Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 299(10): 105246, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37703991

RESUMEN

Long viewed as an intermediary in protein translation, there is a growing awareness that tRNAs are capable of myriad other biological functions linked to human health and disease. These emerging roles could be tapped to leverage tRNAs as diagnostic biomarkers, therapeutic targets, or even as novel medicines. Furthermore, the growing array of tRNA-derived fragments, which modulate an increasingly broad spectrum of cellular pathways, is expanding this opportunity. Together, these molecules offer drug developers the chance to modulate the impact of mutations and to alter cell homeostasis. Moreover, because a single therapeutic tRNA can facilitate readthrough of a genetic mutation shared across multiple genes, such medicines afford the opportunity to define patient populations not based on their clinical presentation or mutated gene but rather on the mutation itself. This approach could potentially transform the treatment of patients with rare and ultrarare diseases. In this review, we explore the diverse biology of tRNA and its fragments, examining the past and present challenges to provide a comprehensive understanding of the molecules and their therapeutic potential.

2.
Mol Cell ; 49(3): 427-38, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23273979

RESUMEN

Quality control of ribosomes is critical for cellular function since protein mistranslation leads to severe physiological consequences. We report evidence of a previously unrecognized ribosome quality control system in bacteria that operates at the level of 70S to remove defective ribosomes. YbeY, a previously unidentified endoribonuclease, and the exonuclease RNase R act together by a process mediated specifically by the 30S ribosomal subunit, to degrade defective 70S ribosomes but not properly matured 70S ribosomes or individual subunits. Furthermore, there is essentially no fully matured 16S rRNA in a ΔybeY mutant at 45°C, making YbeY the only endoribonuclease to be implicated in the critically important processing of the 16S rRNA 3' terminus. These key roles in ribosome quality control and maturation indicate why YbeY is a member of the minimal bacterial gene set and suggest that it could be a potential target for antibacterial drugs.


Asunto(s)
Secuencia Conservada , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Metaloproteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/metabolismo , Ribosomas/metabolismo , Arginina/metabolismo , Secuencia de Bases , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Exorribonucleasas/metabolismo , Histidina/metabolismo , Calor , Metaloproteínas/química , Metales/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Biosíntesis de Proteínas/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico 16S/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
3.
J Biol Chem ; 293(39): 15021-15032, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30087118

RESUMEN

N-Formylation of the Met-tRNAMet by the nuclearly encoded mitochondrial methionyl-tRNA formyltransferase (MTFMT) has been found to be a key determinant of protein synthesis initiation in mitochondria. In humans, mutations in the MTFMT gene result in Leigh syndrome, a progressive and severe neurometabolic disorder. However, the absolute requirement of formylation of Met-tRNAMet for protein synthesis in mammalian mitochondria is still debated. Here, we generated a Mtfmt-KO mouse fibroblast cell line and demonstrated that N-formylation of the first methionine via fMet-tRNAMet by MTFMT is not an absolute requirement for initiation of protein synthesis. However, it differentially affected the efficiency of synthesis of mtDNA-coded polypeptides. Lack of methionine N-formylation did not compromise the stability of these individual subunits but had a marked effect on the assembly and stability of the OXPHOS complexes I and IV and on their supercomplexes. In summary, N-formylation is not essential for mitochondrial protein synthesis but is critical for efficient synthesis of several mitochondrially encoded peptides and for OXPHOS complex stability and assembly into supercomplexes.


Asunto(s)
Transferasas de Hidroximetilo y Formilo/genética , Metionina/genética , Mitocondrias/genética , Biosíntesis de Proteínas/genética , Animales , ADN Mitocondrial/genética , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Mutación , Fosforilación Oxidativa , Aminoacil-ARN de Transferencia/genética
4.
Nucleic Acids Res ; 44(20): 9965-9976, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27638883

RESUMEN

Queuosine (Q) was discovered in the wobble position of a transfer RNA (tRNA) 47 years ago, yet the final biosynthetic enzyme responsible for Q-maturation, epoxyqueuosine (oQ) reductase (QueG), was only recently identified. QueG is a cobalamin (Cbl)-dependent, [4Fe-4S] cluster-containing protein that produces the hypermodified nucleoside Q in situ on four tRNAs. To understand how QueG is able to perform epoxide reduction, an unprecedented reaction for a Cbl-dependent enzyme, we have determined a series of high resolution structures of QueG from Bacillus subtilis Our structure of QueG bound to a tRNATyr anticodon stem loop shows how this enzyme uses a HEAT-like domain to recognize the appropriate anticodons and position the hypermodified nucleoside into the enzyme active site. We find Q bound directly above the Cbl, consistent with a reaction mechanism that involves the formation of a covalent Cbl-tRNA intermediate. Using protein film electrochemistry, we show that two [4Fe-4S] clusters adjacent to the Cbl have redox potentials in the range expected for Cbl reduction, suggesting how Cbl can be activated for nucleophilic attack on oQ. Together, these structural and electrochemical data inform our understanding of Cbl dependent nucleic acid modification.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , ARN de Transferencia/genética , Vitamina B 12/química , Anticodón , Bacillus subtilis/genética , Enlace de Hidrógeno , Hierro/química , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , Nucleósido Q/análogos & derivados , Nucleósido Q/química , Unión Proteica , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Azufre/química , Vitamina B 12/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(19): 6015-20, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918386

RESUMEN

Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the ß-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea.


Asunto(s)
Archaea/genética , Codón de Terminación , Haloferax volcanii/genética , ARN de Transferencia/metabolismo , Supresión Genética , Archaea/metabolismo , Secuencia de Bases , Codón sin Sentido , Escherichia coli/metabolismo , Genes Supresores , Haloferax volcanii/metabolismo , Datos de Secuencia Molecular , Novobiocina/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Serina/química , Timidina/química , Triptófano/química , Uracilo/química , beta-Galactosidasa/metabolismo
6.
Biochem Biophys Res Commun ; 484(3): 612-617, 2017 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-28153719

RESUMEN

The product of the human C21orf57 (huYBEY) gene is predicted to be a homologue of the highly conserved YbeY proteins found in nearly all bacteria. We show that, like its bacterial and chloroplast counterparts, the HuYbeY protein is an RNase and that it retains sufficient function in common with bacterial YbeY proteins to partially suppress numerous aspects of the complex phenotype of an Escherichia coli ΔybeY mutant. Expression of HuYbeY in Saccharomyces cerevisiae, which lacks a YbeY homologue, results in a severe growth phenotype. This observation suggests that the function of HuYbeY in human cells is likely regulated through specific interactions with partner proteins similarly to the way YbeY is regulated in bacteria.


Asunto(s)
Cloroplastos/química , Cloroplastos/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Metaloproteínas/química , Metaloproteínas/genética , Ribonucleasas/química , Ribonucleasas/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada/genética , Datos de Secuencia Molecular
7.
Mol Microbiol ; 98(6): 1199-221, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26337258

RESUMEN

Threonylcarbamoyladenosine (t(6)A) is a modified nucleoside universally conserved in tRNAs in all three kingdoms of life. The recently discovered genes for t(6)A synthesis, including tsaC and tsaD, are essential in model prokaryotes but not essential in yeast. These genes had been identified as antibacterial targets even before their functions were known. However, the molecular basis for this prokaryotic-specific essentiality has remained a mystery. Here, we show that t(6)A is a strong positive determinant for aminoacylation of tRNA by bacterial-type but not by eukaryotic-type isoleucyl-tRNA synthetases and might also be a determinant for the essential enzyme tRNA(Ile)-lysidine synthetase. We confirm that t(6)A is essential in Escherichia coli and a survey of genome-wide essentiality studies shows that genes for t(6)A synthesis are essential in most prokaryotes. This essentiality phenotype is not universal in Bacteria as t(6)A is dispensable in Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803 and Streptococcus mutans. Proteomic analysis of t(6)A(-) D. radiodurans strains revealed an induction of the proteotoxic stress response and identified genes whose translation is most affected by the absence of t(6)A in tRNAs. Thus, although t(6)A is universally conserved in tRNAs, its role in translation might vary greatly between organisms.


Asunto(s)
Adenosina/análogos & derivados , Deinococcus/genética , Escherichia coli/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Adenosina/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación/genética , Secuencia Conservada , Deinococcus/metabolismo , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Células Procariotas , Proteómica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Saccharomyces cerevisiae/genética
8.
RNA ; 20(2): 177-88, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24344322

RESUMEN

Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2(Ile)) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2(Ile) binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.


Asunto(s)
Anticodón/genética , Haloarcula marismortui/genética , ARN de Archaea/genética , ARN de Transferencia de Isoleucina/genética , Uridina/análogos & derivados , Emparejamiento Base , Secuencia de Bases , Codón/genética , Escherichia coli/genética , Haloferax/genética , Estructura Molecular , Mutación Puntual , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN Bacteriano/genética , ARN de Hongos/genética , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/metabolismo , Ribosomas/química , Saccharomyces cerevisiae/genética , Sulfolobus/genética , Aminoacilación de ARN de Transferencia , Uridina/química , Uridina/genética
9.
PLoS Pathog ; 10(6): e1004175, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901994

RESUMEN

YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3' end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3' end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Procesamiento de Término de ARN 3' , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Estrés Fisiológico , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Cólera/enzimología , Cólera/inmunología , Cólera/metabolismo , Cólera/microbiología , Toxina del Cólera/biosíntesis , Secuencia Conservada , Endorribonucleasas/química , Endorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Inmunidad Mucosa , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones , Mutación , Filogenia , Vibrio cholerae/inmunología , Vibrio cholerae/patogenicidad , Vibrio cholerae/fisiología , Virulencia , Factores de Virulencia/biosíntesis
10.
Nucleic Acids Res ; 42(3): 1904-15, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24194599

RESUMEN

Translation of the isoleucine codon AUA in most prokaryotes requires a modified C (lysidine or agmatidine) at the wobble position of tRNA2(Ile) to base pair specifically with the A of the AUA codon but not with the G of AUG. Recently, a Bacillus subtilis strain was isolated in which the essential gene encoding tRNA(Ile)-lysidine synthetase was deleted for the first time. In such a strain, C34 at the wobble position of tRNA2(Ile) is expected to remain unmodified and cells depend on a mutant suppressor tRNA derived from tRNA1(Ile), in which G34 has been changed to U34. An important question, therefore, is how U34 base pairs with A without also base pairing with G. Here, we show (i) that unlike U34 at the wobble position of all B. subtilis tRNAs of known sequence, U34 in the mutant tRNA is not modified, and (ii) that the mutant tRNA binds strongly to the AUA codon on B. subtilis ribosomes but only weakly to AUG. These in vitro data explain why the suppressor strain displays only a low level of misreading AUG codons in vivo and, as shown here, grows at a rate comparable to that of the wild-type strain.


Asunto(s)
Bacillus subtilis/genética , Codón , Isoleucina/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Bacillus subtilis/crecimiento & desarrollo , Eliminación de Gen , Fenotipo , ARN de Transferencia de Isoleucina/aislamiento & purificación , Ribosomas/metabolismo , Aminoacilación de ARN de Transferencia
11.
J Biol Chem ; 289(47): 32729-41, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288793

RESUMEN

N-Formylation of initiator methionyl-tRNA (Met-tRNA(Met)) by methionyl-tRNA formyltransferase (MTF) is important for translation initiation in bacteria, mitochondria, and chloroplasts. Unlike all other translation systems, the metazoan mitochondrial system is unique in using a single methionine tRNA (tRNA(Met)) for both initiation and elongation. A portion of Met-tRNA(Met) is formylated for initiation, whereas the remainder is used for elongation. Recently, we showed that compound heterozygous mutations within the nuclear gene encoding human mitochondrial MTF (mt-MTF) significantly reduced mitochondrial translation efficiency, leading to combined oxidative phosphorylation deficiency and Leigh syndrome in two unrelated patients. Patient P1 has a stop codon mutation in one of the MTF genes and an S209L mutation in the other MTF gene. P2 has a S125L mutation in one of the MTF genes and the same S209L mutation as P1 in the other MTF gene. Here, we have investigated the effect of mutations at Ser-125 and Ser-209 on activities of human mt-MTF and of the corresponding mutations, Ala-89 or Ala-172, respectively, on activities of Escherichia coli MTF. The S125L mutant has 653-fold lower activity, whereas the S209L mutant has 36-fold lower activity. Thus, both patients depend upon residual activity of the S209L mutant to support low levels of mitochondrial protein synthesis. We discuss the implications of these and other results for whether the effect of the S209L mutation on mitochondrial translational efficiency is due to reduced activity of the mutant mt-MTF and/or reduced levels of the mutant mt-MTF.


Asunto(s)
Transferasas de Hidroximetilo y Formilo/genética , Enfermedad de Leigh/genética , Proteínas Mitocondriales/genética , Mutación , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Transferasas de Hidroximetilo y Formilo/metabolismo , Immunoblotting , Enfermedad de Leigh/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Biosíntesis de Proteínas/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo
12.
Cell Rep ; 43(4): 114098, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625793

RESUMEN

Developing an effective mRNA therapeutic often requires maximizing protein output per delivered mRNA molecule. We previously found that coding sequence (CDS) design can substantially affect protein output, with mRNA variants containing more optimal codons and higher secondary structure yielding the highest protein outputs due to their slow rates of mRNA decay. Here, we demonstrate that CDS-dependent differences in translation initiation and elongation rates lead to differences in translation- and deadenylation-dependent mRNA decay rates, thus explaining the effect of CDS on mRNA half-life. Surprisingly, the most stable and highest-expressing mRNAs in our test set have modest initiation/elongation rates and ribosome loads, leading to minimal translation-dependent mRNA decay. These findings are of potential interest for optimization of protein output from therapeutic mRNAs, which may be achieved by attenuating rather than maximizing ribosome load.


Asunto(s)
Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero , Ribosomas , Ribosomas/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos
13.
Proc Natl Acad Sci U S A ; 107(7): 2872-7, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133752

RESUMEN

Modification of the cytidine in the first anticodon position of the AUA decoding tRNA(Ile) (tRNA2(Ile)) of bacteria and archaea is essential for this tRNA to read the isoleucine codon AUA and to differentiate between AUA and the methionine codon AUG. To identify the modified cytidine in archaea, we have purified this tRNA species from Haloarcula marismortui, established its codon reading properties, used liquid chromatography-mass spectrometry (LC-MS) to map RNase A and T1 digestion products onto the tRNA, and used LC-MS/MS to sequence the oligonucleotides in RNase A digests. These analyses revealed that the modification of cytidine in the anticodon of tRNA2(Ile) adds 112 mass units to its molecular mass and makes the glycosidic bond unusually labile during mass spectral analyses. Accurate mass LC-MS and LC-MS/MS analysis of total nucleoside digests of the tRNA2(Ile) demonstrated the absence in the modified cytidine of the C2-oxo group and its replacement by agmatine (decarboxy-arginine) through a secondary amine linkage. We propose the name agmatidine, abbreviation C(+), for this modified cytidine. Agmatidine is also present in Methanococcus maripaludis tRNA2(Ile) and in Sulfolobus solfataricus total tRNA, indicating its probable occurrence in the AUA decoding tRNA(Ile) of euryarchaea and crenarchaea. The identification of agmatidine shows that bacteria and archaea have developed very similar strategies for reading the isoleucine codon AUA while discriminating against the methionine codon AUG.


Asunto(s)
Anticodón/genética , Emparejamiento Base/genética , Citidina/química , Haloarcula marismortui/química , ARN de Transferencia de Isoleucina/química , Agmatina/química , Cromatografía Liquida , Methanococcus/química , Estructura Molecular , ARN de Transferencia de Isoleucina/genética , Sulfolobus solfataricus/química , Espectrometría de Masas en Tándem
14.
Mol Microbiol ; 78(2): 506-18, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20807199

RESUMEN

The UPF0054 protein family is highly conserved with homologues present in nearly every sequenced bacterium. In some bacteria, the respective gene is essential, while in others its loss results in a highly pleiotropic phenotype. Despite detailed structural studies, a cellular role for this protein family has remained unknown. We report here that deletion of the Escherichia coli homologue, YbeY, causes striking defects that affect ribosome activity, translational fidelity and ribosome assembly. Mapping of 16S, 23S and 5S rRNA termini reveals that YbeY influences the maturation of all three rRNAs, with a particularly strong effect on maturation at both the 5'- and 3'-ends of 16S rRNA as well as maturation of the 5'-termini of 23S and 5S rRNAs. Furthermore, we demonstrate strong genetic interactions between ybeY and rnc (encoding RNase III), ybeY and rnr (encoding RNase R), and ybeY and pnp (encoding PNPase), further suggesting a role for YbeY in rRNA maturation. Mutation of highly conserved amino acids in YbeY, allowed the identification of two residues (H114, R59) that were found to have a significant effect in vivo. We discuss the implications of these findings for rRNA maturation and ribosome assembly in bacteria.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Metaloproteínas/metabolismo , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Metaloproteínas/genética , Datos de Secuencia Molecular , Factores Procarióticos de Iniciación/metabolismo , Unión Proteica , Ribosomas/metabolismo , Alineación de Secuencia
15.
RNA ; 14(1): 117-26, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17998287

RESUMEN

Annotation of the complete genome of the extreme halophilic archaeon Haloarcula marismortui does not include a tRNA for translation of AUA, the rare codon for isoleucine. This is a situation typical for most archaeal genomes sequenced to date. Based on computational analysis, it has been proposed recently that a single intron-containing tRNA gene produces two very similar but functionally different tRNAs by means of alternative splicing; a UGG-decoding tRNA(TrpCCA) and an AUA-decoding tRNA(IleUAU). Through analysis of tRNAs from H. marismortui, we have confirmed the presence of tRNA(TrpCCA), but found no evidence for the presence of tRNA(IleUAU). Instead, we have shown that a tRNA, currently annotated as elongator methionine tRNA and containing CAU as the anticodon, is aminoacylated with isoleucine in vivo and that this tRNA represents the missing isoleucine tRNA. Interestingly, this tRNA carries a base modification of C34 in the anticodon different from the well-known lysidine found in eubacteria, which switches the amino acid identity of the tRNA from methionine to isoleucine and its decoding specificity from AUG to AUA. The methods described in this work for the identification of individual tRNAs present in H. marismortui provide the tools necessary for experimentally confirming the presence of any tRNA in a cell and, thereby, to test computational predictions of tRNA genes.


Asunto(s)
Codón , Haloarcula marismortui/genética , ARN de Transferencia/genética , Acetilación , Anticodón , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , ARN de Transferencia/química
16.
Nucleic Acid Ther ; 28(5): 285-296, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30088967

RESUMEN

The advent of therapeutic mRNAs significantly increases the possibilities of protein-based biologics beyond those that can be synthesized by recombinant technologies (eg, monoclonal antibodies, extracellular enzymes, and cytokines). In addition to their application in the areas of vaccine development, immune-oncology, and protein replacement therapies, one exciting possibility is to use therapeutic mRNAs to program undesired, diseased cells to synthesize a toxic intracellular protein, causing cells to self-destruct. For this approach to work, however, methods are needed to limit toxic protein expression to the intended cell type. Here, we show that inclusion of microRNA target sites in therapeutic mRNAs encoding apoptotic proteins, Caspase or PUMA, can prevent their expression in healthy hepatocytes while triggering apoptosis in hepatocellular carcinoma cells.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , ARN Mensajero/genética , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Caspasas/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HeLa , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Ratones , MicroARNs/uso terapéutico , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/genética , Células RAW 264.7 , ARN Mensajero/uso terapéutico
17.
J Mol Biol ; 355(4): 747-59, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16330048

RESUMEN

The RNA-binding ability of ribosomal protein L1 is of profound interest, since L1 has a dual function as a ribosomal structural protein that binds rRNA and as a translational repressor that binds its own mRNA. Here, we report the crystal structure at 2.6 A resolution of ribosomal protein L1 from the bacterium Thermus thermophilus in complex with a 38 nt fragment of L1 mRNA from Methanoccocus vannielii. The conformation of RNA-bound T.thermophilus L1 differs dramatically from that of the isolated protein. Analysis of four copies of the L1-mRNA complex in the crystal has shown that domain II of the protein does not contribute to mRNA-specific binding. A detailed comparison of the protein-RNA interactions in the L1-mRNA and L1-rRNA complexes identified amino acid residues of L1 crucial for recognition of its specific targets on the both RNAs. Incorporation of the structure of bacterial L1 into a model of the Escherichia coli ribosome revealed two additional contact regions for L1 on the 23S rRNA that were not identified in previous ribosome models.


Asunto(s)
ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Thermus thermophilus , Secuencia de Aminoácidos , Enlace de Hidrógeno , Cinética , Methanococcus/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Alineación de Secuencia , Resonancia por Plasmón de Superficie
18.
Mol Cell Biol ; 22(15): 5434-42, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12101237

RESUMEN

Protein synthesis in eukaryotic cytoplasm and in archaebacteria is initiated with methionine, whereas, that in eubacteria and in eukaryotic organelles, such as mitochondria and chloroplasts, is initiated with formylmethionine. In view of this clear distinction, we have investigated whether protein synthesis in the eukaryotic cytoplasm can be initiated with formylmethionine, and, if so, what the consequences are to the cell. For this purpose, we have expressed in an inducible manner the Escherichia coli methionyl-tRNA formyltransferase (MTF) in the cytoplasm of the yeast Saccharomyces cerevisiae. Expression of active MTF, but not of an inactive mutant, leads to formylation of methionine attached to the yeast cytoplasmic initiator tRNA to the extent of about 70%. As a consequence, the yeast strain grows slowly. Coexpression of the E. coli polypeptide deformylase (DEF), which removes the formyl group from the N-terminal formylmethionine in a polypeptide, rescues the slow-growth phenotype, whereas, coexpression of an inactive mutant of DEF does not. These results suggest that the cytoplasmic protein-synthesizing system of yeast, like that of eubacteria, can at least to some extent utilize formylated initiator Met-tRNA to initiate protein synthesis and that initiation of proteins with formylmethionine leads to the slow-growth phenotype. Removal of the formyl group in these proteins by DEF would explain the rescue of the slow-growth phenotype.


Asunto(s)
Amidohidrolasas , Formiatos/metabolismo , Transferasas de Hidroximetilo y Formilo/biosíntesis , N-Formilmetionina/metabolismo , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Secuencia de Bases , División Celular/efectos de los fármacos , División Celular/fisiología , Citoplasma/metabolismo , Electroforesis en Gel Bidimensional , Escherichia coli/enzimología , Escherichia coli/genética , Formiatos/farmacología , Regulación Fúngica de la Expresión Génica , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/farmacología , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional/fisiología , Fenotipo , ARN de Transferencia de Metionina/genética , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
19.
Nucleic Acids Res ; 32(21): 6200-11, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15576346

RESUMEN

We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Codón de Terminación/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Supresión Genética , Secuencia de Bases , Línea Celular , Escherichia coli/enzimología , Escherichia coli/genética , Genes Reporteros , Genes Supresores , Humanos , Luciferasas/análisis , Luciferasas/genética , Datos de Secuencia Molecular , Mutación , ARN de Transferencia/química
20.
mBio ; 7(6)2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834201

RESUMEN

YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3' end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, YbeY likely interacts with numerous protein or RNA partners that are involved in various aspects of cellular physiology. Using a bacterial two-hybrid system, we identified several proteins that interact with YbeY, including ribosomal protein S11, the ribosome-associated GTPases Era and Der, YbeZ, and SpoT. In particular, the interaction of YbeY with S11 and Era provides insight into YbeY's involvement in the 16S rRNA maturation process. The three-way association between YbeY, S11, and Era suggests that YbeY is recruited to the ribosome where it could cleave the 17S rRNA precursor endonucleolytically at or near the 3' end maturation site. Analysis of YbeY missense mutants shows that a highly conserved beta-sheet in YbeY-and not amino acids known to be important for YbeY's RNase activity-functions as the interface between YbeY and S11. This protein-interacting interface of YbeY is needed for correct rRNA maturation and stress regulation, as missense mutants show significant phenotypic defects. Additionally, structure-based in silico prediction of putative interactions between YbeY and the Era-30S complex through protein docking agrees well with the in vivo results. IMPORTANCE: Ribosomes are ribonucleoprotein complexes responsible for a key cellular function, protein synthesis. Their assembly is a highly coordinated process of RNA cleavage, RNA posttranscriptional modification, RNA conformational changes, and protein-binding events. Many open questions remain after almost 5 decades of study, including which RNase is responsible for final processing of the 16S rRNA 3' end. The highly conserved RNase YbeY, belonging to a core set of RNases essential in many bacteria, was previously shown to participate in 16S rRNA processing and ribosome quality control. However, detailed mechanistic insight into YbeY's ribosome-associated function has remained elusive. This work provides the first evidence that YbeY is recruited to the ribosome through interaction with proteins involved in ribosome biogenesis (i.e., ribosomal protein S11, Era). In addition, we identified key residues of YbeY involved in the interaction with S11 and propose a possible binding mode of YbeY to the ribosome using in silico docking.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Metaloproteínas/genética , Metaloproteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico , Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/aislamiento & purificación , Proteínas de Unión al GTP/metabolismo , Regulación Bacteriana de la Expresión Génica , Simulación del Acoplamiento Molecular , Mutación Missense , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA