynaptic current activity when coapplied with A-867744. In the presence of an alpha7 PAM [A-867744 or N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-120596)], the addition of ABT-107 elicited MLA-sensitive alpha7 nAChR-mediated Ca(2+) signals in IMR-32 cells and rat cortical cultures and enhanced extracellular signal-regulated kinase phosphorylation in differentiated PC-12 cells. ABT-107 was also effective in protecting rat cortical cultures against glutamate-induced toxicity. In summary, ABT-107 is a selective high affinity alpha7 nAChR agonist suitable for characterizing the roles of this subtype in pharmacological studies.


Asunto(s)
Indoles/farmacología , Agonistas Nicotínicos/farmacología , Quinuclidinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Animales , Calcio/metabolismo , Línea Celular , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Electrofisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Isoxazoles/farmacología , Masculino , Oocitos/efectos de los fármacos , Células PC12 , Técnicas de Placa-Clamp , Compuestos de Fenilurea/farmacología , Fosforilación , Pirroles/farmacología , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Especificidad por Sustrato , Sulfonamidas/farmacología , Xenopus , Receptor Nicotínico de Acetilcolina alfa 7
14.
ACS Chem Biol ; 15(12): 3262-3274, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33270420

RESUMEN

Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. The current treatment options for AD are limited to ameliorating cognitive decline temporarily and not reversing or preventing the progression of dementia. Hence, more effective therapeutic strategies are needed to combat this devastating disease. The low-density lipoprotein receptor has been shown to modulate the neuronal metabolism of cholesterol and apolipoprotein E, a major genetic risk factor for AD. LDLR overexpression in mice has been shown to increase amyloid-ß clearance and reduce amyloid deposition. We conducted a phenotypic screen to identify novel signaling pathways and targets that regulate LDLR expression in glial cells using an annotated compound library of approximately 29 000 compounds. The screen identified novel targets such as polo like kinase 1 (PLK1), activin receptor like kinase 5 (ALK5), and serotonin transporter (SERT). We used genetic, chemical biology and pathway analysis to confirm the target hypothesis. This work highlights that phenotypic screening is a promising strategy to identify novel mechanisms and targets for therapeutic intervention of complex neurodegenerative disorders.


Asunto(s)
Receptores de LDL/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Enfermedad de Alzheimer/patología , Técnicas de Silenciamiento del Gen , Humanos , ARN Interferente Pequeño/genética , Receptores de LDL/metabolismo , Reproducibilidad de los Resultados
15.
ACS Chem Biol ; 14(5): 857-872, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30938974

RESUMEN

Interleukin-17A (IL17A) plays a critical role in the development of numerous autoimmune diseases, including psoriasis. The clinical success of IL17A neutralizing biologics in psoriasis has underlined its importance as a drug discovery target. While many studies have focused on the differentiation and trafficking of IL17A producing T-helper 17 cells, less is known about IL17A-initiated signaling events in stromal and parenchymal cells leading to psoriatic phenotypes. We sought to discover signaling nodes downstream of IL17A contributing to disease pathogenesis. Using IL17A and tumor necrosis factor α (TNF) to stimulate primary human epidermal keratinocytes, we employed two different phenotypic screening approaches. First, a library of ∼22000 annotated compounds was screened for reduced secretion of the pro-inflammatory chemokine IL8. Second, a library of 729 kinases was screened in a pooled format by utilizing CRISPR-Cas9 and monitoring IL8 intracellular staining. The highest-ranking novel hits identified in both screens were the bromodomain and extra-terminal domain (BET) family proteins and bromodomain-containing protein 2 (BRD2), respectively. Comparison of BRD2, BRD3, and BRD4 silencing with siRNA and CRISPR confirmed that BRD2 was responsible for mediating IL8 production. Pan-BRD inhibitors and BRD2 knockout also reduced IL17A/TNF-mediated CXC motif chemokines 1/2/6 (CXCL1/2/6) and granulocyte colony stimulating factor (G-CSF) production. In RNA-Seq analysis, 438 IL17A/TNF dependent genes were reduced in BRD2-deficient primary keratinocytes. KEGG pathway analysis of these genes showed enrichment in TNF signaling and rheumatoid arthritis relevant genes. Moreover, a number of genes important for keratinocyte homeostasis and cornification were dysregulated in BRD2-deficient keratinocytes. In IL17A/TNF/IL22 stimulated three-dimensional organotypic raft cultures, pan-BRD inhibition reduced inflammatory factor production but elicited aberrant cornification, consistent with RNA-Seq analysis. These studies highlight a novel role for BRDs and BRD2 in particular in IL17A-mediated inflammatory signaling.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inflamación/metabolismo , Interleucina-17/metabolismo , Queratinocitos/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular , Células Cultivadas , Técnicas de Silenciamiento del Gen , Homeostasis , Humanos , Queratinocitos/citología , ARN Interferente Pequeño/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Sci Rep ; 9(1): 9089, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235749

RESUMEN

IL-36 cytokines are pro-inflammatory members of the IL-1 family that are upregulated in inflammatory disorders. Specifically, IL-36γ is highly expressed in active psoriatic lesions and can drive pro-inflammatory processes in 3D human skin equivalents supporting a role for this target in skin inflammation. Small molecule antagonists of interleukins have been historically challenging to generate. Nevertheless, we performed a small molecule high-throughput screen to identify IL-36 antagonists using a novel TR-FRET binding assay. Several compounds, including 2-oxypyrimidine containing structural analogs of the marketed endothelin receptor A antagonist Ambrisentan, were identified as hits from the screen. A-552 was identified as a the most potent antagonist of human IL-36γ, but not the closely related family member IL-36α, was capable of attenuating IL-36γ induced responses in mouse and human disease models. Additionally, x-ray crystallography studies identified key amino acid residues in the binding pocket present in human IL-36γ that are absent in human IL-36α. A-552 represents a first-in-class small molecule antagonist of IL-36 signaling that could be used as a chemical tool to further investigate the role of this pathway in inflammatory skin diseases such as psoriasis.


Asunto(s)
Interleucina-1/antagonistas & inhibidores , Psoriasis/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Psoriasis/metabolismo , Psoriasis/patología , Piel/efectos de los fármacos , Piel/patología , Bibliotecas de Moléculas Pequeñas/uso terapéutico
17.
J Neurosci Res ; 86(10): 2214-26, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18438921

RESUMEN

Activation of the Rho kinase (ROCK) pathway has been associated with inhibition of neurite regeneration and outgrowth in spinal cord injury. Growth-inhibitory substances present in the glial scar such as chondroitin sulfate proteoglycans (CSPGs) have been shown to create a nonpermissive environment for axon regeneration that results in growth cone collapse. In this study, an in vitro model was developed in nerve growth factor-differentiated PC12 cells where the Rho/ROCK pathway was modulated by CSPG. CSPG elicited concentration-dependent inhibition of neurite outgrowth in PC12 cells, which was reversed by ROCK inhibitors such as fasudil, dimethylfasudil, and Y27632. Further studies on the interactions of CSPG with ROCK inhibitors revealed that the modulation of ROCK by CSPG is noncompetitive in nature. It was also observed that ROCK inhibitors increased neurite outgrowth in undifferentiated PC12 cells, indicating constitutive ROCK activity in the cells. Analysis of signaling pathways demonstrated that the effect of CSPG increases the phosphorylation of myosin phosphatase, a substrate immediately downstream of ROCK activation. Fasudil, dimethylfasudil, and Y27632 inhibited the phosphorylation of myosin phosphatase induced by CSPG with rank order potencies comparable to those observed in the neurite outgrowth assay. In addition, ROCK inhibitors reversed cofilin phosphorylation induced by CSPG with similar rank order potencies. Taken together, our data demonstrate that the interaction of CSPG with the ROCK pathway involves downstream effectors of ROCK such as myosin phosphatase and cofilin.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Neuritas/metabolismo , Transducción de Señal/fisiología , Quinasas Asociadas a rho/metabolismo , Animales , Cofilina 1/metabolismo , Inhibidores Enzimáticos/farmacología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Neuritas/efectos de los fármacos , Células PC12 , Fosforilación , Ratas , Transducción de Señal/efectos de los fármacos
18.
J Med Chem ; 61(15): 6647-6657, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30004704

RESUMEN

IDH1 plays a critical role in a number of metabolic processes and serves as a key source of cytosolic NADPH under conditions of cellular stress. However, few inhibitors of wild-type IDH1 have been reported. Here we present the discovery and biochemical characterization of two novel inhibitors of wild-type IDH1. In addition, we present the first ligand-bound crystallographic characterization of these novel small molecule IDH1 binding pockets. Importantly, the NADPH competitive α,ß-unsaturated enone 1 makes a unique covalent linkage through active site H315. As few small molecules have been shown to covalently react with histidine residues, these data support the potential utility of an underutilized strategy for reversible covalent small molecule design.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Histidina , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/química , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Conformación Proteica , Relación Estructura-Actividad
19.
J Med Chem ; 61(24): 11074-11100, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30384606

RESUMEN

A HTS campaign identified compound 1, an excellent hit-like molecule to initiate medicinal chemistry efforts to optimize a dual ROCK1 and ROCK2 inhibitor. Substitution (2-Cl, 2-NH2, 2-F, 3-F) of the pyridine hinge binding motif or replacement with pyrimidine afforded compounds with a clean CYP inhibition profile. Cocrystal structures of an early lead compound were obtained in PKA, ROCK1, and ROCK2. This provided critical structural information for medicinal chemistry to drive compound design. The structural data indicated the preferred configuration at the central benzylic carbon would be ( R), and application of this information to compound design resulted in compound 16. This compound was shown to be a potent and selective dual ROCK inhibitor in both enzyme and cell assays and efficacious in the retinal nerve fiber layer model after oral dosing. This tool compound has been made available through the AbbVie Compound Toolbox. Finally, the cocrystal structures also identified that aspartic acid residues 176 and 218 in ROCK2, which are glutamic acids in PKA, could be targeted as residues to drive both potency and kinome selectivity. Introduction of a piperidin-3-ylmethanamine group to the compound series resulted in compound 58, a potent and selective dual ROCK inhibitor with excellent predicted drug-like properties.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Administración Oral , Animales , Disponibilidad Biológica , Cristalografía por Rayos X , Inhibidores del Citocromo P-450 CYP2C9/química , Inhibidores del Citocromo P-450 CYP2C9/farmacología , Inhibidores del Citocromo P-450 CYP3A/química , Inhibidores del Citocromo P-450 CYP3A/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Semivida , Humanos , Ratones Endogámicos C57BL , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/patología , Ratas Sprague-Dawley , Relación Estructura-Actividad , Quinasas Asociadas a rho/química
20.
J Biomol Screen ; 12(1): 61-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17099245

RESUMEN

Despite increasing use of cell-based assays in high-throughput screening (HTS) and lead optimization, one challenge is the adequate supply of high-quality cells expressing the target of interest. To this end, cell lines stably expressing targets are often established, maintained, and scaled up by cell culture. These steps require large investments of time and resources. Moreover, significant variability invariably occurs in cell yield, viability, expression levels, and target activities. In particular, stable expression of targets such as transient receptor potential A1 (TRPA1) causes toxicity, cell line degeneration, and loss of functional activity. Therefore, in an effort to identify TRPA1 antagonists, the authors used large-scale transiently transfected (LSTT) cells, enabling rapid establishment of assays suitable for HTS. LSTT cells, which could- be stored frozen for a long period of time (e.g., at least 42 weeks), retained TRPA1 protein expression and could be easily revived to produce robust and consistent signals in calcium influx and electrophysiological assays. Using cells from a single transfection, a chemical library of 700,000 compounds was screened, and TRPA1 antagonists were identified. The use of LSTT circumvented issues associated with stable TRPA1 expression, increased flexibility and consistency, and greatly reduced labor and cost. This approach will also be applicable to other pharmaceutical targets.


Asunto(s)
Moduladores del Transporte de Membrana/análisis , Moduladores del Transporte de Membrana/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Transfección , Canales de Potencial de Receptor Transitorio/agonistas , Calcio/metabolismo , Canales de Calcio/metabolismo , Células Clonales , Electrofisiología , Fluorescencia , Congelación , Humanos , Proteínas del Tejido Nervioso/metabolismo , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA