RESUMEN
BACKGROUND: The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRß in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS: Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS: These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.
Asunto(s)
Trastorno Autístico , Neuronas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Animales , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Ratones , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Masculino , Corteza Cerebral/metabolismo , Ratones Noqueados , Transmisión Sináptica/fisiología , Ratones Endogámicos C57BL , FemeninoRESUMEN
Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Glioblastoma/patología , Células Madre Neoplásicas/patología , Microambiente Tumoral/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Neoplasias Encefálicas/genética , Estudios de Casos y Controles , Proliferación Celular , Metilación de ADN , Resistencia a Antineoplásicos , Femenino , Perfilación de la Expresión Génica , Glioblastoma/genética , Humanos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Transcriptoma , Células Tumorales Cultivadas , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Mice with a complete deficiency of p73 have severe neurological and immunological defects due to the absence of all TAp73 and DeltaNp73 isoforms. As part of our ongoing program to distinguish the biological functions of these isoforms, we generated mice that are selectively deficient for the DeltaNp73 isoform. Mice lacking DeltaNp73 (DeltaNp73(-/-) mice) are viable and fertile but display signs of neurodegeneration. Cells from DeltaNp73(-/-) mice are sensitized to DNA-damaging agents and show an increase in p53-dependent apoptosis. When analyzing the DNA damage response (DDR) in DeltaNp73(-/-) cells, we discovered a completely new role for DeltaNp73 in inhibiting the molecular signal emanating from a DNA break to the DDR pathway. We found that DeltaNp73 localizes directly to the site of DNA damage, can interact with the DNA damage sensor protein 53BP1, and inhibits ATM activation and subsequent p53 phosphorylation. This novel finding may explain why human tumors with high levels of DeltaNp73 expression show enhanced resistance to chemotherapy.
Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal , Animales , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Femenino , Fertilidad/genética , Regulación de la Expresión Génica , Células HCT116 , Humanos , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , Fosforilación , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Brain metastases (BM) are the most common brain tumor in adults and are a leading cause of cancer mortality. Metastatic lesions contain subclones derived from their primary lesion, yet their functional characterization is limited by a paucity of preclinical models accurately recapitulating the metastatic cascade, emphasizing the need for a novel approach to BM and their treatment. We identified a unique subset of stem-like cells from primary human patient brain metastases, termed brain metastasis-initiating cells (BMICs). We now establish a BMIC patient-derived xenotransplantation (PDXT) model as an investigative tool to comprehensively interrogate human BM. Using both in vitro and in vivo RNA interference screens of these BMIC models, we identified SPOCK1 and TWIST2 as essential BMIC regulators. SPOCK1 in particular is a novel regulator of BMIC self-renewal, modulating tumor initiation and metastasis from the lung to the brain. A prospective cohort of primary lung cancer specimens showed that SPOCK1 was overexpressed only in patients who ultimately developed BM. Protein-protein interaction network mapping between SPOCK1 and TWIST2 identified novel pathway interactors with significant prognostic value in lung cancer patients. Of these genes, INHBA, a TGF-ß ligand found mutated in lung adenocarcinoma, showed reduced expression in BMICs with knockdown of SPOCK1. In conclusion, we have developed a useful preclinical model of BM, which has served to identify novel putative BMIC regulators, presenting potential therapeutic targets that block the metastatic process, and transform a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/fisiopatología , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias Encefálicas/fisiopatología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Trasplante de Neoplasias , Estudios Prospectivos , Proteoglicanos/genética , Proteoglicanos/metabolismo , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismoRESUMEN
Here, we have asked about post-transcriptional mechanisms regulating murine developmental neurogenesis, focusing upon the RNA-binding proteins Smaug2 and Nanos1. We identify, in embryonic neural precursors of the murine cortex, a Smaug2 protein/nanos1 mRNA complex that is present in cytoplasmic granules with the translational repression proteins Dcp1 and 4E-T. We show that Smaug2 inhibits and Nanos1 promotes neurogenesis, with Smaug2 knockdown enhancing neurogenesis and depleting precursors, and Nanos1 knockdown inhibiting neurogenesis and maintaining precursors. Moreover, we show that Smaug2 likely regulates neurogenesis by silencing nanos1 mRNA. Specifically, Smaug2 knockdown inappropriately increases Nanos1 protein, and the Smaug2 knockdown-mediated neurogenesis is rescued by preventing this increase. Thus, Smaug2 and Nanos1 function as a bimodal translational repression switch to control neurogenesis, with Smaug2 acting in transcriptionally primed precursors to silence mRNAs important for neurogenesis, including nanos1 mRNA, and Nanos1 acting during the transition to neurons to repress the precursor state. SIGNIFICANCE STATEMENT: The mechanisms instructing neural stem cells to generate the appropriate progeny are still poorly understood. Here, we show that the RNA-binding proteins Smaug2 and Nanos1 are critical regulators of this balance and provide evidence supporting the idea that neural precursors are transcriptionally primed to generate neurons but translational regulation maintains these precursors in a stem cell state until the appropriate developmental time.
Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas Represoras/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/embriología , Femenino , Masculino , Mamíferos , Ratones , Biosíntesis de Proteínas/fisiologíaRESUMEN
The Snail transcription factor plays a key role in regulating diverse developmental processes but is not thought to play a role in mammalian neural precursors. Here, we have examined radial glial precursor cells of the embryonic murine cortex and demonstrate that Snail regulates their survival, self-renewal, and differentiation into intermediate progenitors and neurons via two distinct and separable target pathways. First, Snail promotes cell survival by antagonizing a p53-dependent death pathway because coincident p53 knockdown rescues survival deficits caused by Snail knockdown. Second, we show that the cell cycle phosphatase Cdc25b is regulated by Snail in radial precursors and that Cdc25b coexpression is sufficient to rescue the decreased radial precursor proliferation and differentiation observed upon Snail knockdown. Thus, Snail acts via p53 and Cdc25b to coordinately regulate multiple aspects of mammalian embryonic neural precursor biology.
Asunto(s)
Corteza Cerebral/embriología , Células-Madre Neurales/metabolismo , Neurogénesis , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismoRESUMEN
The three-layered piriform cortex, an integral part of the olfactory system, processes odor information relayed by olfactory bulb mitral cells. Specifically, mitral cell axons form the lateral olfactory tract (LOT) by targeting lateral olfactory tract (lot) guidepost cells in the piriform cortex. While lot cells and other piriform cortical neurons share a pallial origin, the factors that specify their precise phenotypes are poorly understood. Here we show that in mouse, the proneural genes Neurog1 and Neurog2 are coexpressed in the ventral pallium, a progenitor pool that first gives rise to Cajal-Retzius (CR) cells, which populate layer I of all cortical domains, and later to layer II/III neurons of the piriform cortex. Using loss-of-function and gain-of-function approaches, we find that Neurog1 has a unique early role in reducing CR cell neurogenesis by tempering Neurog2's proneural activity. In addition, Neurog1 and Neurog2 have redundant functions in the ventral pallium, acting in two phases to first specify a CR cell fate and later to specify layer II/III piriform cortex neuronal identities. In the early phase, Neurog1 and Neurog2 are also required for lot cell differentiation, which we reveal are a subset of CR neurons, the loss of which prevents mitral cell axon innervation and LOT formation. Consequently, mutation of Trp73, a CR-specific cortical gene, results in lot cell and LOT axon displacement. Neurog1 and Neurog2 thus have unique and redundant functions in the piriform cortex, controlling the timing of differentiation of early-born CR/lot cells and specifying the identities of later-born layer II/III neurons.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/embriología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Animales , Diferenciación Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Electroporación , Embrión de Mamíferos , Femenino , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Mutantes , Células-Madre Neurales/metabolismoRESUMEN
The mechanisms that regulate appropriate genesis and differentiation of interneurons in the developing mammalian brain are of significant interest not only because interneurons play key roles in the establishment of neural circuitry, but also because when they are deficient, this can cause epilepsy. In this regard, one genetic syndrome that is associated with deficits in neural development and epilepsy is Rubinstein-Taybi Syndrome (RTS), where the transcriptional activator and histone acetyltransferase CBP is mutated and haploinsufficient. Here, we have asked whether CBP is necessary for the appropriate genesis and differentiation of interneurons in the murine forebrain, since this could provide an explanation for the epilepsy that is associated with RTS. We show that CBP is expressed in neural precursors within the embryonic medial ganglionic eminence (MGE), an area that generates the vast majority of interneurons for the cortex. Using primary cultures of MGE precursors, we show that knockdown of CBP causes deficits in differentiation of these precursors into interneurons and oligodendrocytes, and that overexpression of CBP is by itself sufficient to enhance interneuron genesis. Moreover, we show that levels of the neurotransmitter synthesis enzyme GAD67, which is expressed in inhibitory interneurons, are decreased in the dorsal and ventral forebrain of neonatal CBP(+/-) mice, indicating that CBP plays a role in regulating interneuron development in vivo. Thus, CBP normally acts to ensure the differentiation of appropriate numbers of forebrain interneurons, and when its levels are decreased, this causes deficits in interneuron development, providing a potential explanation for the epilepsy seen in individuals with RTS.
Asunto(s)
Diferenciación Celular/fisiología , Interneuronas/citología , Prosencéfalo/citología , Factores de Transcripción p300-CBP/fisiología , Animales , Haploinsuficiencia , Ratones , Reacción en Cadena de la Polimerasa , Prosencéfalo/embriología , Factores de Transcripción p300-CBP/genéticaRESUMEN
The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.
Asunto(s)
Corteza Cerebral/metabolismo , Factores de Transcripción Forkhead/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Corteza Cerebral/embriología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Factores de Transcripción Forkhead/genética , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/genéticaRESUMEN
The molecular mechanisms that regulate adult neural precursor cell (NPC) survival, and thus maintain adult neurogenesis, are not well defined. Here, we investigate the role of p63, a p53 family member, in adult NPC function in mice. Conditional ablation of p63 in adult NPCs or p63 haploinsufficiency led to reduced numbers of NPCs and newborn neurons in the neurogenic zones of the hippocampus and lateral ventricles and in the olfactory bulb. These reductions were attributable to enhanced apoptosis of NPCs and newborn neurons and were rescued by inhibition of caspase activity, p53, or the p53 apoptotic effector PUMA (p53-upregulated modulator of apoptosis). Moreover, these cellular deficits were functionally important because they led to perturbations in hippocampus-dependent memory formation. These results indicate that p63 regulates the numbers of adult NPCs and adult-born neurons as well as neural stem cell-dependent cognitive functions, and that it does so, at least in part, by inhibiting p53-dependent cell death.
Asunto(s)
Células Madre Adultas/fisiología , Conducta Exploratoria/fisiología , Hipocampo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Ventrículos Cerebrales/citología , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Conducta Exploratoria/efectos de los fármacos , Miedo/psicología , Proteínas de Filamentos Intermediarios/genética , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Nestina , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Fosfoproteínas/genética , Proteínas/genética , ARN no Traducido , Tamoxifeno/farmacología , Transactivadores/genética , Activación Transcripcional/efectos de los fármacos , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Here, we used single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq), and single-cell spatial transcriptomics to characterize murine cortical OPCs throughout postnatal life. During development, we identified two groups of differentially localized PDGFRα+ OPCs that are transcriptionally and epigenetically distinct. One group (active, or actOPCs) is metabolically active and enriched in white matter. The second (homeostatic, or hOPCs) is less active, enriched in gray matter, and predicted to derive from actOPCs. In adulthood, these two groups are transcriptionally but not epigenetically distinct, and relative to developing OPCs are less active metabolically and have less open chromatin. When adult oligodendrogenesis is enhanced during experimentally induced remyelination, adult OPCs do not reacquire a developmental open chromatin state, and the oligodendrogenesis trajectory is distinct from that seen neonatally. These data suggest that there are two OPC groups subserving distinct postnatal functions and that neonatal and adult OPC-mediated oligodendrogenesis are fundamentally different.
Asunto(s)
Células Precursoras de Oligodendrocitos , Análisis de la Célula Individual , Animales , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/citología , Ratones , Diferenciación Celular/genética , Oligodendroglía/metabolismo , Oligodendroglía/citología , Epigénesis Genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Sustancia Blanca/metabolismo , Sustancia Blanca/citologíaRESUMEN
The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes. In a small molecule screening, we identify Ire1α as a regulator of Satb2 expression and neuronal polarity. In the developing brain, Ire1α regulates global translation rates, coordinates ribosome traffic, and the expression of eIF4A1. Furthermore, we demonstrate that the Satb2 mRNA translation requires eIF4A1 helicase activity towards its 5'-untranslated region. Altogether, we show that cortical neuron diversity is generated by mechanisms operating beyond gene transcription, with Ire1α-safeguarded proteostasis serving as an essential regulator of brain development.
Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , Neocórtex , Neuronas , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas , Animales , Neocórtex/metabolismo , Neocórtex/citología , Neocórtex/embriología , Neuronas/metabolismo , Neuronas/citología , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación del Desarrollo de la Expresión Génica , Proteostasis , Neurogénesis/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regiones no Traducidas 5'/genética , Ribosomas/metabolismo , Ribosomas/genética , Humanos , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Diferenciación Celular/genéticaRESUMEN
Loss-of-function mutations and deletions in the neurofibromin tumor suppressor gene (NF1) cause neurofibromatosis type 1 (NF-1), the most common inherited syndrome of the nervous system in humans, with a birth incidence of 1:3,000. The most visible features of NF-1 are the neoplastic manifestations caused by the loss of Ras-GTPase-activating protein (Ras-GAP) activity mediated through the GAP-related domain (GRD) of neurofibromin (NF1), the protein encoded by NF1. However, the syndrome is also characterized by cognitive dysfunction and a number of developmental abnormalities. The molecular etiology of many of these nonneoplastic phenotypes remains unknown. Here we show that the tubulin-binding domain (TBD) of NF1 is a binding partner of the leucine-rich pentatricopeptide repeat motif-containing (LRPPRC) protein. These two proteins complex with Kinesin 5B, hnRNP A2, Staufen1, and Myelin Basic Protein (MBP) mRNA, likely in RNA granules. This interaction is of interest in that it links NF-1 with Leigh's syndrome, French Canadian variant (LSFC), an autosomal recessive neurodegenerative disorder that arises from mutations in the LRPPRC gene. Our findings provide clues to how loss or mutation of NF1 and LRPPRC may contribute to the manifestations of NF-1 and LSFC.
Asunto(s)
Deficiencia de Citocromo-c Oxidasa/metabolismo , Enfermedad de Leigh/metabolismo , Proteínas Mitocondriales/metabolismo , Neurofibromatosis 1/metabolismo , Neurofibromina 1/metabolismo , Línea Celular Tumoral , Deficiencia de Citocromo-c Oxidasa/genética , Humanos , Enfermedad de Leigh/genética , Proteínas Mitocondriales/genética , Mutación , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Estructura Terciaria de Proteína , Células de Schwann/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismoRESUMEN
Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.
Asunto(s)
Células-Madre Neurales , Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Cuerpos de Procesamiento , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismoRESUMEN
Purpose: Corneal sensory nerves protect the cornea from injury. They are also thought to stimulate limbal stem cells (LSCs) to produce transparent epithelial cells constantly, enabling vision. In other organs, Schwann cells (SCs) associated with tissue-innervating axon terminals mediate tissue regeneration. This study defines the critical role of the corneal axon-ensheathing SCs in homeostatic and regenerative corneal epithelial cell renewal. Methods: SC localization in the cornea was determined by in situ hybridization and immunohistochemistry with SC markers. In vivo SC visualization and/or ablation were performed in mice with inducible corneal SC-specific expression of tdTomato and/or Diphtheria toxin, respectively. The relative locations of SCs and LSCs were observed with immunohistochemical analysis of harvested genetically SC-prelabeled mouse corneas with LSC-specific antibodies. The correlation between cornea-innervating axons and the appearance of SCs was ascertained using corneal denervation in rats. To determine the limbal niche cellular composition and gene expression changes associated with innervation-dependent epithelial renewal, single-cell RNA sequencing (scRNA-seq) of dissociated healthy, de-epithelized, and denervated cornea limbi was performed. Results: We observed limbal enrichment of corneal axon-associated myelinating and non-myelinating SCs. Induced local genetic ablation of SCs, although leaving corneal sensory innervation intact, markedly inhibited corneal epithelial renewal. scRNA-seq analysis (1) highlighted the transcriptional heterogenicity of cells populating the limbal niche, and (2) identified transcriptional changes associated with corneal innervation and during wound healing that model potential regulatory paracrine interactions between SCs and LSCs. Conclusions: Limbal SCs are required for innervation-dependent corneal epithelial renewal.
Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Células de Schwann , Animales , Ratones , Ratas , Córnea/inervación , Células Epiteliales , Epitelio Corneal/metabolismo , Células Madre/metabolismoRESUMEN
p63, a p53 family member, is critical for proper skin and limb development and directly regulates gene expression in the ectoderm. Mice lacking p63 exhibit skin and craniofacial defects including cleft palate. In humans p63 mutations are associated with several distinct developmental syndromes. p63 sterile-α-motif domain, AEC (ankyloblepharon-ectodermal dysplasia-clefting)-associated mutations are associated with a high prevalence of orofacial clefting disorders, which are less common in EEC (ectrodactyly-ectodermal dysplasia-clefting) patients with DNA binding domain p63 mutations. However, the mechanisms by which these mutations differentially influence p63 function remain unclear, and interactions with other proteins implicated in craniofacial development have not been identified. Here, we show that AEC p63 mutations affect the ability of the p63 protein to interact with special AT-rich binding protein-2 (SATB2), which has recently also been implicated in the development of cleft palate. p63 and SATB2 are co-expressed early in development in the ectoderm of the first and second branchial arches, two essential sites where signaling is required for craniofacial patterning. SATB2 attenuates p63-mediated gene expression of perp (p53 apoptosis effector related to PMP-22), a critical downstream target gene during development, and specifically decreases p63 perp promoter binding. Interestingly, AEC but not EEC p63 mutations affect the ability of p63 to interact with SATB2 and the inhibitory effects of SATB2 on p63 transactivation of perp are most pronounced for AEC-associated p63 mutations. Our findings reveal a novel gain-of-function property of AEC-causing p63 mutations and identify SATB2 as the first p63 binding partner that differentially influences AEC and EEC p63 mutant proteins.
Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Displasia Ectodérmica/genética , Anomalías del Ojo/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Mutación , Fosfoproteínas/genética , Transactivadores/genética , Factores de Transcripción/metabolismo , Animales , Párpados/anomalías , Femenino , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/deficiencia , Fosfoproteínas/metabolismo , Embarazo , Regiones Promotoras Genéticas , Transactivadores/deficiencia , Transactivadores/metabolismo , Activación TranscripcionalRESUMEN
ΔNp63α is a critical pro-survival protein overexpressed in 80% of head and neck squamous cell carcinomas (HNSCCs) where it inhibits TAp73ß transcription of p53-family target genes, which is thought to increase HNSCC resistance to chemotherapy-induced cell death. However, the mechanisms governing ΔNp63α function are largely unknown. In this study, we identify special AT-rich-binding protein 2 (SATB2) as a new ΔNp63α-binding protein that is preferentially expressed in advanced-stage primary HNSCC and show that SATB2 promotes chemoresistance by enhancing ΔNp63α-mediated transrepression by augmenting ΔNp63α engagement to p53-family responsive elements. Furthermore, SATB2 expression positively correlates with HNSCC chemoresistance, and RNA interference-mediated knockdown of endogenous SATB2 re-sensitizes HNSCC cells to chemotherapy- and γ-irradiation-induced apoptosis, irrespective of p53 status. These findings unveil SATB2 as a pivotal modulator of ΔNp63α that governs HNSCC cell survival.
Asunto(s)
Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Genes p53 , Humanos , Transactivadores/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genéticaRESUMEN
High hypoxia-inducible factor-2alpha (HIF-2alpha) protein levels predict poor outcome in neuroblastoma, and hypoxia dedifferentiates cultured neuroblastoma cells toward a neural crest-like phenotype. Here, we identify HIF-2alpha as a marker of normoxic neural crest-like neuroblastoma tumor-initiating/stem cells (TICs) isolated from patient bone marrows. Knockdown of HIF-2alpha reduced VEGF expression and induced partial sympathetic neuronal differentiation when these TICs were grown in vitro under stem cell-promoting conditions. Xenograft tumors of HIF-2alpha-silenced cells were widely necrotic, poorly vascularized, and resembled the bulk of tumor cells in clinical neuroblastomas by expressing additional sympathetic neuronal markers, whereas control tumors were immature, well-vascularized, and stroma-rich. Thus, HIF-2alpha maintains an undifferentiated state of neuroblastoma TICs. Because low differentiation is associated with poor outcome and angiogenesis is crucial for tumor growth, HIF-2alpha is an attractive target for neuroblastoma therapy.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Cresta Neural/metabolismo , Neuroblastoma/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia de la Célula , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Ratones , Ratones Desnudos , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The mechanisms that regulate the pruning of mammalian axons are just now being elucidated. Here, we describe a mechanism by which, during developmental sympathetic axon competition, winning axons secrete brain-derived neurotrophic factor (BDNF) in an activity-dependent fashion, which binds to the p75 neurotrophin receptor (p75NTR) on losing axons to cause their degeneration and, ultimately, axon pruning. Specifically, we found that pruning of rat and mouse sympathetic axons that project to the eye requires both activity-dependent BDNF and p75NTR. p75NTR and BDNF are also essential for activity-dependent axon pruning in culture, where they mediate pruning by directly causing axon degeneration. p75NTR, which is enriched in losing axons, causes axonal degeneration by suppressing TrkA-mediated signaling that is essential for axonal maintenance. These data provide a mechanism that explains how active axons can eliminate less-active, competing axons during developmental pruning by directly promoting p75NTR-mediated axonal degeneration.
Asunto(s)
Axones/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Degeneración Nerviosa/fisiopatología , Receptor de Factor de Crecimiento Nervioso/fisiología , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axotomía/métodos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Toxina del Cólera/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/genética , Factor de Crecimiento Nervioso/farmacología , Neuronas/citología , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Factor de Crecimiento Nervioso/deficiencia , Estilbamidinas/metabolismo , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismoRESUMEN
Here, we ask why the nail base is essential for mammalian digit tip regeneration, focusing on the inductive nail mesenchyme. We identify a transcriptional signature for these cells that includes Lmx1b and show that the Lmx1b-expressing nail mesenchyme is essential for blastema formation. We use a combination of Lmx1bCreERT2-based lineage-tracing and single-cell transcriptional analyses to show that the nail mesenchyme contributes cells for two pro-regenerative mechanisms. One group of cells maintains their identity and regenerates the new nail mesenchyme. A second group contributes specifically to the dorsal blastema, loses their nail mesenchyme phenotype, acquires a blastema transcriptional state that is highly similar to blastema cells of other origins, and ultimately contributes to regeneration of the dorsal but not ventral dermis and bone. Thus, the regenerative necessity for an intact nail base is explained, at least in part, by a requirement for the inductive nail mesenchyme.