Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(13): 2240-2257.e6, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37329882

RESUMEN

The RNA-binding ARS2 protein is centrally involved in both early RNA polymerase II (RNAPII) transcription termination and transcript decay. Despite its essential nature, the mechanisms by which ARS2 enacts these functions have remained unclear. Here, we show that a conserved basic domain of ARS2 binds a corresponding acidic-rich, short linear motif (SLiM) in the transcription restriction factor ZC3H4. This interaction recruits ZC3H4 to chromatin to elicit RNAPII termination, independent of other early termination pathways defined by the cleavage and polyadenylation (CPA) and Integrator (INT) complexes. We find that ZC3H4, in turn, forms a direct connection to the nuclear exosome targeting (NEXT) complex, hereby facilitating rapid degradation of the nascent RNA. Hence, ARS2 instructs the coupled transcription termination and degradation of the transcript onto which it is bound. This contrasts with ARS2 function at CPA-instructed termination sites where the protein exclusively partakes in RNA suppression via post-transcriptional decay.


Asunto(s)
Proteínas Nucleares , Transcripción Genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN
2.
Mol Cell ; 82(13): 2505-2518.e7, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35688157

RESUMEN

In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3' end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome.


Asunto(s)
Exosomas , ARN , Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Humanos , Unión Proteica , ARN/genética , ARN/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN/genética
3.
Mol Cell ; 82(9): 1691-1707.e8, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349793

RESUMEN

Transposable elements (TEs) are widespread genetic parasites known to be kept under tight transcriptional control. Here, we describe a functional connection between the mouse-orthologous "nuclear exosome targeting" (NEXT) and "human silencing hub" (HUSH) complexes, involved in nuclear RNA decay and the epigenetic silencing of TEs, respectively. Knocking out the NEXT component ZCCHC8 in embryonic stem cells results in elevated TE RNA levels. We identify a physical interaction between ZCCHC8 and the MPP8 protein of HUSH and establish that HUSH recruits NEXT to chromatin at MPP8-bound TE loci. However, while NEXT and HUSH both dampen TE RNA expression, their activities predominantly affect shorter non-polyadenylated and full-length polyadenylated transcripts, respectively. Indeed, our data suggest that the repressive action of HUSH promotes a condition favoring NEXT RNA decay activity. In this way, transcriptional and post-transcriptional machineries synergize to suppress the genotoxic potential of TE RNAs.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Exosomas , Animales , Cromatina/genética , Cromatina/metabolismo , Elementos Transponibles de ADN/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , ARN/metabolismo , Estabilidad del ARN
4.
Cell ; 157(5): 1244; 1244.e1-2, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855955

RESUMEN

RNA polymerase II generates a diverse set of RNA transcripts, including mRNA, miRNA, lncRNA, and sn(o)RNA. These transcripts are modified and processed in the nucleus by a particular set of enzymes, as illustrated in this SnapShot.


Asunto(s)
Núcleo Celular/enzimología , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Núcleo Celular/metabolismo , Humanos , ARN/metabolismo
5.
Mol Cell ; 81(3): 514-529.e6, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33385327

RESUMEN

Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/biosíntesis , Terminación de la Transcripción Genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Poliadenilación , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Nuclear Pequeño/genética
6.
Genes Dev ; 35(17-18): 1290-1303, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385261

RESUMEN

Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Poliadenilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Rev Mol Cell Biol ; 16(11): 665-77, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26397022

RESUMEN

Nonsense-mediated mRNA decay (NMD) is probably the best characterized eukaryotic RNA degradation pathway. Through intricate steps, a set of NMD factors recognize and degrade mRNAs with translation termination codons that are positioned in abnormal contexts. However, NMD is not only part of a general cellular quality control system that prevents the production of aberrant proteins. Mammalian cells also depend on NMD to dynamically adjust their transcriptomes and their proteomes to varying physiological conditions. In this Review, we discuss how NMD targets mRNAs, the types of mRNAs that are targeted, and the roles of NMD in cellular stress, differentiation and maturation processes.


Asunto(s)
Codón sin Sentido/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/metabolismo , Transcriptoma , Animales , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Mamíferos , Biosíntesis de Proteínas/genética , Proteoma/genética , ARN Mensajero/genética
8.
Mol Cell ; 72(1): 99-111.e5, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220559

RESUMEN

Box C/D snoRNAs constitute a class of abundant noncoding RNAs that associate with common core proteins to form catalytic snoRNPs. Most of these operate in trans to assist the maturation of rRNAs by guiding and catalyzing the 2'-O-methylation of specific nucleotides. Here, we report that the human intron-hosted box C/D snoRNA snoRD86 acts in cis as a sensor and master switch controlling levels of the limiting snoRNP core protein NOP56, which is important for proper ribosome biogenesis. Our results support a model in which snoRD86 adopts different RNP conformations that dictate the usage of nearby alternative splice donors in the NOP56 pre-mRNA. Excess snoRNP core proteins prevent further production of NOP56 and instead trigger the generation of a cytoplasmic snoRD86-containing NOP56-derived lncRNA via the nonsense-mediated decay pathway. Our findings reveal a feedback mechanism based on RNA structure that controls the precise coordination between box C/D snoRNP core proteins and global snoRNA levels.


Asunto(s)
Empalme Alternativo/genética , Proteínas Nucleares/genética , Precursores del ARN/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Animales , Nucléolo Celular/genética , Células HEK293 , Homeostasis/genética , Humanos , Intrones/genética , Ratones , Unión Proteica , Conejos
9.
Cell ; 143(4): 501-2, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21074041

RESUMEN

Efficient and accurate gene expression requires the coordination of multiple steps along the pathway of mRNA and protein synthesis. Now, Harel-Sharvit et al. (2010) show that transcriptional imprinting of mRNAs with two subunits of RNA polymerase II, Rbp4p and Rpb7p, guides transcripts to the translation apparatus.

10.
Mol Cell ; 65(5): 775-776, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257696

RESUMEN

In this issue of Molecular Cell, Bresson et al. (2017) show that the nuclear RNA decay factors Nab3 and Mtr4 reshape the coding transcriptome during glucose starvation in budding yeast, placing nuclear mRNA metabolism as an important contributor of gene expression regulation.


Asunto(s)
ARN Mensajero , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Nucleares/genética , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Radiactividad , Saccharomyces cerevisiae/genética
11.
Nat Rev Genet ; 19(8): 518-529, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29748575

RESUMEN

RNA turnover is an integral part of cellular RNA homeostasis and gene expression regulation. Whereas the cytoplasmic control of protein-coding mRNA is often the focus of study, we discuss here the less appreciated role of nuclear RNA decay systems in controlling RNA polymerase II (RNAPII)-derived transcripts. Historically, nuclear RNA degradation was found to be essential for the functionalization of transcripts through their proper maturation. Later, it was discovered to also be an important caretaker of nuclear hygiene by removing aberrant and unwanted transcripts. Recent years have now seen a set of new protein complexes handling a variety of new substrates, revealing functions beyond RNA processing and the decay of non-functional transcripts. This includes an active contribution of nuclear RNA metabolism to the overall cellular control of RNA levels, with mechanistic implications during cellular transitions.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , ARN Polimerasa II/metabolismo , Estabilidad del ARN/fisiología , ARN Nuclear/biosíntesis , Transcripción Genética/fisiología , Animales , Núcleo Celular/genética , Humanos , ARN Polimerasa II/genética , ARN Nuclear/genética
12.
Mol Cell ; 64(3): 520-533, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27871484

RESUMEN

The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One example is the trimeric human nuclear exosome targeting (NEXT) complex, which is composed of hMTR4, the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear poly(A)-binding protein PABPN1. Individual depletion of ZFC3H1 and PABPN1 results in the accumulation of common transcripts that are generally both longer and more extensively polyadenylated than NEXT substrates. Importantly, ZFC3H1/PABPN1 and ZCCHC8/RBM7 contact hMTR4 in a mutually exclusive manner, revealing that the exosome targets nuclear transcripts of different maturation status by substituting its hMTR4-associating adaptors.


Asunto(s)
Proteínas Portadoras/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Proteínas Nucleares/genética , Proteína I de Unión a Poli(A)/genética , ARN Helicasas/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Poli A/genética , Poli A/metabolismo , Proteína I de Unión a Poli(A)/antagonistas & inhibidores , Proteína I de Unión a Poli(A)/metabolismo , Unión Proteica , ARN Helicasas/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
13.
Nucleic Acids Res ; 50(3): 1583-1600, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35048984

RESUMEN

Turnover of nucleoplasmic transcripts by the mammalian multi-subunit RNA exosome is mediated by two adaptors: the Nuclear EXosome Targeting (NEXT) complex and the Poly(A) tail eXosome Targeting (PAXT) connection. Functional analyses of NEXT and PAXT have largely utilized long-term factor depletion strategies, facilitating the appearance of indirect phenotypes. Here, we rapidly deplete NEXT, PAXT and core exosome components, uncovering the direct consequences of their acute losses. Generally, proteome changes are sparse and largely dominated by co-depletion of other exosome and adaptor subunits, reflecting possible subcomplex compositions. While parallel high-resolution 3' end sequencing of newly synthesized RNA confirms previously established factor specificities, it concomitantly demonstrates an inflation of long-term depletion datasets by secondary effects. Most strikingly, a general intron degradation phenotype, observed in long-term NEXT depletion samples, is undetectable upon short-term depletion, which instead emphasizes NEXT targeting of snoRNA-hosting introns. Further analysis of these introns uncovers an unusual mode of core exosome-independent RNA decay. Our study highlights the accumulation of RNAs as an indirect result of long-term decay factor depletion, which we speculate is, at least partly, due to the exhaustion of alternative RNA decay pathways.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Estabilidad del ARN , Núcleo Celular/genética , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN/genética , ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/metabolismo
14.
Genes Dev ; 30(14): 1658-70, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27474443

RESUMEN

RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3'-to-5' RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3' untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.


Asunto(s)
Exosomas/metabolismo , Estabilidad del ARN/fisiología , ARN Viral/metabolismo , Animales , Línea Celular , Citoplasma/metabolismo , Drosophila/virología , Humanos , Complejos Multiproteicos/genética , Poliadenilación , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/fisiología , Factores de Transcripción/metabolismo
15.
Cell ; 135(2): 308-21, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957205

RESUMEN

During transcription, proteins assemble sequentially with nascent RNA to generate a messenger ribonucleoprotein particle (mRNP). The THO complex and its associated Sub2p helicase are functionally implicated in both transcription and mRNP biogenesis but their precise function remains elusive. We show here that THO/Sub2p mutation leads to the accumulation of a stalled intermediate in mRNP biogenesis that contains nuclear pore components and polyadenylation factors in association with chromatin. Microarray analyses of genomic loci that are aberrantly docked to the nuclear pore in mutants allowed the identification of approximately 400 novel validated target genes that require THO /Sub2p for efficient expression. Our data strongly suggests that the THO complex/Sub2p function is required to coordinate events leading to the acquisition of export competence at a step that follows commitment to 3'-processing.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Poro Nuclear/metabolismo , Procesamiento de Término de ARN 3' , Transporte de ARN , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Trifosfatasas/genética , Cromatina/metabolismo , Proteínas de Choque Térmico/genética , Mutación , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
16.
EMBO J ; 37(13)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29880601

RESUMEN

Cytoplasmic mRNA degradation controls gene expression to help eliminate pathogens during infection. However, it has remained unclear whether such regulation also extends to nuclear RNA decay. Here, we show that 145 unstable nuclear RNAs, including enhancer RNAs (eRNAs) and long noncoding RNAs (lncRNAs) such as NEAT1v2, are stabilized upon Salmonella infection in HeLa cells. In uninfected cells, the RNA exosome, aided by the Nuclear EXosome Targeting (NEXT) complex, degrades these labile transcripts. Upon infection, the levels of the exosome/NEXT components, RRP6 and MTR4, dramatically decrease, resulting in transcript stabilization. Depletion of lncRNAs, NEAT1v2, or eRNA07573 in HeLa cells triggers increased susceptibility to Salmonella infection concomitant with the deregulated expression of a distinct class of immunity-related genes, indicating that the accumulation of unstable nuclear RNAs contributes to antibacterial defense. Our results highlight a fundamental role for regulated degradation of nuclear RNA in the response to pathogenic infection.


Asunto(s)
ARN Nuclear , ARN no Traducido , Infecciones por Salmonella/genética , Supervivencia Celular , Células HeLa , Humanos , Salmonella enterica/genética , Regulación hacia Arriba
17.
Biochem Soc Trans ; 50(1): 283-295, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166324

RESUMEN

Transcription establishes the universal first step of gene expression where RNA is produced by a DNA-dependent RNA polymerase. The most versatile of eukaryotic RNA polymerases, RNA polymerase II (Pol II), transcribes a broad range of DNA including protein-coding and a variety of non-coding transcription units. Although Pol II can be configured as a durable enzyme capable of transcribing hundreds of kilobases, there is reliable evidence of widespread abortive Pol II transcription termination shortly after initiation, which is often followed by rapid degradation of the associated RNA. The molecular details underlying this phenomenon are still vague but likely reflect the action of quality control mechanisms on the early Pol II complex. Here, we summarize current knowledge of how and when such promoter-proximal quality control is asserted on metazoan Pol II.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , Regiones Promotoras Genéticas , ARN/genética , ARN Polimerasa II/metabolismo
18.
Nucleic Acids Res ; 48(5): 2518-2530, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31950173

RESUMEN

Recruitment of the human ribonucleolytic RNA exosome to nuclear polyadenylated (pA+) RNA is facilitated by the Poly(A) Tail eXosome Targeting (PAXT) connection. Besides its core dimer, formed by the exosome co-factor MTR4 and the ZFC3H1 protein, the PAXT connection remains poorly defined. By characterizing nuclear pA+-RNA bound proteomes as well as MTR4-ZFC3H1 containing complexes in conditions favoring PAXT assembly, we here uncover three additional proteins required for PAXT function: ZC3H3, RBM26 and RBM27 along with the known PAXT-associated protein, PABPN1. The zinc-finger protein ZC3H3 interacts directly with MTR4-ZFC3H1 and loss of any of the newly identified PAXT components results in the accumulation of PAXT substrates. Collectively, our results establish new factors involved in the turnover of nuclear pA+ RNA and suggest that these are limiting for PAXT activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Exosomas/metabolismo , Poli A/metabolismo , Estabilidad del ARN , ARN Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Proteoma/metabolismo , Ribonucleoproteínas/metabolismo
19.
Nucleic Acids Res ; 48(18): 10413-10427, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960271

RESUMEN

The nuclear Cap-Binding Complex (CBC), consisting of Nuclear Cap-Binding Protein 1 (NCBP1) and 2 (NCBP2), associates with the nascent 5'cap of RNA polymerase II transcripts and impacts RNA fate decisions. Recently, the C17orf85 protein, also called NCBP3, was suggested to form an alternative CBC by replacing NCBP2. However, applying protein-protein interaction screening of NCBP1, 2 and 3, we find that the interaction profile of NCBP3 is distinct. Whereas NCBP1 and 2 identify known CBC interactors, NCBP3 primarily interacts with components of the Exon Junction Complex (EJC) and the TRanscription and EXport (TREX) complex. NCBP3-EJC association in vitro and in vivo requires EJC core integrity and the in vivo RNA binding profiles of EJC and NCBP3 overlap. We further show that NCBP3 competes with the RNA degradation factor ZC3H18 for binding CBC-bound transcripts, and that NCBP3 positively impacts the nuclear export of polyadenylated RNAs and the expression of large multi-exonic transcripts. Collectively, our results place NCBP3 with the EJC and TREX complexes in supporting mRNA expression.


Asunto(s)
ARN Mensajero/genética , Proteínas de Unión al ARN/genética , ARN/genética , Transcripción Genética , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Exones , Regulación de la Expresión Génica/genética , Humanos , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Proteínas de Unión a Caperuzas de ARN/genética , ARN Polimerasa II/genética , Estabilidad del ARN/genética , Transporte de ARN/genética , Factores de Transcripción/genética
20.
Nucleic Acids Res ; 48(18): 10456-10469, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960270

RESUMEN

A 5',7-methylguanosine cap is a quintessential feature of RNA polymerase II-transcribed RNAs, and a textbook aspect of co-transcriptional RNA processing. The cap is bound by the cap-binding complex (CBC), canonically consisting of nuclear cap-binding proteins 1 and 2 (NCBP1/2). Interest in the CBC has recently renewed due to its participation in RNA-fate decisions via interactions with RNA productive factors as well as with adapters of the degradative RNA exosome. A novel cap-binding protein, NCBP3, was recently proposed to form an alternative CBC together with NCBP1, and to interact with the canonical CBC along with the protein SRRT. The theme of post-transcriptional RNA fate, and how it relates to co-transcriptional ribonucleoprotein assembly, is abundant with complicated, ambiguous, and likely incomplete models. In an effort to clarify the compositions of NCBP1-, 2- and 3-related macromolecular assemblies, we have applied an affinity capture-based interactome screen where the experimental design and data processing have been modified to quantitatively identify interactome differences between targets under a range of experimental conditions. This study generated a comprehensive view of NCBP-protein interactions in the ribonucleoprotein context and demonstrates the potential of our approach to benefit the interpretation of complex biological pathways.


Asunto(s)
Complejo Proteico Nuclear de Unión a la Caperuza/genética , Proteínas Nucleares/genética , Proteoma/genética , Proteínas de Unión a Caperuzas de ARN/genética , Citoplasma/inmunología , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Humanos , Proteómica/métodos , Caperuzas de ARN/genética , ARN Polimerasa II/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA