Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7932): 547-554, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198790

RESUMEN

Loss of Paneth cells and their antimicrobial granules compromises the intestinal epithelial barrier and is associated with Crohn's disease, a major type of inflammatory bowel disease1-7. Non-classical lymphoid cells, broadly referred to as intraepithelial lymphocytes (IELs), intercalate the intestinal epithelium8,9. This anatomical position has implicated them as first-line defenders in resistance to infections, but their role in inflammatory disease pathogenesis requires clarification. The identification of mediators that coordinate crosstalk between specific IEL and epithelial subsets could provide insight into intestinal barrier mechanisms in health and disease. Here we show that the subset of IELs that express γ and δ T cell receptor subunits (γδ IELs) promotes the viability of Paneth cells deficient in the Crohn's disease susceptibility gene ATG16L1. Using an ex vivo lymphocyte-epithelium co-culture system, we identified apoptosis inhibitor 5 (API5) as a Paneth cell-protective factor secreted by γδ IELs. In the Atg16l1-mutant mouse model, viral infection induced a loss of Paneth cells and enhanced susceptibility to intestinal injury by inhibiting the secretion of API5 from γδ IELs. Therapeutic administration of recombinant API5 protected Paneth cells in vivo in mice and ex vivo in human organoids with the ATG16L1 risk allele. Thus, we identify API5 as a protective γδ IEL effector that masks genetic susceptibility to Paneth cell death.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Enfermedad de Crohn , Predisposición Genética a la Enfermedad , Linfocitos Intraepiteliales , Proteínas Nucleares , Células de Paneth , Animales , Humanos , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Predisposición Genética a la Enfermedad/genética , Mucosa Intestinal/patología , Proteínas Nucleares/metabolismo , Células de Paneth/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Supervivencia Celular , Organoides , Alelos
2.
Nature ; 595(7867): 404-408, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163073

RESUMEN

Congenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.


Asunto(s)
Proteínas Musculares/genética , Mutación , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Envejecimiento , Agrina/genética , Agrina/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos/inmunología , Modelos Animales de Enfermedad , Femenino , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Masculino , Ratones , Terapia Molecular Dirigida , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Síndromes Miasténicos Congénitos/inmunología , Fosforilación , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Tirosina Quinasas Receptoras/agonistas , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Recurrencia , Sinapsis/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(22): e2319029121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781214

RESUMEN

The HapImmuneTM platform exploits covalent inhibitors as haptens for creating major histocompatibility complex (MHC)-presented tumor-specific neoantigens by design, combining targeted therapies with immunotherapy for the treatment of drug-resistant cancers. A HapImmune antibody, R023, recognizes multiple sotorasib-conjugated KRAS(G12C) peptides presented by different human leukocyte antigens (HLAs). This high specificity to sotorasib, coupled with broad HLA-binding capability, enables such antibodies, when reformatted as T cell engagers, to potently and selectively kill sotorasib-resistant KRAS(G12C) cancer cells expressing different HLAs upon sotorasib treatment. The loosening of HLA restriction could increase the patient population that can benefit from this therapeutic approach. To understand the molecular basis for its unconventional binding capability, we used single-particle cryogenic electron microscopy to determine the structures of R023 bound to multiple sotorasib-peptide conjugates presented by different HLAs. R023 forms a pocket for sotorasib between the VH and VL domains, binds HLAs in an unconventional, angled way, with VL making most contacts with them, and makes few contacts with the peptide moieties. This binding mode enables the antibody to accommodate different hapten-peptide conjugates and to adjust its conformation to different HLAs presenting hapten-peptides. Deep mutational scanning validated the structures and revealed distinct levels of mutation tolerance by sotorasib- and HLA-binding residues. Together, our structural information and sequence landscape analysis reveal key features for achieving MHC-restricted recognition of multiple hapten-peptide antigens, which will inform the development of next-generation therapeutic antibodies.


Asunto(s)
Péptidos , Humanos , Péptidos/inmunología , Péptidos/química , Antígenos HLA/inmunología , Antígenos HLA/metabolismo , Complejo Mayor de Histocompatibilidad/inmunología , Haptenos/inmunología , Unión Proteica , Microscopía por Crioelectrón
4.
Nat Chem Biol ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438724

RESUMEN

Oncogenic mutations in the extracellular domain (ECD) of cell-surface receptors could serve as tumor-specific antigens that are accessible to antibody therapeutics. Such mutations have been identified in receptor tyrosine kinases including HER2. However, it is challenging to selectively target a point mutant, while sparing the wild-type protein. Here we developed antibodies selective to HER2 S310F and S310Y, the two most common oncogenic mutations in the HER2 ECD, via combinatorial library screening and structure-guided design. Cryogenic-electron microscopy structures of the HER2 S310F homodimer and an antibody bound to HER2 S310F revealed that these antibodies recognize the mutations in a manner that mimics the dimerization arm of HER2 and thus inhibit HER2 dimerization. These antibodies as T cell engagers selectively killed a HER2 S310F-driven cancer cell line in vitro, and in vivo as a xenograft. These results validate HER2 ECD mutations as actionable therapeutic targets and offer promising candidates toward clinical development.

5.
Cell ; 147(2): 306-19, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000011

RESUMEN

Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.


Asunto(s)
Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/química , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Benzamidas , Células Cultivadas , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Isoleucina/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Pirimidinas/farmacología , Transducción de Señal , Dominios Homologos src
6.
Proc Natl Acad Sci U S A ; 120(28): e2302485120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399416

RESUMEN

The G12D mutation is among the most common KRAS mutations associated with cancer, in particular, pancreatic cancer. Here, we have developed monobodies, small synthetic binding proteins, that are selective to KRAS(G12D) over KRAS(wild type) and other oncogenic KRAS mutations, as well as over the G12D mutation in HRAS and NRAS. Crystallographic studies revealed that, similar to other KRAS mutant-selective inhibitors, the initial monobody bound to the S-II pocket, the groove between switch II and α3 helix, and captured this pocket in the most widely open form reported to date. Unlike other G12D-selective polypeptides reported to date, the monobody used its backbone NH group to directly recognize the side chain of KRAS Asp12, a feature that closely resembles that of a small-molecule inhibitor, MTRX1133. The monobody also directly interacted with H95, a residue not conserved in RAS isoforms. These features rationalize the high selectivity toward the G12D mutant and the KRAS isoform. Structure-guided affinity maturation resulted in monobodies with low nM KD values. Deep mutational scanning of a monobody generated hundreds of functional and nonfunctional single-point mutants, which identified crucial residues for binding and those that contributed to the selectivity toward the GTP- and GDP-bound states. When expressed in cells as genetically encoded reagents, these monobodies engaged selectively with KRAS(G12D) and inhibited KRAS(G12D)-mediated signaling and tumorigenesis. These results further illustrate the plasticity of the S-II pocket, which may be exploited for the design of next-generation KRAS(G12D)-selective inhibitors.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación , Transformación Celular Neoplásica/genética , Carcinogénesis , Neoplasias Pancreáticas/genética
7.
Proc Natl Acad Sci U S A ; 119(43): e2204481119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252024

RESUMEN

RAS mutants are major therapeutic targets in oncology with few efficacious direct inhibitors available. The identification of a shallow pocket near the Switch II region on RAS has led to the development of small-molecule drugs that target this site and inhibit KRAS(G12C) and KRAS(G12D). To discover other regions on RAS that may be targeted for inhibition, we have employed small synthetic binding proteins termed monobodies that have a strong propensity to bind to functional sites on a target protein. Here, we report a pan-RAS monobody, termed JAM20, that bound to all RAS isoforms with nanomolar affinity and demonstrated limited nucleotide-state specificity. Upon intracellular expression, JAM20 potently inhibited signaling mediated by all RAS isoforms and reduced oncogenic RAS-mediated tumorigenesis in vivo. NMR and mutation analysis determined that JAM20 bound to a pocket between Switch I and II, which is similarly targeted by low-affinity, small-molecule inhibitors, such as BI-2852, whose in vivo efficacy has not been demonstrated. Furthermore, JAM20 directly competed with both the RAF(RBD) and BI-2852. These results provide direct validation of targeting the Switch I/II pocket for inhibiting RAS-driven tumorigenesis. More generally, these results demonstrate the utility of tool biologics as probes for discovering and validating druggable sites on challenging targets.


Asunto(s)
Productos Biológicos , Proteínas Proto-Oncogénicas p21(ras) , Carcinogénesis/genética , Genes ras , Humanos , Mutación , Nucleótidos , Proteínas Proto-Oncogénicas p21(ras)/genética
8.
Nat Chem Biol ; 18(7): 706-712, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35361990

RESUMEN

Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/farmacología , Staphylococcus aureus/metabolismo
9.
Cell Commun Signal ; 22(1): 500, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39415233

RESUMEN

BACKGROUND: The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells. Monobodies are small synthetic binding proteins that can inhibit oncogene signaling in cancer cells with high selectivity upon intracellular expression. Here, we engineered monobodies targeting the BCR::ABL1 tyrosine kinase for efficient delivery by the T3SS, quantified cytosolic delivery and target engagement in cancer cells and monitored inhibition of BCR::ABL1 signaling. METHODS: In vitro assays were performed to characterize destabilized monobodies (thermal shift assay and isothermal titration calorimetry) and to assess their secretion by the T3SS. Immunoblot assays were used to study the translocation of monobodies into different cell lines and to determine the intracellular concentration after translocation. Split-Nanoluc assays were performed to understand translocation and degradation kinetics and to evaluate target engagement after translocation. Phospho flow cytometry and apoptosis assays were performed to assess the functional effects of monobody translocation into BCR:ABL1-expressing leukemia cells. RESULTS: To enable efficient translocation of the stable monobody proteins by the T3SS, we engineered destabilized mutant monobodies that retained high affinity target binding and were efficiently injected into different cell lines. After injection, the cytosolic monobody concentrations reached mid-micromolar concentrations considerably exceeding their binding affinity. We found that injected monobodies targeting the BCR::ABL1 tyrosine kinase selectively engaged their target in the cytosol. The translocation resulted in inhibition of oncogenic signaling and specifically induced apoptosis in BCR::ABL1-dependent cells, consistent with the phenotype when the same monobody was intracellularly expressed. CONCLUSION: Hence, we establish the T3SS of Y. enterocolitica as a highly efficient protein translocation method for monobody delivery, enabling the selective targeting of different oncogenic signaling pathways and providing a foundation for future therapeutic application against intracellular targets.


Asunto(s)
Citosol , Transducción de Señal , Sistemas de Secreción Tipo III , Humanos , Citosol/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Línea Celular Tumoral
10.
Nature ; 553(7689): 526-529, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29342140

RESUMEN

The maturation of RAS GTPases and approximately 200 other cellular CAAX proteins involves three enzymatic steps: addition of a farnesyl or geranylgeranyl prenyl lipid to the cysteine (C) in the C-terminal CAAX motif, proteolytic cleavage of the AAX residues and methylation of the exposed prenylcysteine residue at its terminal carboxylate. This final step is catalysed by isoprenylcysteine carboxyl methyltransferase (ICMT), a eukaryote-specific integral membrane enzyme that resides in the endoplasmic reticulum. ICMT is the only cellular enzyme that is known to methylate prenylcysteine substrates; methylation is important for the biological functions of these substrates, such as the membrane localization and subsequent activity of RAS, prelamin A and RAB. Inhibition of ICMT has potential for combating progeria and cancer. Here we present an X-ray structure of ICMT, in complex with its cofactor, an ordered lipid molecule and a monobody inhibitor, at 2.3 Å resolution. The active site spans cytosolic and membrane-exposed regions, indicating distinct entry routes for the cytosolic methyl donor, S-adenosyl-l-methionine, and for prenylcysteine substrates, which are associated with the endoplasmic reticulum membrane. The structure suggests how ICMT overcomes the topographical challenge and unfavourable energetics of bringing two reactants that have different cellular localizations together in a membrane environment-a relatively uncharacterized but defining feature of many integral membrane enzymes.


Asunto(s)
Proteína Metiltransferasas/química , Proteína Metiltransferasas/metabolismo , Tribolium/enzimología , Animales , Dominio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Diseño de Fármacos , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Proteína Metiltransferasas/antagonistas & inhibidores , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato
11.
J Biol Chem ; 298(12): 102661, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334633

RESUMEN

Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.


Asunto(s)
Genes ras , Transducción de Señal , Humanos , Unión Proteica , Transducción de Señal/genética , Mutación , Guanosina Trifosfato/genética
12.
Anal Chem ; 95(50): 18316-18325, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38049117

RESUMEN

Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.


Asunto(s)
Radical Hidroxilo , Proteínas , Ácido Edético/química , Radical Hidroxilo/química , Proteínas/análisis , Huella de Proteína/métodos , Estrés Oxidativo , Oxidación-Reducción
13.
Proc Natl Acad Sci U S A ; 117(15): 8468-8475, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32234780

RESUMEN

The necroptosis cell death pathway has been implicated in host defense and in the pathology of inflammatory diseases. While phosphorylation of the necroptotic effector pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) by the upstream protein kinase RIPK3 is a hallmark of pathway activation, the precise checkpoints in necroptosis signaling are still unclear. Here we have developed monobodies, synthetic binding proteins, that bind the N-terminal four-helix bundle (4HB) "killer" domain and neighboring first brace helix of human MLKL with nanomolar affinity. When expressed as genetically encoded reagents in cells, these monobodies potently block necroptotic cell death. However, they did not prevent MLKL recruitment to the "necrosome" and phosphorylation by RIPK3, nor the assembly of MLKL into oligomers, but did block MLKL translocation to membranes where activated MLKL normally disrupts membranes to kill cells. An X-ray crystal structure revealed a monobody-binding site centered on the α4 helix of the MLKL 4HB domain, which mutational analyses showed was crucial for reconstitution of necroptosis signaling. These data implicate the α4 helix of its 4HB domain as a crucial site for recruitment of adaptor proteins that mediate membrane translocation, distinct from known phospholipid binding sites.


Asunto(s)
Materiales Biomiméticos/farmacología , Membrana Celular/metabolismo , Dominio de Fibronectina del Tipo III , Necrosis , Oligopéptidos/farmacología , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Cristalografía por Rayos X , Humanos , Fosforilación , Conformación Proteica , Proteínas Quinasas/química , Multimerización de Proteína , Transporte de Proteínas
14.
Mol Cell ; 54(6): 1034-1041, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24910098

RESUMEN

Cell signaling depends on dynamic protein-protein interaction (PPI) networks, often assembled through modular domains each interacting with multiple peptide motifs. This complexity raises a conceptual challenge, namely to define whether a particular cellular response requires assembly of the complete PPI network of interest or can be driven by a specific interaction. To address this issue, we designed variants of the Grb2 SH2 domain ("pY-clamps") whose specificity is highly biased toward a single phosphotyrosine (pY) motif among many potential pYXNX Grb2-binding sites. Surprisingly, directing Grb2 predominantly to a single pY site of the Ptpn11/Shp2 phosphatase, but not other sites tested, was sufficient for differentiation of the essential primitive endoderm lineage from embryonic stem cells. Our data suggest that discrete connections within complex PPI networks can underpin regulation of particular biological events. We propose that this directed wiring approach will be of general utility in functionally annotating specific PPIs.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Proteína Adaptadora GRB2/metabolismo , Mapas de Interacción de Proteínas/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Línea Celular , Cristalografía por Rayos X , Células Madre Embrionarias/metabolismo , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Proteína Adaptadora GRB2/genética , Ratones , Modelos Moleculares , Unión Proteica/genética , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/ultraestructura , Transducción de Señal/genética
15.
Proc Natl Acad Sci U S A ; 116(28): 13937-13942, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239342

RESUMEN

Despite being the subject of intense effort and scrutiny, kinases have proven to be consistently challenging targets in inhibitor drug design. A key obstacle has been promiscuity and consequent adverse effects of drugs targeting the ATP binding site. Here we introduce an approach to controlling kinase activity by using monobodies that bind to the highly specific regulatory allosteric pocket of the oncoprotein Aurora A (AurA) kinase, thereby offering the potential for more specific kinase modulators. Strikingly, we identify a series of highly specific monobodies acting either as strong kinase inhibitors or activators via differential recognition of structural motifs in the allosteric pocket. X-ray crystal structures comparing AurA bound to activating vs inhibiting monobodies reveal the atomistic mechanism underlying allosteric modulation. The results reveal 3 major advantages of targeting allosteric vs orthosteric sites: extreme selectivity, ability to inhibit as well as activate, and avoidance of competing with ATP that is present at high concentrations in the cells. We envision that exploiting allosteric networks for inhibition or activation will provide a general, powerful pathway toward rational drug design.


Asunto(s)
Aurora Quinasa A/química , Aurora Quinasa B/química , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica/genética , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/genética , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , Diseño de Fármacos , Dominio de Fibronectina del Tipo III/genética , Humanos , Conformación Proteica , Proteínas Quinasas/genética
16.
Nature ; 525(7570): 548-51, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26344196

RESUMEN

To contend with hazards posed by environmental fluoride, microorganisms export this anion through F(-)-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F(-) over Cl(-) and dual-topology dimeric assembly. To understand the chemical basis for F(-) permeation and how the antiparallel subunits convene to form a F(-)-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F(-) present, to a maximum resolution of 2.1 Å. The structures reveal a surprising 'double-barrelled' channel architecture in which two F(-) ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na(+). F(-) selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fluoruros/metabolismo , Fluoruros/farmacología , Canales Iónicos/química , Canales Iónicos/metabolismo , Aniones/química , Aniones/metabolismo , Aniones/farmacología , Membrana Celular/metabolismo , Cristalografía por Rayos X , Fluoruros/química , Modelos Biológicos , Modelos Moleculares , Fenilalanina/metabolismo , Conformación Proteica
17.
Nat Chem Biol ; 14(9): 895-900, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30013062

RESUMEN

Rapidly determining the biological effect of perturbing a site within a potential drug target could guide drug discovery efforts, but it remains challenging. Here, we describe a facile target validation approach that exploits monobodies, small synthetic binding proteins that can be fully functionally expressed in cells. We developed a potent and selective monobody to WDR5, a core component of the mixed lineage leukemia (MLL) methyltransferase complex. The monobody bound to the MLL interaction site of WDR5, the same binding site for small-molecule inhibitors whose efficacy has been demonstrated in cells but not in animals. As a genetically encoded reagent, the monobody inhibited proliferation of an MLL-AF9 cell line in vitro, suppressed its leukemogenesis and conferred a survival benefit in an in vivo mouse leukemia model. The capacity of this approach to readily bridge biochemical, structural, cellular characterization and tests in animal models may accelerate discovery and validation of druggable sites.


Asunto(s)
Proteínas de Homeodominio/antagonistas & inhibidores , Oligopéptidos/farmacología , Proteínas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular , Ratones , Oligopéptidos/química , Proteínas/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , Reproducibilidad de los Resultados
18.
Nature ; 512(7513): 218-222, 2014 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-25043026

RESUMEN

G-protein-coupled receptors (GPCRs) are critically regulated by ß-arrestins, which not only desensitize G-protein signalling but also initiate a G-protein-independent wave of signalling. A recent surge of structural data on a number of GPCRs, including the ß2 adrenergic receptor (ß2AR)-G-protein complex, has provided novel insights into the structural basis of receptor activation. However, complementary information has been lacking on the recruitment of ß-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor-ß-arrestin complexes for structural studies. Here we devised a strategy for forming and purifying a functional human ß2AR-ß-arrestin-1 complex that allowed us to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between ß2AR and ß-arrestin 1 using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and chemical crosslinking. Electron microscopy two-dimensional averages and three-dimensional reconstructions reveal bimodal binding of ß-arrestin 1 to the ß2AR, involving two separate sets of interactions, one with the phosphorylated carboxy terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of crosslinked residues suggest engagement of the finger loop of ß-arrestin 1 with the seven-transmembrane core of the receptor. In contrast, focal areas of raised HDX levels indicate regions of increased dynamics in both the N and C domains of ß-arrestin 1 when coupled to the ß2AR. A molecular model of the ß2AR-ß-arrestin signalling complex was made by docking activated ß-arrestin 1 and ß2AR crystal structures into the electron microscopy map densities with constraints provided by HDX-MS and crosslinking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented here provides a framework for better understanding the basis of GPCR regulation by arrestins.


Asunto(s)
Arrestinas/química , Arrestinas/metabolismo , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Cuaternaria de Proteína , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Células Sf9 , beta-Arrestina 1 , beta-Arrestinas
19.
Proc Natl Acad Sci U S A ; 114(38): 10095-10100, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874577

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse biological processes, including neurodevelopment and cancer progression. aGPCRs are characterized by large and diverse extracellular regions (ECRs) that are autoproteolytically cleaved from their membrane-embedded signaling domains. Although ECRs regulate receptor function, it is not clear whether ECRs play a direct regulatory role in G-protein signaling or simply serve as a protective cap for the activating "Stachel" sequence. Here, we present a mechanistic analysis of ECR-mediated regulation of GPR56/ADGRG1, an aGPCR with two domains [pentraxin and laminin/neurexin/sex hormonebinding globulin-like (PLL) and G protein-coupled receptor autoproteolysis-inducing (GAIN)] in its ECR. We generated a panel of high-affinity monobodies directed to each of these domains, from which we identified activators and inhibitors of GPR56-mediated signaling. Surprisingly, these synthetic ligands modulated signaling of a GPR56 mutant defective in autoproteolysis and hence, in Stachel peptide exposure. These results provide compelling support for a ligand-induced and ECR-mediated mechanism that regulates aGPCR signaling in a transient and reversible manner, which occurs in addition to the Stachel-mediated activation.


Asunto(s)
Péptidos/química , Proteolisis , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Animales , Línea Celular , Humanos , Péptidos/genética , Péptidos/metabolismo , Dominios Proteicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Spodoptera
20.
Angew Chem Int Ed Engl ; 59(27): 11037-11045, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32227412

RESUMEN

KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, "cross"-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.


Asunto(s)
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sitios de Unión , Dimerización , Humanos , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA