Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 186: 106546, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336215

RESUMEN

Mucosal vaccination is regarded as a promising alternative to classical, intramuscular vaccine delivery. However, only a limited number of vaccines have been licensed for mucosal administration in humans. Here we propose Leishmania tarentolae, a protozoan parasite, as a potential antigen vehicle for mucosal vaccination, for administration via the rectal or oral routes. To test this hypothesis, we exploited L. tarentolae for the production and delivery of SARS-CoV-2 antigens. Two antigens were assayed in BALB/c mice: Lt-spike, a L. tarentolae clone engineered for the surface expression of the SARS-CoV-2 spike protein; RBD-SD1, a purified portion of the spike protein, produced by another engineered clone of the protozoon. Immune response parameters were then determined at different time points. Both antigens, administered either separately or in combination (Lt-spike + RBD-SD1, hereafter LeCoVax-2), determined significant IgG seroconversion and production of neutralizing antibodies after subcutaneous administration, but only in the presence of adjuvants. After rectal administration, the purified RBD-SD1 antigen did not induce any detectable immune response, in comparison with the intense response observed after administration of LeCoVax-2 or Lt-spike alone. In rectal administration, LeCoVax-2 was also effective when administered without adjuvant. Our results show that L. tarentolae is an efficient and safe scaffold for production and delivery of viral antigens, to be used as vaccines. In addition, rectal vaccination experiments prove that L. tarentolae is suitable as a vaccine vehicle and adjuvant for enteral vaccination. Finally, the combined preparation LeCoVax-2 can be considered as a promising candidate vaccine against SARS-CoV-2, worthy of further investigation.


Asunto(s)
COVID-19 , Parásitos , Ratones , Animales , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Administración Rectal , SARS-CoV-2 , Vacunación/métodos , Ratones Endogámicos BALB C , Adyuvantes Inmunológicos , Inmunoglobulina G
2.
Chembiochem ; 22(7): 1223-1231, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33237595

RESUMEN

ß-Glucosidases are used in the food industry to hydrolyse glycosidic bonds in complex sugars, with enzymes sourced from extremophiles better able to tolerate the process conditions. In this work, a novel ß-glycosidase from the acidophilic organism Alicyclobacillus herbarius was cloned and heterologously expressed in Escherichia coli BL21(DE3). AheGH1 was stable over a broad range of pH values (5-11) and temperatures (4-55 °C). The enzyme exhibited excellent tolerance to fructose and good tolerance to glucose, retaining 65 % activity in the presence of 10 % (w/v) glucose. It also tolerated organic solvents, some of which appeared to have a stimulating effect, in particular ethanol with a 1.7-fold increase in activity at 10 % (v/v). The enzyme was then applied for the cleavage of isoflavone from isoflavone glucosides in an ethanolic extract of soy flour, to produce soy isoflavones, which constitute a valuable food supplement, full conversion was achieved within 15 min at 30 °C.


Asunto(s)
Alicyclobacillus/enzimología , Glycine max/química , Isoflavonas/metabolismo , beta-Glucosidasa/metabolismo , Dominio Catalítico , Estabilidad de Enzimas , Escherichia coli/metabolismo , Glicósidos/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Isoflavonas/química , Cinética , Estructura Terciaria de Proteína , Glycine max/metabolismo , Temperatura , beta-Glucosidasa/química , beta-Glucosidasa/genética
3.
Bioorg Chem ; 108: 104644, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486371

RESUMEN

Benzil reductases are dehydrogenases preferentially active on aromatic 1,2-diketones, but the reasons for this peculiar substrate recognition have not yet been clarified. The benzil reductase (KRED1-Pglu) from the non-conventional yeast Pichia glucozyma showed excellent activity and stereoselectivity in the monoreduction of space-demanding aromatic 1,2-dicarbonyls, making this enzyme attractive as biocatalyst in organic chemistry. Structural insights into the stereoselective monoreduction of 1,2-diketones catalyzed by KRED1-Pglu were investigated starting from its 1.77 Å resolution crystal structure, followed by QM and classical calculations; this study allowed for the identification and characterization of the KRED1-Pglu reactive site. Once identified the recognition elements involved in the stereoselective desymmetrization of bulky 1,2-dicarbonyls mediated by KRED1-Pglu, a mechanism was proposed together with an in silico prediction of substrates reactivity.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Aldehídos/metabolismo , Pichia/enzimología , Aldehídos/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción
4.
Biochem Biophys Res Commun ; 523(4): 979-984, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31973820

RESUMEN

We report the functional and structural characterization of trehalose-6-phosphate phosphatase (TPP), from the Gram-negative bacterium B. pseudomallei that causes melioidosis, a severe infectious disease endemic in Southeast Asia and Northern Australia. TPP is a key enzyme in the trehalose biosynthesis pathway, which plays an important role in bacterial stress responses. Due to the absence of this biosynthetic pathway in mammals, TPP has drawn attention as a potential drug target, to combat antibiotic resistance. In this context, we present a detailed biochemical analysis of purified recombinant TPP, reporting its specific high catalytic activity toward the trehalose-6-phosphate substrate, and an absolute requirement for its Mg2+ cofactor. Furthermore, we present the crystal structure of TPP solved at 1.74 Å, revealing the canonical haloacid dehalogenase (HAD) superfamily fold and conserved substrate binding pocket, from which insights into the catalytic mechanism may be deduced. Our data represent a starting point for the rational design of antibacterial drugs.


Asunto(s)
Biocatálisis , Burkholderia pseudomallei/enzimología , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Cinética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
5.
Immunology ; 151(1): 98-109, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28066900

RESUMEN

Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease with high incidence and mortality in South East Asia and northern Australia. To date there is no protective vaccine and antibiotic treatment is prolonged and not always effective. Most people living in endemic areas have been exposed to the bacteria and have developed some immunity, which may have helped to prevent disease. Here, we used a humanized mouse model (hu-PBL-SCID), reconstituted with human peripheral blood mononuclear cells from seropositive donors, to illustrate the potential of three known antigens (FliC, OmpA and N-PilO2) for boosting both T-cell and B-cell immune responses. All three antigens boosted the production of specific antibodies in vivo, and increased the number of antibody and interferon-γ-secreting cells, and induced antibody affinity maturation. Moreover, antigen-specific antibodies isolated from either seropositive individuals or boosted mice, were found to enhance phagocytosis and oxidative burst activities from human polymorphonuclear cells. Our study demonstrates that FliC, OmpA and N-PilO2 can stimulate human memory T and B cells and highlight the potential of the hu-PBL-SCID system for screening and evaluation of novel protein antigens for inclusion in future vaccine trials against melioidosis.


Asunto(s)
Linfocitos B/inmunología , Vacunas Bacterianas/inmunología , Burkholderia pseudomallei/inmunología , Melioidosis/inmunología , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Anticuerpos Antibacterianos/sangre , Linfocitos B/microbiología , Proteínas de la Membrana Bacteriana Externa/inmunología , Células Cultivadas , Enfermedades Endémicas , Proteínas Fimbrias/inmunología , Flagelina/inmunología , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos , Melioidosis/epidemiología , Ratones , Ratones SCID , Linfocitos T/microbiología , Tailandia
6.
Environ Microbiol ; 19(11): 4551-4563, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892259

RESUMEN

Production of cellulose, a stress response-mediated process in enterobacteria, is modulated in Escherichia coli by the activity of the two pyrimidine nucleotide biosynthetic pathways, namely, the de novo biosynthetic pathway and the salvage pathway, which relies on the environmental availability of pyrimidine nitrogenous bases. We had previously reported that prevalence of the salvage over the de novo pathway triggers cellulose production via synthesis of the second messenger c-di-GMP by the DgcQ (YedQ) diguanylate cyclase. In this work, we show that DgcQ enzymatic activity is enhanced by UTP, whilst being inhibited by N-carbamoyl-aspartate, an intermediate of the de novo pathway. Thus, direct allosteric control by these ligands allows full DgcQ activity exclusively in cells actively synthesizing pyrimidine nucleotides via the salvage pathway. Inhibition of DgcQ activity by N-carbamoyl-aspartate appears to be favoured by protein-protein interaction between DgcQ and PyrB, a subunit of aspartate transcarbamylase, which synthesizes N-carbamoyl-aspartate. Our results suggest that availability of pyrimidine bases might be sensed, somehow paradoxically, as an environmental stress by E. coli. We hypothesize that this link might have evolved since stress events, leading to extensive DNA/RNA degradation or lysis of neighbouring cells, can result in increased pyrimidine concentrations and activation of the salvage pathway.


Asunto(s)
Ácido Aspártico/análogos & derivados , Celulosa/biosíntesis , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Uridina Trifosfato/metabolismo , Aspartato Carbamoiltransferasa , Ácido Aspártico/metabolismo , Vías Biosintéticas , Celulosa/metabolismo , GMP Cíclico/biosíntesis , ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , ARN/metabolismo
7.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2227-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26527140

RESUMEN

The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using ß-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Burkholderia pseudomallei/química , Melioidosis/microbiología , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Burkholderia pseudomallei/genética , Cristalografía por Rayos X , Genoma Bacteriano , Humanos , Modelos Moleculares , Sistemas de Lectura Abierta , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Solubilidad
8.
Proc Natl Acad Sci U S A ; 108(25): 10278-83, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21593422

RESUMEN

Structural vaccinology is an emerging strategy for the rational design of vaccine candidates. We successfully applied structural vaccinology to design a fully synthetic protein with multivalent protection activity. In Group B Streptococcus, cell-surface pili have aroused great interest because of their direct roles in virulence and importance as protective antigens. The backbone subunit of type 2a pilus (BP-2a) is present in six immunogenically different but structurally similar variants. We determined the 3D structure of one of the variants, and experimentally demonstrated that protective antibodies specifically recognize one of the four domains that comprise the protein. We therefore constructed a synthetic protein constituted by the protective domain of each one of the six variants and showed that the chimeric protein protects mice against the challenge with all of the type 2a pilus-carrying strains. This work demonstrates the power of structural vaccinology and will facilitate the development of an optimized, broadly protective pilus-based vaccine against Group B Streptococcus by combining the uniquely generated chimeric protein with protective pilin subunits from two other previously identified pilus types. In addition, this work describes a template procedure that can be followed to develop vaccines against other bacterial pathogens.


Asunto(s)
Vacunas Bacterianas/síntesis química , Proteínas Fimbrias/química , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/síntesis química , Infecciones Estreptocócicas/prevención & control , Streptococcus agalactiae/inmunología , Animales , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Cristalografía por Rayos X , Femenino , Proteínas Fimbrias/inmunología , Fimbrias Bacterianas/química , Fimbrias Bacterianas/inmunología , Ratones , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/uso terapéutico , Infecciones Estreptocócicas/inmunología
9.
FEBS J ; 291(13): 2897-2917, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38400529

RESUMEN

Cold-active enzymes support life at low temperatures due to their ability to maintain high activity in the cold and can be useful in several biotechnological applications. Although information on the mechanisms of enzyme cold adaptation is still too limited to devise general rules, it appears that very diverse structural and functional changes are exploited in different protein families and within the same family. In this context, we studied the cold adaptation mechanism and the functional properties of a member of the glycoside hydrolase family 1 (GH1) from the Antarctic bacterium Marinomonas sp. ef1. This enzyme exhibits all typical functional hallmarks of cold adaptation, including high catalytic activity at 5 °C, broad substrate specificity, low thermal stability, and higher lability of the active site compared to the overall structure. Analysis of the here-reported crystal structure (1.8 Å resolution) and molecular dynamics simulations suggest that cold activity and thermolability may be due to a flexible region around the active site (residues 298-331), whereas the dynamic behavior of loops flanking the active site (residues 47-61 and 407-413) may favor enzyme-substrate interactions at the optimal temperature of catalysis (Topt) by tethering together protein regions lining the active site. Stapling of the N-terminus onto the surface of the ß-barrel is suggested to partly counterbalance protein flexibility, thus providing a stabilizing effect. The tolerance of the enzyme to glucose and galactose is accounted for by the presence of a "gatekeeping" hydrophobic residue (Leu178), located at the entrance of the active site.


Asunto(s)
Dominio Catalítico , Frío , Glucosa , Glicósido Hidrolasas , Marinomonas , Simulación de Dinámica Molecular , Marinomonas/enzimología , Marinomonas/genética , Marinomonas/química , Especificidad por Sustrato , Glucosa/metabolismo , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Regiones Antárticas , Estabilidad de Enzimas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Conformación Proteica , Secuencia de Aminoácidos
10.
J Bacteriol ; 195(5): 1100-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23292770

RESUMEN

Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.


Asunto(s)
Escherichia coli/citología , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Estructura Terciaria de Proteína
11.
Front Mol Biosci ; 10: 1017757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936986

RESUMEN

Genetically-encoded combinatorial peptide libraries are convenient tools to identify peptides to be used as therapeutics, antimicrobials and functional synthetic biology modules. Here, we report the identification and characterization of a cyclic peptide, G4CP2, that interferes with the GAL4 protein, a transcription factor responsible for the activation of galactose catabolism in yeast and widely exploited in molecular biology. G4CP2 was identified by screening CYCLIC, a Yeast Two-Hybrid-based combinatorial library of cyclic peptides developed in our laboratory. G4CP2 interferes with GAL4-mediated activation of galactose metabolic enzymes both when expressed intracellularly, as a recombinant peptide, and when provided exogenously, as a chemically-synthesized cyclic peptide. Our results support the application of G4CP2 in microbial biotechnology and, additionally, demonstrate that CYCLIC can be used as a tool for the rapid identification of peptides, virtually without any limitations with respect to the target protein. The possible biotechnological applications of cyclic peptides are also discussed.

12.
Methods Mol Biol ; 2548: 249-263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151502

RESUMEN

The prerequisite for 3D structure determination of macromolecules via X-ray crystallography is well-ordered, diffracting crystals. Here, we report the recombinant production, biophysical/biochemical protein sample characterization, and vapor diffusion sitting drop crystallization protocols for two lipopolysaccharide transport proteins: LptH from Pseudomonas aeruginosa (Pa-LptH) and an inactive LptC mutant (G153R) from Escherichia coli (EcLptC24-191G153R).


Asunto(s)
Proteínas de Escherichia coli , Lipopolisacáridos , Proteínas Portadoras/metabolismo , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/química , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
ACS Chem Biol ; 17(1): 230-239, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34968022

RESUMEN

The SYLF domain is an evolutionary conserved protein domain with phosphatidylinositol binding ability, whose three-dimensional structure is unknown. Here, we present the solution structure and the dynamics characterization of the SYLF domain of the bacterial BPSL1445 protein. BPSL1445 is a seroreactive antigen and a diagnostic marker of Burkholderia pseudomallei, the etiological agent of melioidosis, a severe infectious disease in the tropics. The BPSL1445 SYLF domain (BPSL1445-SYLF) consists of a ß-barrel core, with two flexible loops protruding out of the barrel and three helices packing on its surface. Our structure allows for a more precise definition of the boundaries of the SYLF domain compared to the previously reported one and suggests common ancestry with bacterial EipA domains. We also demonstrate by phosphatidyl-inositol phosphate arrays and nuclear magnetic resonance titrations that BPSL1445-SYLF weakly interacts with phosphoinositides, thus supporting lipid binding abilities of this domain also in prokaryotes.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/química , Dominios Proteicos , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Resonancia Magnética Nuclear Biomolecular , Fosfatidilinositoles/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Espectrofotometría Ultravioleta
14.
Vaccines (Basel) ; 10(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35062732

RESUMEN

Chagas disease (CD) is a vector-borne parasitosis, caused by the protozoan parasite Trypanosoma cruzi, that affects millions of people worldwide. Although endemic in South America, CD is emerging throughout the world due to climate change and increased immigratory flux of infected people to non-endemic regions. Containing of the diffusion of CD is challenged by the asymptomatic nature of the disease in early infection stages and by the lack of a rapid and effective diagnostic test. With the aim of designing new serodiagnostic molecules to be implemented in a microarray-based diagnostic set-up for early screening of CD, herein, we report the recombinant production of the extracellular domain of a surface membrane antigen from T. cruzi (TcSMP) and confirm its ability to detect plasma antibodies from infected patients. Moreover, we describe its high-resolution (1.62 Å) crystal structure, to which in silico epitope predictions were applied in order to locate the most immunoreactive regions of TcSMP in order to guide the design of epitopes that may be used as an alternative to the full-length antigen for CD diagnosis. Two putative, linear epitopes, belonging to the same immunogenic region, were synthesized as free peptides, and their immunological properties were tested in vitro. Although both peptides were shown to adopt a structural conformation that allowed their recognition by polyclonal antibodies raised against the recombinant protein, they were not serodiagnostic for T. cruzi infections. Nevertheless, they represent good starting points for further iterative structure-based (re)design cycles.

15.
J Biotechnol ; 329: 21-28, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33508335

RESUMEN

Current methods for the production of natural vanilla extract are long and tedious, and the efficiency of the vanillin extraction is usually conditioned by different factors during the traditional curing process (temperatures and weather conditions). As an important fraction of vanillin is present in the form of glucovanillin in green beans, endogenous ß-glucosidases contribute to its hydrolysis; however, these enzymes lose efficiency during the curing process. The use of extremophilic organisms as a source of an appropriate exogenous enzyme can offer a valid alternative when producing natural vanillin. Here, a ß-glucosidase from the thermo-acidophilic organism Alicyclobacillus acidiphilus (AacGH1) was cloned, expressed in E. coli BL21, and fully characterized in respect to both function and crystal structure. Notably, AacGH1 was stable at a temperature up to 50 °C and exhibited good tolerance to glucose, fructose and organic solvents, in particular it maintained full activity in the presence of up to 20 % (v/v) ethanol. The enzyme was then successfully applied to an ethanol-water (20 % (v/v)) extract of green vanilla beans and the complete hydrolysis of glucovanillin (1.7 mM) to vanillin, and other flavour compounds commonly found in vanilla, was achieved using 0.5 mg/mL of enzyme in just 15 min at 30 °C.


Asunto(s)
Vanilla , Alicyclobacillus , Benzaldehídos , Escherichia coli/genética , Extractos Vegetales , beta-Glucosidasa/genética
16.
Front Microbiol ; 12: 736530, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966362

RESUMEN

To detect and prevent emerging epidemics, discovery platforms are urgently needed, for the rapid development of diagnostic assays. Molecular diagnostic tests for COVID-19 were developed shortly after the isolation of SARS-CoV-2. However, serological tests based on antiviral antibody detection, revealing previous exposure to the virus, required longer testing phases, due to the need to obtain correctly folded and glycosylated antigens. The delay between the identification of a new virus and the development of reliable serodiagnostic tools limits our readiness to tackle future epidemics. We suggest that the protozoan Leishmania tarentolae can be used as an easy-to-handle microfactory for the rapid production of viral antigens to face emerging epidemics. We engineered L. tarentolae to express the SARS-CoV-2 receptor-binding domain (RBD) and we recorded the ability of the purified RBD antigen to detect SARS-CoV-2 infection in human sera, with a sensitivity and reproducibility comparable to that of a reference antigen produced in human cells. This is the first application of an antigen produced in L. tarentolae for the serodiagnosis of a Coronaviridae infection. On the basis of our results, we propose L. tarentolae as an effective system for viral antigen production, even in countries that lack high-technology cell factories.

17.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915716

RESUMEN

The human parasitic disease Schistosomiasis is caused by the Schistosoma trematode flatworm that infects freshwaters in tropical regions of the world, particularly in Sub-Saharan Africa, South America, and the Far-East. It has also been observed as an emerging disease in Europe, due to increased immigration. In addition to improved therapeutic strategies, it is imperative to develop novel, rapid, and sensitive diagnostic tests that can detect the Schistosoma parasite, allowing timely treatment. Present diagnosis is difficult and involves microscopy-based detection of Schistosoma eggs in the feces. In this context, we present the 3.22 Å resolution crystal structure of the circulating antigen Serine protease inhibitor from S. mansoni (SmSPI), and we describe it as a potential serodiagnostic marker. Moreover, we identify three potential immunoreactive epitopes using in silico-based epitope mapping methods. Here, we confirm effective immune sera reactivity of the recombinant antigen, suggesting the further investigation of the protein and/or its predicted epitopes as serodiagnostic Schistosomiasis biomarkers.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32793563

RESUMEN

The identification and 3D structural characterization of a homolog of the (R)-selective transaminase (RTA) from Aspergillus terreus (AtRTA), from the thermotolerant fungus Thermomyces stellatus (TsRTA) is here reported. The thermostability of TsRTA (40% retained activity after 7 days at 40°C) was initially attributed to its tetrameric form in solution, however subsequent studies of AtRTA revealed it also exists predominantly as a tetramer yet, at 40°C, it is inactivated within 48 h. The engineering of a cysteine residue to promote disulfide bond formation across the dimer-dimer interface stabilized both enzymes, with TsRTA_G205C retaining almost full activity after incubation at 50°C for 7 days. Thus, the role of this mutation was elucidated and the importance of stabilizing the tetramer for overall stability of RTAs is highlighted. TsRTA accepts the common amine donors (R)-methylbenzylamine, isopropylamine, and d-alanine as well as aromatic and aliphatic ketones and aldehydes.

19.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 392-397, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880586

RESUMEN

The unintentional crystallization of contaminant proteins in the place of target recombinant proteins is sporadically reported, despite the availability of stringent expression/purification protocols and of software for the detection of contaminants. Typically, the contaminant protein originates from the expression organism (for example Escherichia coli), but in rare circumstances contaminants from different sources have been reported. Here, a case of contamination from a Serratia bacterial strain that occurred while attempting to crystallize an unrelated protein from Burkholderia pseudomallei (overexpressed in E. coli) is presented. The contamination led to the unintended crystallization and structure analysis of a cyanase hydratase from a bacterial strain of the Serratia genus, an opportunistic enterobacterium that grows under conditions similar to those of E. coli and that is found in a variety of habitats, including the laboratory environment. In this context, the procedures that were adopted to identify the contaminant based on crystallographic data only are presented and the crystal structure of Serrata spp. cyanase hydratase is briefly discussed.


Asunto(s)
Artefactos , Cristalografía por Rayos X/normas , Cianatos/química , Escherichia coli/genética , Hidroliasas/ultraestructura , Sitios de Unión , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/genética , Cianatos/metabolismo , Escherichia coli/enzimología , Expresión Génica , Humanos , Hidroliasas/genética , Hidroliasas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Serratia/enzimología , Serratia/genética , Transgenes
20.
J Bacteriol ; 191(11): 3544-52, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19329633

RESUMEN

The group B streptococcus type I pullulanase (SAP) is a class 13 glycoside hydrolase that is anchored to the bacterial cell surface via a conserved C-terminal anchoring motif and involved in alpha-glucan degradation. Recent in vitro functional studies have shown that SAP is immunogenic in humans and that anti-SAP sera derived from immunized animals impair both group A and group B streptococcus pullulanase activities, suggesting that in vivo immunization with this antigen could prevent streptococcal colonization. To further investigate the putative role of SAP in bacterial pathogenesis, we carried out functional studies and found that recombinant SAP binds to human cervical epithelial cells. Furthermore, with a view of using SAP as a vaccine candidate, we present high-resolution crystal structure analyses of an N-terminally truncated form of SAP lacking the carbohydrate binding module but containing the catalytic domain and displaying glycosidase hydrolase activity, both in its apo form and in complex with maltotetraose, at resolutions of 2.1 and 2.4 A, respectively.


Asunto(s)
Cristalografía por Rayos X/métodos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Streptococcus agalactiae/metabolismo , Vacunas Bacterianas , Calcio/metabolismo , Línea Celular Tumoral , Cloruros/metabolismo , Células Epiteliales/metabolismo , Glicósido Hidrolasas/genética , Humanos , Enlace de Hidrógeno , Microscopía Confocal , Microscopía Fluorescente , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Infecciones Estreptocócicas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA