Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 136(28): 10104-15, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24946167

RESUMEN

The Au(III) complex Au(OAc(F))2(tpy) (1, OAc(F) = OCOCF3; tpy = 2-p-tolylpyridine) undergoes reversible dissociation of the OAc(F) ligand trans to C, as seen by (19)F NMR. In dichloromethane or trifluoroacetic acid (TFA), the reaction between 1 and ethylene produces Au(OAc(F))(CH2CH2OAc(F))(tpy) (2). The reaction is a formal insertion of the olefin into the Au-O bond trans to N. In TFA this reaction occurs in less than 5 min at ambient temperature, while 1 day is required in dichloromethane. In trifluoroethanol (TFE), Au(OAc(F))(CH2CH2OCH2CF3)(tpy) (3) is formed as the major product. Both 2 and 3 have been characterized by X-ray crystallography. In TFA/TFE mixtures, 2 and 3 are in equilibrium with a slight thermodynamic preference for 2 over 3. Exposure of 2 to ethylene-d4 in TFA caused exchange of ethylene-d4 for ethylene at room temperature. The reaction of 1 with cis-1,2-dideuterioethylene furnished Au(OAc(F))(threo-CHDCHDOAc(F))(tpy), consistent with an overall anti addition to ethylene. DFT(PBE0-D3) calculations indicate that the first step of the formal insertion is an associative substitution of the OAc(F) trans to N by ethylene. Addition of free (-)OAc(F) to coordinated ethylene furnishes 2. While substitution of OAc(F) by ethylene trans to C has a lower barrier, the kinetic and thermodynamic preference of 2 over the isomer with CH2CH2OAc(F) trans to C accounts for the selective formation of 2. The DFT calculations suggest that the higher reaction rates observed in TFA and TFE compared with CH2Cl2 arise from stabilization of the (-)OAc(F) anion lost during the first reaction step.

3.
Dalton Trans ; 45(37): 14719-24, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27283880

RESUMEN

Incorporation of the simple, readily available, building blocks ethylene, water and acetonitrile into Au(tpy)(OCOCF3)2 (tpy = 2-(p-tolyl)pyridine) in a one-step reaction leads to high yields of a new 6-membered ring gold(iii) metallacycle complex. The metallacycle has been characterized spectroscopically and crystallographically, and the mechanism of its formation has been investigated with the aid of DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA