Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Learn Instr ; 86: 101778, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37020475

RESUMEN

Understanding scientific concepts is a fundamental aim of science education. Conceptual understanding can be fostered through inquiry learning with experiments. However, during the Covid-19 pandemic school closures hands-on experiments could hardly be realized. Fortunately, digital technologies allow for conducting experiments virtually by using interactive simulations or observing video recordings of hands-on experiments. In the present study, 154 seventh graders in remote schooling were involved in inquiry learning using either a combination of virtual and video experiments in two different orders or only virtual experiments. We hypothesized that in general inquiry learning fosters students' conceptual understanding in physics, which could be confirmed. Moreover, we expected the combinations to be more effective than learning with virtual experiments only due to the complementary roles of the prior, which was, however, not the case. We conclude that virtual and video experiments can be recommended to teachers if hands-on experimentation is not possible.

2.
Sensors (Basel) ; 21(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806863

RESUMEN

Currently an increasing number of head mounted displays (HMD) for virtual and augmented reality (VR/AR) are equipped with integrated eye trackers. Use cases of these integrated eye trackers include rendering optimization and gaze-based user interaction. In addition, visual attention in VR and AR is interesting for applied research based on eye tracking in cognitive or educational sciences for example. While some research toolkits for VR already exist, only a few target AR scenarios. In this work, we present an open-source eye tracking toolkit for reliable gaze data acquisition in AR based on Unity 3D and the Microsoft HoloLens 2, as well as an R package for seamless data analysis. Furthermore, we evaluate the spatial accuracy and precision of the integrated eye tracker for fixation targets with different distances and angles to the user (n=21). On average, we found that gaze estimates are reported with an angular accuracy of 0.83 degrees and a precision of 0.27 degrees while the user is resting, which is on par with state-of-the-art mobile eye trackers.


Asunto(s)
Realidad Aumentada , Gafas Inteligentes , Realidad Virtual , Tecnología de Seguimiento Ocular
3.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34833742

RESUMEN

Remote eye tracking has become an important tool for the online analysis of learning processes. Mobile eye trackers can even extend the range of opportunities (in comparison to stationary eye trackers) to real settings, such as classrooms or experimental lab courses. However, the complex and sometimes manual analysis of mobile eye-tracking data often hinders the realization of extensive studies, as this is a very time-consuming process and usually not feasible for real-world situations in which participants move or manipulate objects. In this work, we explore the opportunities to use object recognition models to assign mobile eye-tracking data for real objects during an authentic students' lab course. In a comparison of three different Convolutional Neural Networks (CNN), a Faster Region-Based-CNN, you only look once (YOLO) v3, and YOLO v4, we found that YOLO v4, together with an optical flow estimation, provides the fastest results with the highest accuracy for object detection in this setting. The automatic assignment of the gaze data to real objects simplifies the time-consuming analysis of mobile eye-tracking data and offers an opportunity for real-time system responses to the user's gaze. Additionally, we identify and discuss several problems in using object detection for mobile eye-tracking data that need to be considered.


Asunto(s)
Análisis de Datos , Tecnología de Seguimiento Ocular , Humanos , Redes Neurales de la Computación , Percepción Visual
4.
Sensors (Basel) ; 22(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009805

RESUMEN

With the recent increase in the use of augmented reality (AR) in educational laboratory settings, there is a need for new intelligent sensor systems capturing all aspects of the real environment. We present a smart sensor system meeting these requirements for STEM (science, technology, engineering, and mathematics) experiments in electrical circuits. The system consists of custom experiment boxes and cables combined with an application for the Microsoft HoloLens 2, which creates an AR experiment environment. The boxes combine sensors for measuring the electrical voltage and current at the integrated electrical components as well as a reconstruction of the currently constructed electrical circuit and the position of the sensor box on a table. Combing these data, the AR application visualizes the measurement data spatially and temporally coherent to the real experiment boxes, thus fulfilling demands derived from traditional multimedia learning theory. Following an evaluation of the accuracy and precision of the presented sensors, the usability of the system was evaluated with n=20 pupils in a German high school. In this evaluation, the usability of the system was rated with a system usability score of 94 out of 100.


Asunto(s)
Realidad Aumentada , Instituciones Académicas
5.
PLoS One ; 19(5): e0301276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771767

RESUMEN

Classical statistical analysis of data can be complemented or replaced with data analysis based on machine learning. However, in certain disciplines, such as education research, studies are frequently limited to small datasets, which raises several questions regarding biases and coincidentally positive results. In this study, we present a refined approach for evaluating the performance of a binary classification based on machine learning for small datasets. The approach includes a non-parametric permutation test as a method to quantify the probability of the results generalising to new data. Furthermore, we found that a repeated nested cross-validation is almost free of biases and yields reliable results that are only slightly dependent on chance. Considering the advantages of several evaluation metrics, we suggest a combination of more than one metric to train and evaluate machine learning classifiers. In the specific case that both classes are equally important, the Matthews correlation coefficient exhibits the lowest bias and chance for coincidentally good results. The results indicate that it is essential to avoid several biases when analysing small datasets using machine learning.


Asunto(s)
Aprendizaje Automático , Humanos , Algoritmos , Conjuntos de Datos como Asunto
6.
Int J STEM Educ ; 10(1): 44, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361927

RESUMEN

Background: Representational competence is commonly considered a prerequisite for the acquisition of conceptual knowledge, yet little exploration has been undertaken into the relation between these two constructs. Using an assessment instrument of representational competence with vector fields that functions without confounding topical context, we examined its relation with N = 515 undergraduates' conceptual knowledge about electromagnetism. Results: Applying latent variable modeling, we found that students' representational competence and conceptual knowledge are related yet clearly distinguishable constructs (manifest correlation: r = .54; latent correlation: r = .71). The relation was weaker for female than for male students, which could not be explained by measurement differences between the two groups. There were several students with high representational competence and low conceptual knowledge, but only few students with low representational competence and high conceptual knowledge. Conclusions: These results support the assumption that representational competence is a prerequisite, yet insufficient condition for the acquisition of conceptual knowledge. We provide suggestions for supporting learners in building representational competence, and particularly female learners in utilizing their representational competence to build conceptual knowledge. Supplementary Information: The online version contains supplementary material available at 10.1186/s40594-023-00435-6.

7.
Front Psychol ; 13: 804742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35345641

RESUMEN

Multimedia learning theories suggest presenting associated pieces of information in spatial and temporal contiguity. New technologies like Augmented Reality allow for realizing these principles in science laboratory courses by presenting virtual real-time information during hands-on experimentation. Spatial integration can be achieved by pinning virtual representations of measurement data to corresponding real components. In the present study, an Augmented Reality-based presentation format was realized via a head-mounted display and contrasted to a separate display, which provided a well-arranged data matrix in spatial distance to the real components and was therefore expected to result in a spatial split-attention effect. Two groups of engineering students (N = 107; Augmented Reality vs. separate display) performed six experiments exploring fundamental laws of electric circuits. Cognitive load and conceptual knowledge acquisition were assessed as main outcome variables. In contrast to our hypotheses and previous findings, the Augmented Reality group did not report lower extraneous load and the separate display group showed higher learning gains. The pre- and posttest assessing conceptual knowledge were monitored by eye tracking. Results indicate that the condition affected the visual relevancy of circuit diagrams to final problem completion. The unexpected reverse effects could be traced back to emphasizing coherence formation processes regarding multiple measurements.

8.
Front Psychol ; 12: 703857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531793

RESUMEN

Subject-method barriers and cognitive load (CL) of students have a particular importance in the complex learning process of scientific inquiry. In this work, we investigate the valid measurement of CL as well as different scaffolds to reduce it during experimentation. Specifically, we examine the validity of a subjective measurement instrument to assess CL [in extraneous cognitive load (ECL), intrinsic cognitive load, and germane cognitive load (GCL)] during the use of multimedia scaffolds in the planning phase of the scientific inquiry process based on a theoretical framework of the CL theory. The validity is analyzed by investigating possible relationships between causal (e.g., cognitive abilities) and assessment (e.g., eye-tracking metrics) factors in relation to the obtained test scores of the adapted subjective measurement instrument. The study aims to elucidate possible relationships of causal factors that have not yet been adequately investigated in relation to CL. Furthermore, a possible, still inconclusive convergence between subjective test scores on CL and objectively measured indicators will be tested using different eye-tracking metrics. In two studies (n=250), 9th and 11th grade students experimentally investigated a biological phenomenon. At the beginning of the planning phase, students selected one of four multimedia scaffolds using a tablet (Study I: n=181) or a computer with a stationary eye-tracking device (Study II: n=69). The subjective cognitive load was measured via self-reports using a standardized questionnaire. Additionally, we recorded students' gaze data during learning with the scaffolds as objective measurements. Besides the causal factors of cognitive-visual and verbal abilities, reading skills and spatial abilities were quantified using established test instruments and the learners indicated their representation preference by selecting the scaffolds. The results show that CL decreases substantially with higher grade level. Regarding the causal factors, we observed that cognitive-visual and verbal abilities have a significant influence on the ECL and GCL in contrast to reading skills. Additionally, there is a correlation between the representation preference and different types of CL. Concerning the objective measurement data, we found that the absolute fixation number is predictive for the ECL. The results are discussed in the context of the overall methodological research goal and the theoretical framework of CL.

9.
Front Psychol ; 11: 2090, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973629

RESUMEN

Domain-specific understanding of digitally represented graphs is necessary for successful learning within and across domains in higher education. Two recent studies conducted a cross-sectional analysis of graph understanding in different contexts (physics and finance), task concepts, and question types among students of physics, psychology, and economics. However, neither changes in graph processing nor changes in test scores over the course of one semester have been sufficiently researched so far. This eye-tracking replication study with a pretest-posttest design examines and contrasts changes in physics and economics students' understanding of linear physics and finance graphs. It analyzes the relations between changes in students' gaze behavior regarding relevant graph areas, scores, and self-reported task-related confidence. The results indicate domain-specific, context- and concept-related differences in the development of graph understanding over the first semester, as well as its successful transferability across the different contexts and concepts. Specifically, we discovered a tendency of physics students to develop a task-independent overconfidence in the graph understanding during the first semester.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA