Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genes Dev ; 30(11): 1339-56, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27298337

RESUMEN

The RecQ helicase Sgs1 plays critical roles during DNA repair by homologous recombination, from end resection to Holliday junction (HJ) dissolution. Sgs1 has both pro- and anti-recombinogenic roles, and therefore its activity must be tightly regulated. However, the controls involved in recruitment and activation of Sgs1 at damaged sites are unknown. Here we show a two-step role for Smc5/6 in recruiting and activating Sgs1 through SUMOylation. First, auto-SUMOylation of Smc5/6 subunits leads to recruitment of Sgs1 as part of the STR (Sgs1-Top3-Rmi1) complex, mediated by two SUMO-interacting motifs (SIMs) on Sgs1 that specifically recognize SUMOylated Smc5/6. Second, Smc5/6-dependent SUMOylation of Sgs1 and Top3 is required for the efficient function of STR. Sgs1 mutants impaired in recognition of SUMOylated Smc5/6 (sgs1-SIMΔ) or SUMO-dead alleles (sgs1-KR) exhibit unprocessed HJs at damaged replication forks, increased crossover frequencies during double-strand break repair, and severe impairment in DNA end resection. Smc5/6 is a key regulator of Sgs1's recombination functions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Cruciforme/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Intercambio Genético , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Mutación , RecQ Helicasas/genética , Recombinación Genética/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación
2.
Cell ; 132(3): 422-33, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18237772

RESUMEN

Cohesins mediate sister chromatid cohesion, which is essential for chromosome segregation and postreplicative DNA repair. In addition, cohesins appear to regulate gene expression and enhancer-promoter interactions. These noncanonical functions remained unexplained because knowledge of cohesin-binding sites and functional interactors in metazoans was lacking. We show that the distribution of cohesins on mammalian chromosome arms is not driven by transcriptional activity, in contrast to S. cerevisiae. Instead, mammalian cohesins occupy a subset of DNase I hypersensitive sites, many of which contain sequence motifs resembling the consensus for CTCF, a DNA-binding protein with enhancer blocking function and boundary-element activity. We find cohesins at most CTCF sites and show that CTCF is required for cohesin localization to these sites. Recruitment by CTCF suggests a rationale for noncanonical cohesin functions and, because CTCF binding is sensitive to DNA methylation, allows cohesin positioning to integrate DNA sequence and epigenetic state.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Factor de Unión a CCCTC , Diferenciación Celular , Línea Celular , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Citocinas/genética , Desoxirribonucleasa I/metabolismo , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Linfocitos T/citología , Linfocitos T/metabolismo , Cohesinas
3.
Nature ; 493(7431): 250-4, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23178808

RESUMEN

DNA double-strand break repair is critical for cell viability and involves highly coordinated pathways to restore DNA integrity at the lesion. An early event during homology-dependent repair is resection of the break to generate progressively longer 3' single-strand tails that are used to identify suitable templates for repair. Sister chromatids provide near-perfect sequence homology and are therefore the preferred templates during homologous recombination. To provide a bias for the use of sisters as donors, cohesin--the complex that tethers sister chromatids together--is recruited to the break to enforce physical proximity. Here we show that DNA breaks promote dissociation of cohesin loaded during the previous S phase in budding yeast, and that damage-induced dissociation of cohesin requires separase, the protease that dissolves cohesion in anaphase. Moreover, a separase-resistant allele of the gene coding for the α-kleisin subunit of cohesin, Mcd1 (also known as Scc1), reduces double-strand break resection and compromises the efficiency of repair even when loaded during DNA damage. We conclude that post-replicative DNA repair involves cohesin dissociation by separase to promote accessibility to repair factors during the coordinated cellular response to restore DNA integrity.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Replicación del ADN , Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Alelos , Anafase , Proteínas de Ciclo Celular/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Fase G2 , Metafase , Unión Proteica , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Separasa , Cohesinas
4.
Nature ; 458(7235): 219-22, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19158678

RESUMEN

Chromosome condensation and the global repression of gene transcription are features of mitosis in most eukaryotes. The logic behind this phenomenon is that chromosome condensation prevents the activity of RNA polymerases. In budding yeast, however, transcription was proposed to be continuous during mitosis. Here we show that Cdc14, a protein phosphatase required for nucleolar segregation and mitotic exit, inhibits transcription of yeast ribosomal genes (rDNA) during anaphase. The phosphatase activity of Cdc14 is required for RNA polymerase I (Pol I) inhibition in vitro and in vivo. Moreover Cdc14-dependent inhibition involves nucleolar exclusion of Pol I subunits. We demonstrate that transcription inhibition is necessary for complete chromosome disjunction, because ribosomal RNA (rRNA) transcripts block condensin binding to rDNA, and show that bypassing the role of Cdc14 in nucleolar segregation requires in vivo degradation of nascent transcripts. Our results show that transcription interferes with chromosome condensation, not the reverse. We conclude that budding yeast, like most eukaryotes, inhibit Pol I transcription before segregation as a prerequisite for chromosome condensation and faithful genome separation.


Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transcripción Genética/fisiología , Adenosina Trifosfatasas/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica/fisiología , ARN de Hongos/metabolismo , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Nat Cell Biol ; 8(9): 1032-4, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16892052

RESUMEN

DNA double-strand breaks (DSB) can arise during DNA replication, or after exposure to DNA-damaging agents, and their correct repair is fundamental for cell survival and genomic stability. Here, we show that the Smc5-Smc6 complex is recruited to DSBs de novo to support their repair by homologous recombination between sister chromatids. In addition, we demonstrate that Smc5-Smc6 is necessary to suppress gross chromosomal rearrangements. Our findings show that the Smc5-Smc6 complex is essential for genome stability as it promotes repair of DSBs by error-free sister-chromatid recombination (SCR), thereby suppressing inappropriate non-sister recombination events.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Intercambio de Cromátides Hermanas , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Inestabilidad Genómica , Saccharomyces cerevisiae/genética
6.
Nat Cell Biol ; 7(4): 412-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15793567

RESUMEN

Structure chromosome (SMC) proteins organize the core of cohesin, condensin and Smc5-Smc6 complexes. The Smc5-Smc6 complex is required for DNA repair, as well as having another essential but enigmatic function. Here, we generated conditional mutants of SMC5 and SMC6 in budding yeast, in which the essential function was affected. We show that mutant smc5-6 and smc6-9 cells undergo an aberrant mitosis in which chromosome segregation of repetitive regions is impaired; this leads to DNA damage and RAD9-dependent activation of the Rad53 protein kinase. Consistent with a requirement for the segregation of repetitive regions, Smc5 and Smc6 proteins are enriched at ribosomal DNA (rDNA) and at some telomeres. We show that, following Smc5-Smc6 inactivation, metaphase-arrested cells show increased levels of X-shaped DNA (Holliday junctions) at the rDNA locus. Furthermore, deletion of RAD52 partially suppresses the temperature sensitivity of smc5-6 and smc6-9 mutants. We also present evidence showing that the rDNA segregation defects of smc5/smc6 mutants are mechanistically different from those previously observed for condensin mutants. These results point towards a role for the Smc5-Smc6 complex in preventing the formation of sister chromatid junctions, thereby ensuring the correct partitioning of chromosomes during anaphase.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica/fisiología , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cromatina/fisiología , Proteínas Cromosómicas no Histona , Segregación Cromosómica/genética , Cromosomas/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , ADN Ribosómico/genética , ADN Ribosómico/fisiología , Proteínas Fúngicas , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Cohesinas
7.
J Cell Biol ; 173(6): 893-903, 2006 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-16769819

RESUMEN

Mitotic disjunction of the repetitive ribosomal DNA (rDNA) involves specialized segregation mechanisms dependent on the conserved phosphatase Cdc14. The reason behind this requirement is unknown. We show that rDNA segregation requires Cdc14 partly because of its physical length but most importantly because a fraction of ribosomal RNA (rRNA) genes are transcribed at very high rates. We show that cells cannot segregate rDNA without Cdc14 unless they undergo genetic rearrangements that reduce rDNA copy number. We then demonstrate that cells with normal length rDNA arrays can segregate rDNA in the absence of Cdc14 as long as rRNA genes are not transcribed. In addition, our study uncovers an unexpected role for the replication barrier protein Fob1 in rDNA segregation that is independent of Cdc14. These findings demonstrate that highly transcribed loci can cause chromosome nondisjunction.


Asunto(s)
ADN Ribosómico/genética , Genes de ARNr , No Disyunción Genética , ARN Ribosómico/biosíntesis , Transcripción Genética/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Conversión Génica/fisiología , Eliminación de Gen , Dosificación de Gen , Genes cdc , Modelos Genéticos , Mutación , ARN Polimerasa II/metabolismo , Levaduras/citología
8.
J Cell Biol ; 168(2): 209-19, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15657393

RESUMEN

Mitotic cell division involves the equal segregation of all chromosomes during anaphase. The presence of ribosomal DNA (rDNA) repeats on the right arm of chromosome XII makes it the longest in the budding yeast genome. Previously, we identified a stage during yeast anaphase when rDNA is stretched across the mother and daughter cells. Here, we show that resolution of sister rDNAs is achieved by unzipping of the locus from its centromere-proximal to centromere-distal regions. We then demonstrate that during this stretched stage sister rDNA arrays are neither compacted nor segregated despite being largely resolved from each other. Surprisingly, we find that rDNA segregation after this period no longer requires spindles but instead involves Cdc14-dependent rDNA axial compaction. These results demonstrate that chromosome resolution is not simply a consequence of compacting chromosome arms and that overall rDNA compaction is necessary to mediate the segregation of the long arm of chromosome XII.


Asunto(s)
Anafase/fisiología , Segregación Cromosómica/fisiología , ADN Ribosómico/metabolismo , Saccharomyces cerevisiae/fisiología , Huso Acromático/fisiología , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Proteínas Luminiscentes/genética , Factor de Apareamiento , Metafase/fisiología , Microscopía Fluorescente , Mutación , Nocodazol/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/farmacología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Coloración y Etiquetado
9.
Nat Struct Mol Biol ; 26(10): 970-979, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31582854

RESUMEN

Cohesin is a regulator of genome architecture with roles in sister chromatid cohesion and chromosome compaction. The recruitment and mobility of cohesin complexes on DNA is restricted by nucleosomes. Here, we show that the role of cohesin in chromosome organization requires the histone chaperone FACT ('facilitates chromatin transcription') in Saccharomyces cerevisiae. We find that FACT interacts directly with cohesin, and is dynamically required for its localization on chromatin. Depletion of FACT in metaphase cells prevents cohesin accumulation at pericentric regions and causes reduced binding on chromosome arms. Using the Hi-C technique, we show that cohesin-dependent TAD (topological associated domain)-like structures in G1 and metaphase chromosomes are reduced in the absence of FACT. Sister chromatid cohesion is intact in FACT-depleted cells, although chromosome segregation failure is observed. Our data show that FACT contributes to the formation of cohesin-dependent TADs, thus uncovering a new role for this complex in nuclear organization during interphase and mitotic chromosome folding.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Cohesinas
10.
Curr Biol ; 14(2): 125-30, 2004 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-14738734

RESUMEN

The tandem array of ribosomal DNA (rDNA) in Saccharomyces cerevisiae is subjected to transcriptional silencing of RNA polymerase II-transcribed genes. This form of silencing depends on SIR2 and has been tightly linked to the suppression of rDNA recombination and the control of cellular lifespan. Paradoxically, rDNA silencing takes place in the context of an extremely high rate of RNA polymerase I transcription. Because rDNA silencing requires different factors than HMR and telomere silencing, the chromatin structure and the mechanisms of silencing must be fundamentally different. Here we show that yeast condensin organizes the specialized topology of rDNA chromatin. We then demonstrate that this function is necessary for maintaining the correct balance of telomeric and nucleolar Sir2p. Condensin mutants relocalize telomeric Sir2p to rDNA and show histone hyperacetylation at telomeres. Our data reveal the implication of yeast condensin in the arrangement of rDNA repeats into a heterochromatic-like structure that is important for the correct delineation of silencing domains in the nucleus.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , ADN Ribosómico/metabolismo , Hibridación Fluorescente in Situ , Complejos Multiproteicos , Pruebas de Precipitina , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero/metabolismo , Temperatura
11.
Microb Cell ; 4(10): 331-341, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29082231

RESUMEN

Post-translational modification by the small ubiquitin-like modifier (SUMO) is an important mechanism regulating protein function. Identification of SUMO conjugation sites on substrates is a challenging task. Here we employed a proteomic method to map SUMO acceptor lysines in budding yeast proteins. We report the identification of 257 lysine residues where SUMO is potentially attached. Amongst the hits, we identified already known SUMO substrates and sites, confirming the success of the approach. In addition, we tested several of the novel substrates using SUMO immunoprecipitation analysis and confirmed that the SUMO acceptor lysines identified in these proteins are indeed bona fide SUMOylation sites. We believe that the collection of SUMO sites presented here is an important resource for future functional studies of SUMOylation in yeast.

12.
Cell Cycle ; 3(4): 496-502, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15004526

RESUMEN

In order to transmit a full genetic complement cells must ensure that all chromosomes are accurately split and distributed during anaphase. Chromosome XII in S. cerevisiae contains the site of nucleolar assembly, a 1-2Mb array of rDNA genes named RDN1. Cdc14p is a conserved phosphatase, essential for anaphase progression and mitotic exit, which is kept inactive at the nucleolus until mitosis. In early anaphase, the FEAR network (Cdc Fourteen Early Anaphase Release) promotes the transient and partial release of Cdc14p from the nucleolus. The putative role of Cdc14p released by the FEAR network is thought to be the stimulation of full Cdc14p release by activation of the GTPase-driven signaling cascade (the Mitotic Exit Network or MEN) that ensures mitotic exit. Here, we show that nucleolar segregation is spatially separated and temporally delayed from the rest of the genome. Nucleolar segregation occurs during mid-anaphase and coincides with the FEAR release of Cdc14p. Inactivation of FEAR delays nucleolar segregation until late anaphase, demonstrating that one function of the FEAR network is to promote segregation of repetitive nucleolar chromatin during mid-anaphase.


Asunto(s)
Proteínas de Ciclo Celular/química , Nucléolo Celular/metabolismo , Genoma , Proteínas Tirosina Fosfatasas/química , Proteínas de Saccharomyces cerevisiae/química , Anafase , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Separación Celular , Cromatina/metabolismo , ADN Ribosómico/química , ADN Ribosómico/metabolismo , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Genoma Fúngico , Genotipo , Humanos , Microscopía Fluorescente , Mitosis , Monoéster Fosfórico Hidrolasas/metabolismo , Plásmidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Temperatura , Factores de Tiempo
13.
Cell Rep ; 13(11): 2336-2344, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686624

RESUMEN

Condensin is a conserved chromosomal complex necessary to promote mitotic chromosome condensation and sister chromatid resolution during anaphase. Here, we report that yeast condensin binds to replicated centromere regions. We show that centromeric condensin relocalizes to chromosome arms as cells undergo anaphase segregation. We find that condensin relocalization is initiated immediately after the bipolar attachment of sister kinetochores to spindles and requires Polo kinase activity. Moreover, condensin localization during anaphase involves a higher binding rate on DNA and temporally overlaps with condensin's DNA overwinding activity. Finally, we demonstrate that topoisomerase 2 (Top2) is also recruited to chromosome arms during anaphase in a condensin-dependent manner. Our results uncover a functional relation between condensin and Top2 during anaphase to mediate chromosome segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Anafase , Segregación Cromosómica , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Curr Biol ; 22(17): 1564-75, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22771042

RESUMEN

BACKGROUND: Cohesion between sister chromatids is fundamental to ensure faithful chromosome segregation during mitosis and accurate repair of DNA damage postreplication. At the molecular level, cohesion establishment involves two defined events, a chromatin binding step and a chromatid entrapment event driven by posttranslational modifications on cohesin subunits. RESULTS: Here, we show that modification by the small ubiquitin-like protein (SUMO) is required for sister chromatid tethering after DNA damage. We find that all subunits of cohesin become SUMOylated upon exposure to DNA damaging agents or presence of a DNA double-strand break. We have mapped all lysine residues on cohesin's α-kleisin subunit Mcd1 (Scc1) where SUMO can conjugate. We demonstrate that Mcd1 SUMOylation-deficient alleles are still recruited to DSB-proximal regions but are defective in tethering sister chromatids and consequently fail to establish damage-induced cohesion both at DSBs and undamaged chromosomes. Moreover, we demonstrate that the bulk of Mcd1 SUMOylation in response to damage is carried out by the SUMO E3 ligase Nse2, a subunit of the related Smc5-Smc6 complex. SUMOylation occurs in cells with compromised Chk1 kinase activity, necessary for known posttranslational modifications on Mcd1, required for damage-induced cohesion. CONCLUSIONS: These findings demonstrate that SUMOylation of Mcd1 is a novel prerequisite for the establishment of DNA damage-induced cohesion at DSB-proximal regions and cohesion-associating regions (CARs) genome-wide.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Daño del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sumoilación , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Roturas del ADN de Doble Cadena , Proteínas de Saccharomyces cerevisiae/fisiología , Cohesinas
16.
PLoS One ; 6(5): e20152, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21647453

RESUMEN

Efficient repair of DNA double-stranded breaks (DSB) requires a coordinated response at the site of lesion. Nucleolytic resection commits repair towards homologous recombination, which preferentially occurs between sister chromatids. DSB resection promotes recruitment of the Mec1 checkpoint kinase to the break. Rtt107 is a target of Mec1 and serves as a scaffold during repair. Rtt107 plays an important role during rescue of damaged replication forks, however whether Rtt107 contributes to the repair of DSBs is unknown. Here we show that Rtt107 is recruited to DSBs induced by the HO endonuclease. Rtt107 phosphorylation by Mec1 and its interaction with the Smc5-Smc6 complex are both required for Rtt107 loading to breaks, while Rtt107 regulators Slx4 and Rtt101 are not. We demonstrate that Rtt107 has an effect on the efficiency of sister chromatid recombination (SCR) and propose that its recruitment to DSBs, together with the Smc5-Smc6 complex is important for repair through the SCR pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Intercambio de Cromátides Hermanas/genética , Proteínas de Ciclo Celular/metabolismo , Endonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología
17.
Nat Cell Biol ; 13(12): 1450-6, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020438

RESUMEN

Kinases and phosphatases regulate messenger RNA synthesis through post-translational modification of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (ref. 1). In yeast, the phosphatase Cdc14 is required for mitotic exit(2,3) and for segregation of repetitive regions(4). Cdc14 is also a subunit of the silencing complex RENT (refs 5,6), but no roles in transcriptional repression have been described. Here we report that inactivation of Cdc14 causes silencing defects at the intergenic spacer sequences of ribosomal genes during interphase and at Y' repeats in subtelomeric regions during mitosis. We show that the role of Cdc14 in silencing is independent of the RENT deacetylase subunit Sir2. Instead, Cdc14 acts directly on RNA polymerase II by targeting CTD phosphorylation at Ser 2 and Ser 5. We also find that the role of Cdc14 as a CTD phosphatase is conserved in humans. Finally, telomere segregation defects in cdc14 mutants(4) correlate with the presence of subtelomeric Y' elements and can be rescued by transcriptional inhibition of RNA polymerase II.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Silenciador del Gen/fisiología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Transcripción Genética/fisiología , Proteínas de Ciclo Celular/antagonistas & inhibidores , ADN Espaciador Ribosómico/genética , Interfase/genética , Mitosis/genética , Fosforilación/genética , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , ARN Polimerasa II/antagonistas & inhibidores , Secuencias Repetitivas de Ácidos Nucleicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Supresión Genética/fisiología , Telómero/enzimología
18.
Science ; 315(5817): 1411-5, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17347440

RESUMEN

Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most significantly at natural replication-impeding loci like the ribosomal DNA gene cluster. In the absence of Smc5-Smc6, chromosome nondisjunction occurs as a consequence of mitotic entry with unfinished replication despite intact checkpoint responses. Eliminating processes that obstruct replication fork progression restores the temporal uncoupling between replication and segregation in smc5-smc6 mutants. We propose that the completion of replication is not under the surveillance of known checkpoints.


Asunto(s)
Anafase , Cromosomas Fúngicos/genética , Replicación del ADN , ADN Ribosómico/genética , Mitosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/metabolismo , Genes Fúngicos , Genes de ARNr , Metafase , Modelos Genéticos , Mutación , No Disyunción Genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Genomics ; 79(3): 285-96, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11863358

RESUMEN

The cytidine (C) to uridine (U) editing of apolipoprotein (apo) B mRNA is mediated by tissue-specific, RNA-binding cytidine deaminase APOBEC1. APOBEC1 is structurally homologous to Escherichia coli cytidine deaminase (ECCDA), but has evolved specific features required for RNA substrate binding and editing. A signature sequence for APOBEC1 has been used to identify other members of this family. One of these genes, designated APOBEC2, is found on chromosome 6. Another gene corresponds to the activation-induced deaminase (AID) gene, which is located adjacent to APOBEC1 on chromosome 12. Seven additional genes, or pseudogenes (designated APOBEC3A to 3G), are arrayed in tandem on chromosome 22. Not present in rodents, this locus is apparently an anthropoid-specific expansion of the APOBEC family. The conclusion that these new genes encode orphan C to U RNA-editing enzymes of the APOBEC family comes from similarity in amino acid sequence with APOBEC1, conserved intron/exon organization, tissue-specific expression, homodimerization, and zinc and RNA binding similar to APOBEC1. Tissue-specific expression of these genes in a variety of cell lines, along with other evidence, suggests a role for these enzymes in growth or cell cycle control.


Asunto(s)
Cromosomas Humanos Par 22/genética , Citidina Desaminasa/genética , Genoma Humano , Familia de Multigenes/genética , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Desaminasas APOBEC-1 , Secuencia de Aminoácidos/genética , Animales , Northern Blotting , Dominio Catalítico/genética , Exones/genética , Etiquetas de Secuencia Expresada , Haplorrinos/genética , Humanos , Intrones/genética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia
20.
EMBO J ; 22(15): 3971-82, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12881431

RESUMEN

The C to U editing of apolipoprotein B (apoB) mRNA is mediated by a minimal complex composed of an RNA-binding cytidine deaminase (APOBEC1) and a complementing specificity factor (ACF). This editing generates a premature termination codon and a truncated open reading frame. We demonstrate that the APOBEC1-ACF holoenzyme mediates a multifunctional cycle. The atypical APOBEC1 nuclear localization signal is involved in RNA binding and is used to import ACF into the nucleus as cargo. APOBEC1 alone induces nonsense-mediated decay (NMD). The APOBEC1-ACF complex edits and remains associated with the edited RNA to protect it from NMD. The APOBEC1 nuclear export signal is involved in the export of ACF and the edited apoB mRNA together, to the site of translation.


Asunto(s)
Citidina Desaminasa/fisiología , ARN Mensajero/metabolismo , Desaminasas APOBEC-1 , Animales , Transporte Biológico , Línea Celular , Núcleo Celular/metabolismo , Citidina Desaminasa/metabolismo , Citoplasma/metabolismo , Humanos , Señales de Localización Nuclear , Edición de ARN , ARN Mensajero/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA