Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 182(3): 672-684.e11, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32697969

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with increased risk of gastrointestinal cancers. We whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared these to 412 crypts from 41 non-IBD controls from our previous publication on the mutation landscape of the normal colon. The average mutation rate of affected colonic epithelial cells is 2.4-fold that of healthy colon, and this increase is mostly driven by acceleration of mutational processes ubiquitously observed in normal colon. In contrast to the normal colon, where clonal expansions outside the confines of the crypt are rare, we observed widespread millimeter-scale clonal expansions. We discovered non-synonymous mutations in ARID1A, FBXW7, PIGR, ZC3H12A, and genes in the interleukin 17 and Toll-like receptor pathways, under positive selection in IBD. These results suggest distinct selection mechanisms in the colitis-affected colon and that somatic mutations potentially play a causal role in IBD pathogenesis.


Asunto(s)
Evolución Clonal/genética , Colitis/genética , Enfermedades Inflamatorias del Intestino/genética , Tasa de Mutación , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Evolución Clonal/inmunología , Colitis/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Femenino , Humanos , Mutación INDEL , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Filogenia , Mutación Puntual , Receptores de Superficie Celular/genética , Ribonucleasas/genética , Receptores Toll-Like/genética , Factores de Transcripción/genética , Secuenciación Completa del Genoma
2.
Nature ; 604(7906): 517-524, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418684

RESUMEN

The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.


Asunto(s)
Longevidad , Tasa de Mutación , Animales , Humanos , Longevidad/genética , Mamíferos/genética , Mutagénesis/genética , Mutación
3.
Nature ; 595(7865): 85-90, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33981037

RESUMEN

The ontogeny of the human haematopoietic system during fetal development has previously been characterized mainly through careful microscopic observations1. Here we reconstruct a phylogenetic tree of blood development using whole-genome sequencing of 511 single-cell-derived haematopoietic colonies from healthy human fetuses at 8 and 18 weeks after conception, coupled with deep targeted sequencing of tissues of known embryonic origin. We found that, in healthy fetuses, individual haematopoietic progenitors acquire tens of somatic mutations by 18 weeks after conception. We used these mutations as barcodes and timed the divergence of embryonic and extra-embryonic tissues during development, and estimated the number of blood antecedents at different stages of embryonic development. Our data support a hypoblast origin of the extra-embryonic mesoderm and primitive blood in humans.


Asunto(s)
Linaje de la Célula/genética , Desarrollo Embrionario/genética , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Mutación , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Células Clonales/citología , Células Clonales/metabolismo , Análisis Mutacional de ADN , Feto/citología , Feto/embriología , Feto/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Salud , Sistema Hematopoyético/citología , Humanos , Cariotipificación , Masculino , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Tasa de Mutación , Especificidad de Órganos/genética , Factores de Tiempo , Secuenciación Completa del Genoma , Flujo de Trabajo
4.
Nature ; 597(7876): 387-392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433963

RESUMEN

Starting from the zygote, all cells in the human body continuously acquire mutations. Mutations shared between different cells imply a common progenitor and are thus naturally occurring markers for lineage tracing1,2. Here we reconstruct extensive phylogenies of normal tissues from three adult individuals using whole-genome sequencing of 511 laser capture microdissections. Reconstructed embryonic progenitors in the same generation of a phylogeny often contribute to different extents to the adult body. The degree of this asymmetry varies between individuals, with ratios between the two reconstructed daughter cells of the zygote ranging from 60:40 to 93:7. Asymmetries pervade subsequent generations and can differ between tissues in the same individual. The phylogenies resolve the spatial embryonic patterning of tissues, revealing contiguous patches of, on average, 301 crypts in the adult colonic epithelium derived from a most recent embryonic cell and also a spatial effect in brain development. Using data from ten additional men, we investigated the developmental split between soma and germline, with results suggesting an extraembryonic contribution to primordial germ cells. This research demonstrates that, despite reaching the same ultimate tissue patterns, early bottlenecks and lineage commitments lead to substantial variation in embryonic patterns both within and between individuals.


Asunto(s)
Linaje de la Célula/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Mutación , Encéfalo/metabolismo , Cromosomas Humanos Y/genética , Células Clonales/metabolismo , Mutación de Línea Germinal/genética , Humanos , Masculino , Mosaicismo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple/genética
5.
Nature ; 598(7881): 473-478, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646017

RESUMEN

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Asunto(s)
Hepatopatías/genética , Hepatopatías/metabolismo , Hígado/metabolismo , Mutación/genética , Transporte Activo de Núcleo Celular/genética , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Enfermedad Crónica , Estudios de Cohortes , Ácidos Grasos no Esterificados/metabolismo , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Resistencia a la Insulina , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
6.
Nature ; 597(7876): 381-386, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433962

RESUMEN

Over the course of an individual's lifetime, normal human cells accumulate mutations1. Here we compare the mutational landscape in 29 cell types from the soma and germline using multiple samples from the same individuals. Two ubiquitous mutational signatures, SBS1 and SBS5/40, accounted for the majority of acquired mutations in most cell types, but their absolute and relative contributions varied substantially. SBS18, which potentially reflects oxidative damage2, and several additional signatures attributed to exogenous and endogenous exposures contributed mutations to subsets of cell types. The rate of mutation was lowest in spermatogonia, the stem cells from which sperm are generated and from which most genetic variation in the human population is thought to originate. This was due to low rates of ubiquitous mutational processes and may be partially attributable to a low rate of cell division in basal spermatogonia. These results highlight similarities and differences in the maintenance of the germline and soma.


Asunto(s)
Células Germinativas/metabolismo , Mutación de Línea Germinal , Tasa de Mutación , Especificidad de Órganos/genética , Anciano , Células Clonales/metabolismo , Femenino , Salud , Humanos , Masculino , Microdisección , Persona de Mediana Edad , Estrés Oxidativo , Espermatogonias/metabolismo
7.
Nature ; 580(7805): 640-646, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32350471

RESUMEN

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Asunto(s)
Análisis Mutacional de ADN , Endometrio/citología , Endometrio/metabolismo , Epitelio/metabolismo , Salud , Mutación , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Carcinogénesis/genética , Células Clonales/citología , Neoplasias Endometriales/genética , Endometrio/patología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/patología , Femenino , Humanos , Persona de Mediana Edad , Paridad/genética , Factores de Tiempo , Adulto Joven
8.
Nature ; 574(7779): 538-542, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645727

RESUMEN

The most common causes of chronic liver disease are excess alcohol intake, viral hepatitis and non-alcoholic fatty liver disease, with the clinical spectrum ranging in severity from hepatic inflammation to cirrhosis, liver failure or hepatocellular carcinoma (HCC). The genome of HCC exhibits diverse mutational signatures, resulting in recurrent mutations across more than 30 cancer genes1-7. Stem cells from normal livers have a low mutational burden and limited diversity of signatures8, which suggests that the complexity of HCC arises during the progression to chronic liver disease and subsequent malignant transformation. Here, by sequencing whole genomes of 482 microdissections of 100-500 hepatocytes from 5 normal and 9 cirrhotic livers, we show that cirrhotic liver has a higher mutational burden than normal liver. Although rare in normal hepatocytes, structural variants, including chromothripsis, were prominent in cirrhosis. Driver mutations, such as point mutations and structural variants, affected 1-5% of clones. Clonal expansions of millimetres in diameter occurred in cirrhosis, with clones sequestered by the bands of fibrosis that surround regenerative nodules. Some mutational signatures were universal and equally active in both non-malignant hepatocytes and HCCs; some were substantially more active in HCCs than chronic liver disease; and others-arising from exogenous exposures-were present in a subset of patients. The activity of exogenous signatures between adjacent cirrhotic nodules varied by up to tenfold within each patient, as a result of clone-specific and microenvironmental forces. Synchronous HCCs exhibited the same mutational signatures as background cirrhotic liver, but with higher burden. Somatic mutations chronicle the exposures, toxicity, regeneration and clonal structure of liver tissue as it progresses from health to disease.


Asunto(s)
Células Clonales/citología , Células Clonales/patología , Fibrosis/genética , Fibrosis/patología , Hígado/citología , Hígado/metabolismo , Mutación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Células Clonales/metabolismo , Análisis Mutacional de ADN , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Filogenia , Células Madre/citología , Células Madre/metabolismo , Células Madre/patología
9.
Oncogene ; 43(44): 3268-3276, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39271965

RESUMEN

Embryogenesis is a vulnerable time. Mutations in developmental cells can result in the wide dissemination of cells predisposed to disease within mature organs. We characterised the evolutionary history of four synchronous renal tumours from a 14-year-old girl using whole genome sequencing alongside single cell and bulk transcriptomic sequencing. Phylogenetic reconstruction timed the origin of all tumours to a multipotent embryonic cell committed to the right kidney, around 4 weeks post-conception. Biochemical and structural analysis of their shared MTOR mutation, absent from normal tissues, demonstrates enhanced protein flexibility, enabling a FAT domain hinge to dramatically increase activity of mTORC1 and mTORC2. Developmental mutations, not usually detected in traditional genetic screening, have vital clinical importance in guiding prognosis, targeted treatment, and family screening decisions for paediatric tumours.


Asunto(s)
Neoplasias Renales , Mutación , Serina-Treonina Quinasas TOR , Humanos , Femenino , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Neoplasias Renales/genética , Neoplasias Renales/patología , Desarrollo Embrionario/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Filogenia
10.
Nat Commun ; 13(1): 4272, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953478

RESUMEN

Germ cell tumours (GCTs) are a collection of benign and malignant neoplasms derived from primordial germ cells. They are uniquely able to recapitulate embryonic and extraembryonic tissues, which carries prognostic and therapeutic significance. The developmental pathways underpinning GCT initiation and histogenesis are incompletely understood. Here, we study the relationship of histogenesis and clonal diversification in GCTs by analysing the genomes and transcriptomes of 547 microdissected histological units. We find no correlation between genomic and histological heterogeneity. However, we identify unifying features including the retention of fetal developmental transcripts across tissues, expression changes on chromosome 12p, and a conserved somatic evolutionary sequence of whole genome duplication followed by clonal diversification. While this pattern is preserved across all GCTs, the developmental timing of the duplication varies between prepubertal and postpubertal cases. In addition, tumours of younger children exhibit distinct substitution signatures which may lend themselves as potential biomarkers for risk stratification. Our findings portray the extensive diversification of GCT tissues and genetic subclones as randomly distributed, while identifying overarching transcriptional and genomic features.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Niño , Genómica , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Transcriptoma/genética
11.
Cancer Cell ; 40(12): 1583-1599.e10, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423636

RESUMEN

Tumor behavior is intricately dependent on the oncogenic properties of cancer cells and their multi-cellular interactions. To understand these dependencies within the wider microenvironment, we studied over 270,000 single-cell transcriptomes and 100 microdissected whole exomes from 12 patients with kidney tumors, prior to validation using spatial transcriptomics. Tissues were sampled from multiple regions of the tumor core, the tumor-normal interface, normal surrounding tissues, and peripheral blood. We find that the tissue-type location of CD8+ T cell clonotypes largely defines their exhaustion state with intra-tumoral spatial heterogeneity that is not well explained by somatic heterogeneity. De novo mutation calling from single-cell RNA-sequencing data allows us to broadly infer the clonality of stromal cells and lineage-trace myeloid cell development. We report six conserved meta-programs that distinguish tumor cell function, and find an epithelial-mesenchymal transition meta-program highly enriched at the tumor-normal interface that co-localizes with IL1B-expressing macrophages, offering a potential therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Transcriptoma , Perfilación de la Expresión Génica , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Transición Epitelial-Mesenquimal , Microambiente Tumoral/genética , Análisis de la Célula Individual
12.
Cell Stem Cell ; 28(7): 1262-1274.e5, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33657416

RESUMEN

Clonal dynamics and mutation burden in healthy human prostate epithelium are relevant to prostate cancer. We sequenced whole genomes from 409 microdissections of normal prostate epithelium across 8 donors, using phylogenetic reconstruction with spatial mapping in a 59-year-old man's prostate to reconstruct tissue dynamics across the lifespan. Somatic mutations accumulate steadily at ∼16 mutations/year/clone, with higher rates in peripheral than peri-urethral regions. The 24-30 independent glandular subunits are established as rudimentary ductal structures during fetal development by 5-10 embryonic cells each. Puberty induces formation of further side and terminal branches by local stem cells disseminated throughout the rudimentary ducts during development. During adult tissue maintenance, clonal expansions have limited geographic scope and minimal migration. Driver mutations are rare in aging prostate epithelium, but the one driver we did observe generated a sizable intraepithelial clonal expansion. Leveraging unbiased clock-like mutations, we define prostate stem cell dynamics through fetal development, puberty, and aging.


Asunto(s)
Envejecimiento , Próstata , Adulto , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Filogenia , Células Madre
13.
Science ; 370(6512): 75-82, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004514

RESUMEN

The extent of somatic mutation and clonal selection in the human bladder remains unknown. We sequenced 2097 bladder microbiopsies from 20 individuals using targeted (n = 1914 microbiopsies), whole-exome (n = 655), and whole-genome (n = 88) sequencing. We found widespread positive selection in 17 genes. Chromatin remodeling genes were frequently mutated, whereas mutations were absent in several major bladder cancer genes. There was extensive interindividual variation in selection, with different driver genes dominating the clonal landscape across individuals. Mutational signatures were heterogeneous across clones and individuals, which suggests differential exposure to mutagens in the urine. Evidence of APOBEC mutagenesis was found in 22% of the microbiopsies. Sequencing multiple microbiopsies from five patients with bladder cancer enabled comparisons with cancer-free individuals and across histological features. This study reveals a rich landscape of mutational processes and selection in normal urothelium with large heterogeneity across clones and individuals.


Asunto(s)
Genes Relacionados con las Neoplasias , Mutagénesis , Selección Genética , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria/patología , Urotelio/patología , Desaminasas APOBEC/genética , Adulto , Anciano , Biopsia , Ensamble y Desensamble de Cromatina/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutágenos/análisis , Mutación
14.
Science ; 366(6470): 1247-1251, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31806814

RESUMEN

Adult cancers often arise from premalignant clonal expansions. Whether the same is true of childhood tumors has been unclear. To investigate whether Wilms tumor (nephroblastoma; a childhood kidney cancer) develops from a premalignant background, we examined the phylogenetic relationship between tumors and corresponding normal tissues. In 14 of 23 cases studied (61%), we found premalignant clonal expansions in morphologically normal kidney tissues that preceded tumor development. These clonal expansions were defined by somatic mutations shared between tumor and normal tissues but absent from blood cells. We also found hypermethylation of the H19 locus, a known driver of Wilms tumor development, in 58% of the expansions. Phylogenetic analyses of bilateral tumors indicated that clonal expansions can evolve before the divergence of left and right kidney primordia. These findings reveal embryonal precursors from which unilateral and multifocal cancers develop.


Asunto(s)
Células Clonales , Metilación de ADN , Neoplasias Renales/genética , Riñón/patología , Lesiones Precancerosas/patología , Tumor de Wilms/genética , Niño , Humanos , Riñón/embriología , Neoplasias Renales/patología , Mutación , Filogenia , Tumor de Wilms/patología
15.
Mol Endocrinol ; 20(7): 1633-43, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16469774

RESUMEN

We report the finding of a novel missense mutation at codon 833 in the tyrosine kinase of the RET proto-oncogene in a patient with a carcinoma of the thyroid. In vitro experiments demonstrate that the R833C mutation induces transformed foci only when present in the long 3' splice isoform and, in keeping with a model in which the receptor has to dimerize to be completely activated, glial cell line-derived neurotrophic factor stimulation leads the RET(R833C) receptor to a higher level of activation. Tyrosine kinase assays show that the RET(R833C) long isoform has weak intrinsic kinase activity and phosphorylation of an exogenous substrate is not elevated even in the presence of glial cell line-derived neurotrophic factor. Furthermore, the R833C mutation is capable of sustaining the transformed phenotype in vivo but does not confer upon the transformed cells the ability to degrade the basement membrane in a manner analogous to metastasis. Our functional characterization of the R833C substitution suggests that, like the V804M and S891A mutations, this tyrosine kinase mutation confers a weak activating potential upon RET. This is the first report demonstrating that the introduction of an intracellular cysteine can activate RET. However, this does not occur via dimerization in a manner analogous to the extracellular cysteine mutants.


Asunto(s)
Transformación Celular Neoplásica/genética , Mutación Missense , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-ret/genética , Animales , Cisteína/metabolismo , Dimerización , Femenino , Regulación de la Expresión Génica , Humanos , Ratones , Persona de Mediana Edad , Células 3T3 NIH , Invasividad Neoplásica/genética , Estructura Terciaria de Proteína/genética , Proteínas Tirosina Quinasas/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-ret/química , Regulación hacia Arriba
16.
Dis Model Mech ; 7(5): 515-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24652767

RESUMEN

The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Patología , Fenotipo , Alelos , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Especificidad de Órganos
17.
Exp Hematol ; 42(12): 1053-8.e1, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25127743

RESUMEN

Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype.


Asunto(s)
Anemia Ferropénica/genética , Canales de Potasio con Entrada de Voltaje/deficiencia , Anemia Ferropénica/sangre , Animales , Dieta Occidental , Índices de Eritrocitos , Eritropoyetina/sangre , Femenino , Ferritinas/sangre , Heterogeneidad Genética , Hematócrito , Humanos , Canal de Potasio KCNQ1/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología , Caracteres Sexuales , Especificidad de la Especie , Organismos Libres de Patógenos Específicos , Transferrina/análisis
19.
Genome Biol ; 8(11): R254, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18047641

RESUMEN

We have created a high quality phage display library containing over 1010 human antibodies and describe its use in the generation of antibodies on an unprecedented scale. We have selected, screened and sequenced over 38,000 recombinant antibodies to 292 antigens, yielding over 7,200 unique clones. 4,400 antibodies were characterized by specificity testing and detailed sequence analysis and the data/clones are available online. Sensitive detection was demonstrated in a bead based flow cytometry assay. Furthermore, positive staining by immunohistochemistry on tissue microarrays was found for 37% (143/381) of antibodies. Thus, we have demonstrated the potential of and illuminated the issues associated with genome-wide monoclonal antibody generation.


Asunto(s)
Formación de Anticuerpos , Bacteriófagos/genética , Animales , Especificidad de Anticuerpos , Secuencia de Bases , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA