Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055039

RESUMEN

From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.


Asunto(s)
Regeneración Tisular Dirigida , Miocardio , Regeneración Nerviosa , Medicina Regenerativa , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Encefalopatías/diagnóstico , Encefalopatías/etiología , Encefalopatías/terapia , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Manejo de la Enfermedad , Vesículas Extracelulares/metabolismo , Regeneración Tisular Dirigida/métodos , Cardiopatías/diagnóstico , Cardiopatías/etiología , Cardiopatías/terapia , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Organoides , Medicina Regenerativa/métodos , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/métodos , Células Madre/citología , Células Madre/metabolismo
2.
Croat Med J ; 60(2): 121-126, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31044583

RESUMEN

Due to very limited therapeutic options, ischemic brain injury is one of the leading causes of death and lifelong disability worldwide, which imposes enormous public health burden. One of the main events occurring with ischemic brain stroke is cell death. Necroptosis is a type of cell death described as a regulated necrosis characterized by cell membrane disruption mediated by phosphorylated mixed lineage kinase like protein (MLKL). It can be triggered by activation of death receptors (eg, FAS, TNFR1), which lead to receptor-interacting serine/threonine-protein kinase 3 (RIPK3) activation by RIPK1 in the absence of active caspase-8. Here, we review articles that have reported that necroptosis significantly contributes to negative events occurring with the ischemic brain stroke, and that its inhibition is protective both in vitro and in vivo. We also review articles describing positive effects obtained by reducing necroptosis, including the reduction of infarct volume and improved functional recovery in animal models. Since necroptosis is characterized by cell content leakage and subsequent inflammation, in addition to reducing cell death, inhibition of necroptosis in ischemic brain stroke also reduces some inflammatory cytokines. By comparing various approaches in inhibition of necroptosis, we analyze the achieved effects from the perspective of controlling necroptosis as a part of future therapeutic interventions in brain ischemia.


Asunto(s)
Isquemia Encefálica/fisiopatología , Muerte Celular , Inhibidores Enzimáticos/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Inhibidores Enzimáticos/farmacología , Humanos , Inflamación/metabolismo , Necrosis , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Receptores Tipo I de Factores de Necrosis Tumoral , Accidente Cerebrovascular
4.
Exp Neurol ; 363: 114353, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841464

RESUMEN

Despite several decades of research on the nature and functional properties of neural stem cells, which brought great advances in regenerative medicine, there is still a plethora of ambiguous protocols and interpretations linked to their applications. Here, we present a whole spectrum of protocol elements that should be standardized in order to obtain viable cell cultures and facilitate their translation into clinical settings. Additionally, this review also presents outstanding limitations and possible problems to be encountered when dealing with protocol optimization. Most importantly, we also outline the critical points that should be considered before starting any experiments utilizing neural stem cells or interpreting their results.


Asunto(s)
Células-Madre Neurales , Roedores , Animales , Humanos , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Medicina Regenerativa
5.
EBioMedicine ; 94: 104692, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451904

RESUMEN

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Asunto(s)
Síndrome de Down , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Envejecimiento , Diferenciación Celular , Síndrome de Down/genética , Quinasas DyrK
6.
Biomedicines ; 10(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35625701

RESUMEN

Neural tube defects (NTDs) are the second most common congenital malformations of humans, characterized by impaired development of the central nervous system. Even though the etiology of most birth defects remains undetermined, genetic and environmental risk factors in the background of NTDs have been identified and extensively reported. On top of genetic and nutritional risks which include mutations in both coding and non-coding regions and maternal folate status, respectively, recent years have seen a rise in the identification of a variety of teratogens that could be implicated in NTD development. These include polycyclic aromatic hydrocarbons, arsenic, pesticides, maternal hyperthermia and antibiotics as well as pain and seizure medication. With an increase in understanding of teratogens leading to NTD formation, preventative and treatment approaches have witnessed great advances throughout the years. While the most common preventative approach includes folic acid food fortification as well as suggested inositol supplementation, treatment and management approaches differ greatly depending on the developmental stage and the site of the lesion and include prenatal surgery, stem cell transplantation and postnatal surgery. Because NTDs still represent a large health and financial burden for the patient and society as a whole, it is crucial to investigate potential risk factors and develop novel approaches in order to fully prevent this category of disorders.

7.
Chem Commun (Camb) ; 58(63): 8838-8841, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35849011

RESUMEN

We developed potent and selective aminocyclopentane-derived inhibitors of human O-N-acetyl-ß-D-glucosaminidase (OGA) implicated in Alzheimer's disease. For example compound 13 was a nanomolar OGA inhibitor with 92 000-fold selectivity over human HexB. It was non-toxic and increased protein O-GlcNAcylation in the culture of murine neural cells, showing new alternatives in the treatment of tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Acetilglucosaminidasa , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Fosforilación , beta-N-Acetilhexosaminidasas , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA