Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 610(7933): 661-666, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198794

RESUMEN

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

2.
Phys Rev Lett ; 132(23): 233802, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905673

RESUMEN

Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects, allowing a wide range of applications. Existing NLOS systems rely on pulsed lasers and time-resolved single-photon detectors to capture the information encoded in the time of flight of scattered photons. Despite remarkable advances, the pulsed time-of-flight LIDAR approach has limited temporal resolution and struggles to detect the frequency-associated information directly. Here, we propose and demonstrate the coherent scheme-frequency-modulated continuous wave calibrated by optical frequency comb-for high-resolution NLOS imaging, velocimetry, and vibrometry. Our comb-calibrated coherent sensor presents a system temporal resolution at subpicosecond and its superior signal-to-noise ratio permits NLOS imaging of complex scenes under strong ambient light. We show the capability of NLOS localization and 3D imaging at submillimeter scale and demonstrate NLOS vibrometry sensing at an accuracy of dozen Hertz. Our approach unlocks the coherent LIDAR techniques for widespread use in imaging science and optical sensing.

3.
Cancer Cell Int ; 23(1): 333, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115111

RESUMEN

DPY30 belongs to the core subunit of components of the histone lysine methyltransferase complex, which is implicated in tumorigenesis, cell senescence, and other biological events. However, its contribution to colorectal carcinoma (CRC) progression and metastasis has yet to be elucidated. Therefore, this study aimed to investigate the biological function of DPY30 in CRC metastasis both in vitro and in vivo. Herein, our results revealed that DPY30 overexpression is significantly positively correlated with positive lymph nodes, epithelial-mesenchymal transition (EMT), and CRC metastasis. Moreover, DPY30 knockdown in HT29 and SW480 cells markedly decreased EMT progression, as well as the migratory and invasive abilities of CRC cells in vitro and lung tumor metastasis in vivo. Mechanistically, DPY30 increased histone H3K4me3 level and promoted EMT and CRC metastasis by upregulating the transcriptional expression of ZEB1. Taken together, our findings indicate that DPY30 may serve as a therapeutic target and prognostic marker for CRC.

4.
Int J Med Sci ; 20(7): 901-917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324189

RESUMEN

DPY30, a core subunit of the SET1/MLL histone H3K4 methyltransferase complexes, plays an important role in diverse biological functions through the epigenetic regulation of gene transcription, especially in cancer development. However, its involvement in human colorectal carcinoma (CRC) has not been elucidated yet. Here we demonstrated that DPY30 was overexpressed in CRC tissues, and significantly associated with pathological grading, tumor size, TNM stage, and tumor location. Furthermore, DPY30 knockdown remarkably suppressed the CRC cell proliferation through downregulation of PCNA and Ki67 in vitro and in vivo, simultaneously induced cell cycle arrest at S phase by downregulating Cyclin A2. In the mechanistic study, RNA-Seq analysis revealed that enriched gene ontology of cell proliferation and cell growth was significantly affected. And ChIP result indicated that DPY30 knockdown inhibited H3 lysine 4 trimethylation (H3K4me3) and attenuated interactions between H3K4me3 with PCNA, Ki67 and cyclin A2 respectively, which led to the decrease of H3K4me3 establishment on their promoter regions. Taken together, our results demonstrate overexpression of DPY30 promotes CRC cell proliferation and cell cycle progression by facilitating the transcription of PCNA, Ki67 and cyclin A2 via mediating H3K4me3. It suggests that DPY30 may serve as a potential therapeutic molecular target for CRC.


Asunto(s)
Neoplasias Colorrectales , Ciclina A2 , Humanos , Ciclina A2/genética , Factores de Transcripción , Epigénesis Genética , Antígeno Ki-67 , Antígeno Nuclear de Célula en Proliferación , Proliferación Celular/genética , Ciclo Celular/genética , Neoplasias Colorrectales/genética
5.
J Fish Dis ; 45(11): 1599-1607, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35801398

RESUMEN

Nocardiosis caused by Nocardia seriolae is a major threat to the aquaculture industry. Given that prolonged therapy administration can lead to a growth of antibiotic resistant strains, new antibacterial agents and alternative strategies are urgently needed. In this study, 80 medicinal plants were selected for antibacterial screening to obtain potent bioactive compounds against N. seriolae infection. The methanolic extracts of Magnolia officinalis exhibited the strongest antibacterial activity against N. seriolae with the minimal inhibitory concentration (MIC) of 12.5 µg/ml. Honokiol and magnolol as the main bioactive components of M. officinalis showed higher activity with the MIC value of 3.12 and 6.25 µg/ml, respectively. Sequentially, the evaluation of antibacterial activity of honokiol in vivo showed that honokiol had good biosafety, and could significantly reduce the bacterial load of nocardia-infected largemouth bass (p < .001). Furthermore, the survival rate of nocardia-infected fish fed with 100 mg/kg honokiol was obviously improved (p < .05). Collectively, these results suggest that medicinal plants represent a promising reservoir for discovering active components against Nocardia, and honokiol has great potential to be developed as therapeutic agents to control nocardiosis in aquaculture.


Asunto(s)
Lubina , Enfermedades de los Peces , Magnolia , Nocardiosis , Nocardia , Plantas Medicinales , Compuestos Alílicos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Bifenilo , Enfermedades de los Peces/tratamiento farmacológico , Nocardiosis/tratamiento farmacológico , Nocardiosis/veterinaria , Fenoles , Extractos Vegetales/farmacología
6.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142360

RESUMEN

The outbreak of white spot syndrome (WSS) is a looming challenge, due to dramatic losses to the crustacean aquaculture industry. However, at present, there are no prophylactic or therapeutic means to control this infectious viral disease. Here, we screened fifteen medicinal plants for their inhibitory activity on the white spot syndrome virus (WSSV), using red swamp crayfish (Procambarus clarkii) as a model species. The results showed that the crude extracts of Pinellia ternata (Thunb.) Breit. had the highest inhibitory effect (91.59%, 100 mg/kg) on WSSV proliferation, and its main component, beta-sitosterol, showed a much higher activity (95.79%, 50 mg/kg). Further, beta-sitosterol potently reduced (p < 0.01) viral loads and viral gene transcription levels in a concentration-dependent fashion, and significantly promoted the survival rate of WSSV-challenged crayfish (57.14%, 50 mg/kg). The co-incubation assay indicated that beta-sitosterol did not influence the infectivity of WSSV particles. Both pre- and post-treatment of beta-sitosterol exerted a significant inhibitory effect (p < 0.01) on the viral load in vivo. Mechanistically, beta-sitosterol not only interfered with the expression of viral genes (immediate early gene 1, ie1; DNA polymerase, DNApol) that are important in initiating WSSV transcription, but it also attenuated the hijacking of innate immune signaling pathways (Toll, IMD, and JAK/STAT pathways) by viral genes to block WSSV replication. Moreover, the expression of several antiviral immune, antioxidant, pro-inflammatory, and apoptosis-related genes changed significantly in beta-sitosterol-treated crayfish. Beta-sitosterol is a potent WSSV inhibitor and has the potential to be developed as an effective anti-WSSV agent against a WSS outbreak in crustacean aquaculture.


Asunto(s)
Virus del Síndrome de la Mancha Blanca 1 , Animales , Antioxidantes/farmacología , Antivirales/farmacología , Astacoidea/genética , Mezclas Complejas/farmacología , Sitoesteroles
7.
Fish Shellfish Immunol ; 119: 432-441, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34688864

RESUMEN

White spot syndrome virus (WSSV) is a fatal pathogen threatening global crustacean industry with no commercially available drugs to control. Herbal medicines have been widely used to treat a number of viral infections, which could offer a rich reserve for antiviral drug discovery. Here, we evaluated the inhibition activities of 30 herbal medicines against WSSV in Chinese mitten crab Eriocheir sinensis. A WSSV infection model in E. sinensis was firstly established in order to determine the antiviral effects of the plant extracts and to explore the potential action mechanisms. Results showed that the highest anti-WSSV activity was obtained by the treatment of Ophiopogon japonicus extract (93.03%, 100 mg/kg). O. japonicus treatment decreased viral loads in a dose-dependent manner and significantly improved the survival of WSSV-challenged crabs. O. japonicus reduced the expression of vital genes in viral life cycle in vivo, particularly for the immediate-early stage gene ie1. Further results indicated that O. japonicus could repress the JAK-STAT signaling pathway to block ie1 transcription. Moreover, O. japonicus could modulate certain immune genes such as the myosin, toll-like receptor, crustin, and prophenoloxidase in the interactions between WSSV and crabs. The up-regulated expression of pro-autophagic factors (Gabarap and Atg7) and elevated levels of antioxidant enzymes (SOD, CAT and GSH) suggested that O. japonicus may induce autophagy and attenuate WSSV-induced oxidative stress. Taken together, O. japonicus could inhibit WSSV proliferation and improve the survival of WSSV-challenged crabs. Thus, O. japonicus may have the potential to be developed as a preventive or therapeutic agent against WSSV, and its effective compounds merit further isolation and identification.


Asunto(s)
Ophiopogon , Virus del Síndrome de la Mancha Blanca 1 , Animales , Antivirales , Proteínas de Artrópodos/genética , Proliferación Celular , China , Inmunidad Innata
8.
J Fish Dis ; 44(10): 1503-1513, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34227114

RESUMEN

White spot syndrome virus (WSSV) is a serious pathogen threatening global crustacean aquaculture with no commercially available drugs. Herbal medicines widely used in antiviral research offer a rich reserve for drug discovery. Here, we investigated the inhibitory activity of 13 herbal medicines against WSSV in crayfish Procambarus clarkii and discovered that naringenin (NAR) has potent anti-WSSV activity. In the preliminary screening, the extracts of Typha angustifolia displayed the highest inhibitory activity on WSSV replication (84.62%, 100 mg/kg). Further, NAR, the main active compound of T. angustifolia, showed a much higher inhibition rate (92.85%, 50 mg/kg). NAR repressed WSSV proliferation followed a dose-dependent manner and significantly improved the survival of WSSV-challenged crayfish. Moreover, pre- or post-treatment of NAR displayed a comparable inhibition on the viral loads. NAR decreased the transcriptional levels of vital genes in viral life cycle, particularly for the immediately early-stage gene ie1. Further results showed that NAR could decrease the STAT gene expression to block ie1 transcription. Besides, NAR modulated immune-related gene Hsp70, antioxidant (cMnSOD, mMnSOD, CAT, GST), anti-inflammatory (COX-1, COX-2) and pro-apoptosis-related factors (Bax and BI-1) to inhibit WSSV replication. Overall, these results suggest that NAR may have the potential to be developed as preventive or therapeutic agent against WSSV.


Asunto(s)
Antivirales/farmacología , Astacoidea/virología , Flavanonas/farmacología , Typhaceae/química , Virus del Síndrome de la Mancha Blanca 1/efectos de los fármacos , Animales , Antivirales/química , Flavanonas/química , Replicación Viral/efectos de los fármacos , Virus del Síndrome de la Mancha Blanca 1/fisiología
9.
Neurochem Res ; 44(7): 1755-1763, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31093903

RESUMEN

Overexpression of extracellular signal-regulated kinase ½ (ERK ½) signaling pathway leads to overproduction of reactive oxygen species (ROS) which induces oxidative stress. Coenzyme Q10 (CoQ10) scavenges ROS and protects cells against oxidative stress. The present study was designed to examine whether the protection of Coenzyme Q10 against oxidative damage in astrocytes is through regulating ERK 1/2 pathway. Ultraviolet B (UVB) irradiation was chosen as a tool to induce oxidative stress. Murine astrocytes were treated with 10 µg/ml and 25 µg/ml of CoQ10 for 24 h prior to UVB and maintained during UVB and 24 h post-UVB. Cell viability was evaluated by counting viable cells and MTT conversion assay. ROS production was measured using fluorescent probes. Levels of p-ERK 1/2, ERK 1/2, p-PKA, PKA were detected using immunocytochemistry and/or Western blotting. The results showed that UVB irradiation decreased the number of viable cells. This damaging effect was associated with accumulation of ROS and elevations of p-ERK 1/2 and p-PKA. Treatment with CoQ10 at 25 µg/ml significantly increased the number of viable cells and prevented the UVB-induced increases of ROS, p-ERK 1/2, and p-PKA. It is concluded that suppression of the PKA-ERK 1/2 signaling pathway may be one of the important mechanisms by which CoQ10 protects astrocytes from UVB-induced oxidative damage.


Asunto(s)
Astrocitos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estrés Oxidativo/efectos de la radiación , Protectores contra Radiación/farmacología , Transducción de Señal/efectos de los fármacos , Ubiquinona/análogos & derivados , Animales , Astrocitos/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Ubiquinona/farmacología , Rayos Ultravioleta
10.
Phys Rev Lett ; 121(3): 030404, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085824

RESUMEN

Chirality represents a kind of symmetry breaking characterized by the noncoincidence of an object with its mirror image and has been attracting intense attention in a broad range of scientific areas. The recent realization of spin-orbit coupling in ultracold atomic gases provides a new perspective to study quantum states with chirality. In this Letter, we demonstrate that the combined effects of spin-orbit coupling and interatomic soft-core long-range interaction can induce an exotic supersolid phase in which the chiral symmetry is broken with spontaneous emergence of circulating particle current. This implies that a finite angular momentum can be generated with neither rotation nor effective magnetic field. The direction of the angular momentum can be altered by adjusting the strength of spin-orbit coupling or interatomic interaction. The predicted chiral supersolid phase can be experimentally observed in Rydberg-dressed Bose-Einstein condensates with spin-orbit coupling.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2686-90, 2015 Oct.
Artículo en Zh | MEDLINE | ID: mdl-26904800

RESUMEN

Under the condition of mesopic vision, the spectral luminous efficiency function is shown as a series of curves. Its peak wavelength and intensity are affected by light spectrum, background brightness and other aspects. The impact of light source to lighting visibility could not be carried out via a single optical parametric characterization. The reaction time of visual cognition is regard as evaluating indexes in this experiment. Under the condition of different speed and luminous environment, testing visual cognition based on vision function method. The light sources include high pressure sodium, electrodeless fluorescent lamp and white LED with three kinds of color temperature (the range of color temperature is from 1 958 to 5 537 K). The background brightness value is used for basic section of highway tunnel illumination and general outdoor illumination, its range is between 1 and 5 cd x m(-)2. All values are in the scope of mesopic vision. Test results show that: under the same condition of speed and luminance, the reaction time of visual cognition that corresponding to high color temperature of light source is shorter than it corresponding to low color temperature; the reaction time corresponding to visual target in high speed is shorter than it in low speed. At the end moment, however, the visual angle of target in observer's visual field that corresponding to low speed was larger than it corresponding to high speed. Based on MOVE model, calculating the equivalent luminance of human mesopic vision, which is on condition of different emission spectrum and background brightness that formed by test lighting sources. Compared with photopic vision result, the standard deviation (CV) of time-reaction curve corresponding to equivalent brightness of mesopic vision is smaller. Under the condition of mesopic vision, the discrepancy between equivalent brightness of different lighting source and photopic vision, that is one of the main reasons for causing the discrepancy of visual recognition. The emission spectrum peak of GaN chip is approximate to the wave length peak of efficiency function in photopic vision. The lighting visual effect of write LED in high color temperature is better than it in low color temperature and electrodeless fluorescent lamp. The lighting visual effect of high pressure sodium is weak. Because of its peak value is around the Na+ characteristic spectra.

12.
Front Public Health ; 12: 1399470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887257

RESUMEN

Objective: Pneumonia is a common and serious infectious disease that affects the older adult population. Severe pneumonia can lead to high mortality and morbidity in this group. Therefore, it is important to identify the risk factors and develop a prediction model for severe pneumonia in older adult patients. Method: In this study, we collected data from 1,000 older adult patients who were diagnosed with pneumonia and admitted to the intensive care unit (ICU) in a tertiary hospital. We used logistic regression and machine learning methods to analyze the risk factors and construct a prediction model for severe pneumonia in older adult patients. We evaluated the performance of the model using accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and calibration plot. Result: We found that age, comorbidities, vital signs, laboratory tests, and radiological findings were associated with severe pneumonia in older adult patients. The prediction model had an accuracy of 0.85, a sensitivity of 0.80, a specificity of 0.88, and an AUC of 0.90. The calibration plot showed good agreement between the predicted and observed probabilities of severe pneumonia. Conclusion: The prediction model can help clinicians to stratify the risk of severe pneumonia in older adult patients and provide timely and appropriate interventions.


Asunto(s)
Unidades de Cuidados Intensivos , Neumonía , Humanos , Anciano , Femenino , Factores de Riesgo , Masculino , Anciano de 80 o más Años , Modelos Logísticos , Curva ROC , Índice de Severidad de la Enfermedad , Aprendizaje Automático , Medición de Riesgo/métodos , Comorbilidad , Factores de Edad , Centros de Atención Terciaria
13.
Mol Neurobiol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922485

RESUMEN

Methamphetamine (MA) is one of the most abused drugs globally, but the mechanism of its addiction remains unclear. Several animal studies have shown that the gut microbiota (GM) influences addictive behaviors, but the pattern of GM changes during addiction in animals of different species remains unclear. The aim of this study was to explore the association between dynamic changes in GM and MA self-administration acquisition among two classical mammals, rhesus monkeys (Macaca mulatta) and rats, MA self-administration models. Male Sprague-Dawley rats and male rhesus monkeys were subjected to classical MA self-administration training, and fecal samples were collected before and after MA self-administration training, respectively. 16S rRNA sequencing was used for GM analyses. We found that GM changes were more pronounced in rats than in rhesus monkeys, as evidenced by more GM taxa producing significant differences before and after MA self-administration training in rats than in monkeys. We also found that the expression of the genus Clostridia_vadinBB60_group significantly decreased after MA self-administration training in both rats and rhesus monkeys. Lactobacillus changes were significantly negatively correlated with total MA uptake in rats (Pearson R = - 0.666, p = 0.035; Spearman R = - 0.721, p = 0.023), whereas its change was also highly negatively correlated with total MA uptake in rhesus monkeys (Pearson R = - 0.882, p = 0.118; Spearman R = - 1.000, p = 0.083), although this was not significant. These findings suggest that MA causes significant alterations in GM in both rhesus monkeys and rats and that the genus Lactobacillus might be a common therapeutic target for MA uptake prevention across the species.

14.
Zool Res ; 45(2): 341-354, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485504

RESUMEN

Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments. After a period of dormancy, organisms often exhibit exceptional resilience. This period is typically divided into hibernation and aestivation based on seasonal patterns. However, the mechanisms by which organisms adapt to their environments during dormancy, as well as the potential relationships between different states of dormancy, deserve further exploration. Here, we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation, respectively. Based on histological and transcriptomic analysis of multiple organs, we discovered that dormancy involved a coordinated functional response across organs. Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures. Notably, similarities in gene expression patterns pertaining to energy metabolism, neural activity, and biosynthesis were noted during hibernation, suggesting a potential correlation between hibernation and aestivation. To further explore the relationship between these two phenomena, we analyzed other dormancy-capable species using data from publicly available databases. This comparative analysis revealed that most orthologous genes involved in metabolism, cell proliferation, and neural function exhibited consistent expression patterns during dormancy, indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution. In conclusion, this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.


Asunto(s)
Estivación , Hibernación , Humanos , Animales , Estivación/genética , Peces/genética , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Hibernación/genética
15.
Sci Adv ; 10(5): eadj3808, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306424

RESUMEN

G protein-coupled receptor 39 (GPR39) senses the change of extracellular divalent zinc ion and signals through multiple G proteins to a broad spectrum of downstream effectors. Here, we found that GPR39 was prevalent at inhibitory synapses of spinal cord somatostatin-positive (SOM+) interneurons, a mechanosensitive subpopulation that is critical for the conveyance of mechanical pain. GPR39 complexed specifically with inhibitory glycine receptors (GlyRs) and helped maintain glycinergic transmission in a manner independent of G protein signalings. Targeted knockdown of GPR39 in SOM+ interneurons reduced the glycinergic inhibition and facilitated the excitatory output from SOM+ interneurons to spinoparabrachial neurons that engaged superspinal neural circuits encoding both the sensory discriminative and affective motivational domains of pain experience. Our data showed that pharmacological activation of GPR39 or augmenting GPR39 interaction with GlyRs at the spinal level effectively alleviated the sensory and affective pain induced by complete Freund's adjuvant and implicated GPR39 as a promising therapeutic target for the treatment of inflammatory mechanical pain.


Asunto(s)
Dolor , Receptores Acoplados a Proteínas G , Humanos , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glicina/metabolismo , Transducción de Señal , Médula Espinal/metabolismo
16.
Fish Shellfish Immunol ; 35(1): 86-91, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23602848

RESUMEN

The effects of dietary administration of two probiotics, Shewanella colwelliana WA64 and Shewanella olleyana WA65, on the innate immunity of abalone (Haliotis discus hannai Ino), and survival of juvenile abalone challenged with Vibrio harveyi have been studied. Two groups of abalone were fed with three different diets: one control, and two diets supplemented with 10(9) cell g(-1) of probiotic WA64 (WA64 diet) and WA65 (WA65 diet) for up to four weeks. Results showed that abalone fed diets containing S. colwelliana WA64 and S. olleyana WA65 had led to an enhanced cellular and humoral immune response, notably higher haemocytes, respiratory burst activity, serum lysozyme activity and total protein levels were recorded after one week of probiotic administration. On the other hand, mortality after the challenges with V. harveyi in the group fed with control diet ranged from 77 to 80%, while mortality rates observed in the groups fed with diets supplemented with WA64 and WA65 ranged from 27 to 50% and 30-43%, respectively. The results demonstrated potential for S. colwelliana WA64 and S. olleyana WA65 to improve innate immunity and disease resistance in H. discus hannai.


Asunto(s)
Gastrópodos/efectos de los fármacos , Gastrópodos/inmunología , Inmunidad Innata , Shewanella/metabolismo , Animales , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Resistencia a la Enfermedad , Gastrópodos/microbiología , Datos de Secuencia Molecular , Probióticos/administración & dosificación , Análisis de Secuencia de ADN/veterinaria , Vibrio/fisiología
17.
Neurosci Bull ; 39(10): 1481-1496, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36884214

RESUMEN

The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.


Asunto(s)
Anemia , Globinas , Ratas , Animales , Neuroglobina/metabolismo , Globinas/genética , Globinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Hipoxia/metabolismo , Encéfalo/metabolismo , Oxígeno , Anemia/metabolismo , Adenosina Trifosfatasas/metabolismo
18.
Microbiol Spectr ; 11(6): e0104723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855526

RESUMEN

IMPORTANCE: Aquaculture is essential for ensuring global food security by providing a significant source of animal protein. However, the spread of the white spot syndrome virus (WSSV) has resulted in considerable economic losses in crustacean industries. In this study, we evaluated the antiviral activity of rhein, the primary bioactive component of Rheum palmatum L., against WSSV infection, and many pathological aspects of WSSV were also described for the first time. Our mechanistic studies indicated that rhein effectively arrested the replication of WSSV in crayfish by modulating innate immunity to inhibit viral gene transcription. Furthermore, we observed that rhein attenuated WSSV-induced oxidative and inflammatory stresses by regulating the expression of antioxidant and anti-inflammatory-related genes while enhancing innate immunity by reducing total protein levels and increasing phosphatase activity. Our findings suggest that rhein holds great promise as a potent antiviral agent for the prevention and treatment of WSSV in aquaculture.


Asunto(s)
Astacoidea , Virus del Síndrome de la Mancha Blanca 1 , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Virus del Síndrome de la Mancha Blanca 1/genética , Inmunidad Innata , Antivirales/farmacología
19.
J Exp Clin Cancer Res ; 42(1): 118, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161450

RESUMEN

BACKGROUND: The failure of novel therapies effective in preclinical animal models largely reflects the fact that current models do not really mimic the pathological/therapeutic features of glioblastoma (GBM), in which the most effective temozolomide chemoradiotherapy (RT/TMZ) regimen can only slightly extend survival. How to improve RT/TMZ efficacy remains a major challenge in clinic. METHODS: Syngeneic G422TN-GBM model mice were subject to RT/TMZ, surgery, piperlongumine (PL), αPD1, glutathione. Metabolomics or transcriptomics data from G422TN-GBM and human GBM were used for gene enrichment analysis and estimation of ROS generation/scavenging balance, oxidative stress damage, inflammation and immune cell infiltration. Overall survival, bioluminescent imaging, immunohistochemistry, and immunofluorescence staining were used to examine therapeutic efficacy and mechanisms of action. RESULTS: Here we identified that glutathione metabolism was most significantly altered in metabolomics analysis upon RT/TMZ therapies in a truly refractory and reliable mouse triple-negative GBM (G422TN) preclinical model. Consistently, ROS generators/scavengers were highly dysregulated in both G422TN-tumor and human GBM. The ROS-inducer PL synergized surgery/TMZ, surgery/RT/TMZ or RT/TMZ to achieve long-term survival (LTS) in G422TN-mice, but only one LTS-mouse from RT/TMZ/PL therapy passed the rechallenging phase (immune cure). Furthermore, the immunotherapy of RT/TMZ/PL plus anti-PD-1 antibody (αPD1) doubled LTS (50%) and immune-cured (25%) mice. Glutathione completely abolished PL-synergistic effects. Mechanistically, ROS reduction was associated with RT/TMZ-resistance. PL restored ROS level (mainly via reversing Duox2/Gpx2), activated oxidative stress/inflammation/immune responses signature genes, reduced cancer cell proliferation/invasion, increased apoptosis and CD3+/CD4+/CD8+ T-lymphocytes in G422TN-tumor on the basis of RT/TMZ regimen. CONCLUSION: Our findings demonstrate that PL reverses RT/TMZ-reduced ROS and synergistically resets tumor microenvironment to cure GBM. RT/TMZ/PL or RT/TMZ/PL/αPD1 exacts effective immune cure in refractory GBM, deserving a priority for clinical trials.


Asunto(s)
Glioblastoma , Glioma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Especies Reactivas de Oxígeno , Linfocitos T CD8-positivos , Estrés Oxidativo , Quimioradioterapia , Microambiente Tumoral
20.
Fish Shellfish Immunol ; 30(6): 1331-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21421057

RESUMEN

A bacterial strain with putative immunomodulatory properties was isolated from Xi'an hot springs in China. Comparison of 16S rRNA gene revealed a 97% similarity between the tested strain (designated XA-1) and Anoxybacillus kamchatkensis. Two compounds isolated from the secondary metabolites of XA-1 were identified by spectral data (infrared, nuclear magnetic resonance and mass spectrometry) as: (1) cyclo (Gly-L-Pro) and (2) cyclo (L-Ala-4-hydroxyl-L-Pro). Two cyclic dipeptides showed stimulatory properties towards a range of parameters when a dose of 20mg kg(-1) body weight was intraperitoneally injected in naive common carp, Cyprinus carpio. Innate immune parameters (serum SOD, lysozyme and bactericidal activity, and phagocytic activity by peripheral blood leucocytes) along with the expression of two immune-related genes (IL-1ß and iNOS) in blood were examined after 7, 14, 21, and 28 days of injection. In the absence of infection, immunomodulators should ideally not affect normal physiology and immunity of the host; possible negative outcomes of activated immune responses in the naive state are discussed. Protection by two bacterial dipeptides was assessed in an intraperitoneal injection challenge trial with live Aeromonas hydrophila. Both compounds reduced mortality, with the highest survival rate observed in the group that received compound 2 (80%) followed by the group that received compound 1 (65%) while control group scored the worse (15%). Elucidation of the involved protective mechanisms in carp requires future studies.


Asunto(s)
Anoxybacillus/química , Carpas/inmunología , Carpas/microbiología , Dipéptidos/inmunología , Dipéptidos/farmacología , Inmunomodulación/inmunología , Aeromonas hydrophila/inmunología , Animales , Anoxybacillus/genética , China , Dipéptidos/análisis , Inmunomodulación/efectos de los fármacos , Interleucina-1beta/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Muramidasa/sangre , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fagocitosis , ARN Ribosómico 16S/genética , Espectrofotometría Infrarroja , Superóxido Dismutasa/sangre , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA