Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuropathol Appl Neurobiol ; 48(3): e12791, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35067965

RESUMEN

AIMS: Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS: We crossed an inducible tauopathy model with two ß-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS: We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aß and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS: These data suggest that tau misfolding is exacerbated by both newly forming Aß deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Anciano , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Mol Ther ; 29(2): 859-872, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33128896

RESUMEN

Immunotherapies designed to treat neurodegenerative tauopathies that primarily engage extracellular tau may have limited efficacy as tau is primarily intracellular. We generated tau-targeting single-chain variable fragments (scFvs) and intrabodies (iBs) from the phosphorylated tau-specific antibodies CP13 and PHF1 and the pan-tau antibody Tau5. Recombinant adeno-associated virus (rAAV) was utilized to express these antibody fragments in homozygous JNPL3 P301L tau mice. Two iBs (CP13i, PHF1i) and one scFv (PHF1s) abrogated tau pathology and delayed time to severe hindlimb paralysis. In a second tauopathy model (rTg4510), CP13i and PHF1i reduced tau pathology, but cognate scFvs did not. These data demonstrate that (1) disease-modifying efficacy does not require antibody effector functions, (2) the intracellular targeting of tau with phosphorylated tau-specific iBs is more effective than extracellular targeting with the scFvs, and (3) robust effects on tau pathology before neurodegeneration only resulted in modest disease modification as assessed by delay of severe motor phenotype.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Vías Secretoras/efectos de los fármacos , Anticuerpos de Cadena Única/farmacología , Proteínas tau/antagonistas & inhibidores , Animales , Terapia Combinada , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/etiología , Resultado del Tratamiento , Proteínas tau/metabolismo
3.
Acta Neuropathol ; 141(3): 359-381, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33496840

RESUMEN

Accumulation of the tau protein in fibrillar intracellular aggregates is a defining feature of multiple neurodegenerative diseases collectively referred to as tauopathies. Despite intensive study of tau, there is limited information on the formation and clearance dynamics of tau inclusions. Using rAAV vectors to mediate expression of Dendra2-tagged human wild-type, P301L and pro-aggregant P301L/S320F tau proteins, with and without the addition of exogenous tau fibrillar seeds, we evaluated tau inclusion dynamics in organotypic brain slice culture (BSC) models using long-term optical pulse labeling methodology. Our studies reveal that tau inclusions typically form in 12-96 h in tauopathy BSC models. Unexpectedly, we demonstrate appreciable turnover of tau within inclusions with an average half-life of ~ 1 week when inclusions are newly formed. When BSCs with inclusions are aged in culture for extended periods, tau inclusions continue to turnover, but their half-lives increase to ~ 2 weeks and ~ 3 weeks after 1 and 2 months in culture, respectively. Individual tau inclusions can be long-lived structures that can persist for months in these BSC models and for even longer in the human brain. However, our data indicate that tau inclusions, are not 'tombstones', but dynamic structures with appreciable turnover. Understanding the cellular processes mediating this inclusion turnover may lead to new therapeutic strategies that could reverse pathological tau inclusion formation.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Ratones , Neuronas/patología , Técnicas de Cultivo de Órganos , Tauopatías/patología
4.
PLoS Biol ; 16(12): e2006265, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30571694

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson disease. Genetics and neuropathology link Parkinson disease with the microtubule-binding protein tau, but the mechanism of action of LRRK2 mutations and the molecular connection between tau and Parkinson disease are unclear. Here, we investigate the interaction of LRRK and tau in Drosophila and mouse models of tauopathy. We find that either increasing or decreasing the level of fly Lrrk enhances tau neurotoxicity, which is further exacerbated by expressing Lrrk with dominantly acting Parkinson disease-associated mutations. At the cellular level, altering Lrrk expression promotes tau neurotoxicity via excess stabilization of filamentous actin (F-actin) and subsequent mislocalization of the critical mitochondrial fission protein dynamin-1-like protein (Drp1). Biochemically, monomeric LRRK2 exhibits actin-severing activity, which is reduced as increasing concentrations of wild-type LRRK2, or expression of mutant forms of LRRK2 promote oligomerization of the protein. Overall, our findings provide a potential mechanistic basis for a dominant negative mechanism in LRRK2-mediated Parkinson disease, suggest a common molecular pathway with other familial forms of Parkinson disease linked to abnormalities of mitochondrial dynamics and quality control, and raise the possibility of new therapeutic approaches to Parkinson disease and related disorders.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/fisiología , Tauopatías/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales/fisiología , Mutación , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas tau/metabolismo
5.
Mol Cell Neurosci ; 92: 17-26, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859891

RESUMEN

Loss-of-function mutations in ATP13A2 are associated with three neurodegenerative diseases: a rare form of Parkinson's disease termed Kufor-Rakeb syndrome (KRS), a lysosomal storage disorder termed neuronal ceroid lipofuscinosis (NCL), and a form of hereditary spastic paraplegia (HSP). Furthermore, recent data suggests that heterozygous carriers of mutations in ATP13A2 may confer risk for the development of Parkinson's disease, similar to the association of mutations in glucocerebrosidase (GBA) with both Parkinson's disease and Gaucher's disease, a lysosomal storage disorder. Mutations in ATP13A2 are generally thought to be loss of function; however, the lack of human autopsy tissue has prevented the field from determining the pathological consequences of losing functional ATP13A2. We and others have previously neuropathologically characterized mice completely lacking murine Atp13a2, demonstrating the presence of lipofuscinosis within the brain - a key feature of NCL, one of the diseases to which ATP13A2 mutations have been linked. To determine if loss of one functional Atp13a2 allele can serve as a risk factor for disease, we have now assessed heterozygous Atp13a2 knockout mice for key features of NCL. In this report, we demonstrate that loss of one functional Atp13a2 allele leads to both microgliosis and astrocytosis in multiple brain regions compared to age-matched controls; however, levels of lipofuscin were only modestly elevated in the cortex of heterozygous Atp13a2 knockout mice over controls. This data suggests the possibility that partial loss of ATP13A2 causes inflammatory changes within the brain which appear to be independent of robust lipofuscinosis. This study suggests that heterozygous loss-of-function mutations in ATP13A2 are likely harmful and indicates that glial involvement in the disease process may be an early event that positions the CNS for subsequent disease development.


Asunto(s)
Adenosina Trifosfatasas/genética , Gliosis/genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Adenosina Trifosfatasas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Gliosis/metabolismo , Heterocigoto , Lipofuscina/metabolismo , Mutación con Pérdida de Función , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Lipofuscinosis Ceroideas Neuronales/metabolismo , ATPasas de Translocación de Protón
6.
Acta Neuropathol ; 136(6): 919-938, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30140941

RESUMEN

The deposition of pathologic misfolded proteins in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia and amyotrophic lateral sclerosis is hypothesized to burden protein homeostatic (proteostatic) machinery, potentially leading to insufficient capacity to maintain the proteome. This hypothesis has been supported by previous work in our laboratory, as evidenced by the perturbation of cytosolic protein solubility in response to amyloid plaques in a mouse model of Alzheimer's amyloidosis. In the current study, we demonstrate changes in proteome solubility are a common pathology to mouse models of neurodegenerative disease. Pathological accumulations of misfolded tau, α-synuclein and mutant superoxide dismutase 1 in CNS tissues of transgenic mice were associated with changes in the solubility of hundreds of CNS proteins in each model. We observed that changes in proteome solubility were progressive and, using the rTg4510 model of inducible tau pathology, demonstrated that these changes were dependent upon sustained expression of the primary pathologic protein. In all of the models examined, changes in proteome solubility were robust, easily detected, and provided a sensitive indicator of proteostatic disruption. Interestingly, a subset of the proteins that display a shift towards insolubility were common between these different models, suggesting that a specific subset of the proteome is vulnerable to proteostatic disruption. Overall, our data suggest that neurodegenerative proteinopathies modeled in mice impose a burden on the proteostatic network that diminishes the ability of neural cells to prevent aberrant conformational changes that alter the solubility of hundreds of abundant cellular proteins.


Asunto(s)
Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedades Neurodegenerativas/patología , Ovillos Neurofibrilares/patología , Proteoma/metabolismo , Factores de Edad , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Enfermedades Neurodegenerativas/genética , Ovillos Neurofibrilares/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Pliegue de Proteína , Proteoma/genética , Solubilidad , Espectrometría de Masas en Tándem , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
7.
RNA ; 21(8): 1419-32, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26089325

RESUMEN

TDP-43 is a soluble, nuclear protein that undergoes cytoplasmic redistribution and aggregation in the majority of cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 autoregulates the abundance of its own transcript TARDBP by binding to an intron in the 3' untranslated region, although the mechanisms underlying this activity have been debated. Herein, we provide the most extensive analysis of TARDBP transcript yet undertaken. We detail the existence of a plethora of complex splicing events and alternative poly(A) use and provide data that explain the discrepancies reported to date regarding the autoregulatory capacity of TDP-43. Additionally, although many splice isoforms emanating from the TARDBP locus contain the regulated intron in the 3' UTR, we find only evidence for autoregulation of the transcript encoding full-length TDP-43. Finally, we use a novel cytoplasmic isoform of TDP to induce disease-like loss of soluble, nuclear TDP-43, which results in aberrant splicing and up-regulation of endogenous TARDBP. These results reveal a previously underappreciated complexity to TDP-43 regulated splicing and suggest that loss of TDP-43 autoregulatory capacity may contribute to the pathogenesis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/etiología , ARN Mensajero/genética , Regiones no Traducidas 3' , Empalme Alternativo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Intrones , Ratones , Mutación
8.
Acta Neuropathol ; 131(1): 27-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26576562

RESUMEN

Tau is a microtubule-associated protein and a key regulator of microtubule stabilization as well as the main component of neurofibrillary tangles-a principle neuropathological hallmark of Alzheimer's disease (AD)-as well as pleomorphic neuronal and glial inclusions in neurodegenerative tauopathies. Cross-sectional studies of neurofibrillary pathology in AD reveal a stereotypic spatiotemporal pattern of neuronal vulnerability that correlates with disease severity; however, the relationship of this pattern to disease progression is less certain and exceptions to the typical pattern have been described in a subset of AD patients. The basis for the selective vulnerability of specific populations of neurons to tau pathology and cell death is largely unknown, although there have been a number of hypotheses based upon shared properties of vulnerable neurons (e.g., degree of axonal myelination or synaptic plasticity). A recent hypothesis for selective vulnerability takes into account the emerging science of functional connectivity based upon resting state functional magnetic resonance imaging, where subsets of neurons that fire synchronously define patterns of degeneration similar to specific neurodegenerative disorders, including various tauopathies. In the past 6 years, the concept of tau propagation has emerged from numerous studies in cell and animal models suggesting that tau moves from cell-to-cell and that this may trigger aggregation and region-to-region spread of tau pathology within the brain. How the spread of tau pathology relates to functional connectivity is an area of active investigation. Observations of templated folding and propagation of tau have prompted comparisons of tau to prions, the pathogenic proteins in transmissible spongiform encephalopathies. In this review, we discuss the most compelling studies in the field, discuss their shortcomings and consider their implications with respect to human tauopathies as well as the controversy that tauopathies may be prion-like disorders.


Asunto(s)
Encéfalo/patología , Ovillos Neurofibrilares/patología , Neuronas/patología , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Priones/metabolismo
9.
FASEB J ; 29(10): 4384-98, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26156074

RESUMEN

Inflammatory activation precedes and correlates with accumulating τ lesions in Alzheimer's disease and tauopathies. However, the relationship between neuroinflammation and etiology of pathologic τ remains elusive. To evaluate whether inflammatory signaling may promote or accelerate neurofibrillary tangle pathology, we explored the effect of recombinant adeno-associated virus (rAAV)-mediated overexpression of a master inflammatory cytokine, IFN-γ, on τ phosphorylation. In initial studies in primary neuroglial cultures, rAAV-mediated expression of IFN-γ did not alter endogenous τ production or paired helical filament τ phosphorylation. Next, we tested the effect of rAAV-mediated expression of IFN-γ in the brains of 2 mouse models of tauopathy: JNPL3 and rTg4510. In both models, IFN-γ increased 1) signal transducer and activator of transcription 1 levels and gliosis, and 2) hyperphosphorylation and conformational alterations of soluble τ compared with control cohorts. However, sarkosyl-insoluble phosphorylated τ levels and ubiquitin staining were unaltered in the IFN-γ cohorts. Notably, IFN-γ-induced τ hyperphosphorylation was associated with release of the inhibitory effect of glycogen synthase kinase 3ß function by decreasing Ser9 phosphorylation. Our data suggest that type II IFN signaling can promote τ phosphorylation by modulating cellular kinase activity, though this is insufficient in accelerating neuritic tangle pathology.


Asunto(s)
Interferón gamma/metabolismo , Ovillos Neurofibrilares/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Dependovirus/genética , Activación Enzimática , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Immunoblotting , Inmunohistoquímica , Interferón gamma/genética , Masculino , Ratones Endogámicos C3H , Ratones Transgénicos , Ovillos Neurofibrilares/genética , Neuroglía/metabolismo , Fosforilación , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Tauopatías/genética
10.
Proc Natl Acad Sci U S A ; 110(51): E4968-77, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24248382

RESUMEN

The finding that a GGGGCC (G4C2) hexanucleotide repeat expansion in the chromosome 9 ORF 72 (C9ORF72) gene is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) links ALS/FTD to a large group of unstable microsatellite diseases. Previously, we showed that microsatellite expansion mutations can be bidirectionally transcribed and that these mutations express unexpected proteins by a unique mechanism, repeat-associated non-ATG (RAN) translation. In this study, we show that C9ORF72 antisense transcripts are elevated in the brains of C9ORF72 expansion-positive [C9(+)] patients, and antisense GGCCCC (G2C4) repeat-expansion RNAs accumulate in nuclear foci in brain. Additionally, sense and antisense foci accumulate in blood and are potential biomarkers of the disease. Furthermore, we show that RAN translation occurs from both sense and antisense expansion transcripts, resulting in the expression of six RAN proteins (antisense: Pro-Arg, Pro-Ala, Gly-Pro; and sense: Gly-Ala, Gly-Arg, Gly-Pro). These proteins accumulate in cytoplasmic aggregates in affected brain regions, including the frontal and motor cortex, hippocampus, and spinal cord neurons, with some brain regions showing dramatic RAN protein accumulation and clustering. The finding that unique antisense G2C4 RNA foci and three unique antisense RAN proteins accumulate in patient tissues indicates that bidirectional transcription of expanded alleles is a fundamental pathologic feature of C9ORF72 ALS/FTD. Additionally, these findings suggest the need to test therapeutic strategies that target both sense and antisense RNAs and RAN proteins in C9ORF72 ALS/FTD, and to more broadly consider the role of antisense expression and RAN translation across microsatellite expansion diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Demencia Frontotemporal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas/metabolismo , ARN sin Sentido/biosíntesis , Proteína de Unión al GTP ran/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Encéfalo/patología , Proteína C9orf72 , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Células HEK293 , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas/genética , ARN sin Sentido/genética , Secuencias Repetitivas de Ácidos Nucleicos , Proteína de Unión al GTP ran/genética
11.
Hum Mol Genet ; 22(10): 2067-82, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23393156

RESUMEN

Mutations in ATP13A2 (PARK9), encoding a lysosomal P-type ATPase, are associated with both Kufor-Rakeb syndrome (KRS) and neuronal ceroid lipofuscinosis (NCL). KRS has recently been classified as a rare genetic form of Parkinson's disease (PD), whereas NCL is a lysosomal storage disorder. Although the transport activity of ATP13A2 has not been defined, in vitro studies show that its loss compromises lysosomal function, which in turn is thought to cause neuronal degeneration. To understand the role of ATP13A2 dysfunction in disease, we disrupted its gene in mice. Atp13a2(-/-) and Atp13a2(+/+) mice were tested behaviorally to assess sensorimotor and cognitive function at multiple ages. In the brain, lipofuscin accumulation, α-synuclein aggregation and dopaminergic pathology were measured. Behaviorally, Atp13a2(-/-) mice displayed late-onset sensorimotor deficits. Accelerated deposition of autofluorescent storage material (lipofuscin) was observed in the cerebellum and in neurons of the hippocampus and the cortex of Atp13a2(-/-) mice. Immunoblot analysis showed increased insoluble α-synuclein in the hippocampus, but not in the cortex or cerebellum. There was no change in the number of dopaminergic neurons in the substantia nigra or in striatal dopamine levels in aged Atp13a2(-/-) mice. These results show that the loss of Atp13a2 causes sensorimotor impairments, α-synuclein accumulation as occurs in PD and related synucleinopathies, and accumulation of lipofuscin deposits characteristic of NCL, thus providing the first direct demonstration that null mutations in Atp13a2 can cause pathological features of both diseases in the same organism.


Asunto(s)
Adenosina Trifosfatasas , Envejecimiento/metabolismo , Encéfalo/metabolismo , Retroalimentación Sensorial , Proteínas de la Membrana , Lipofuscinosis Ceroideas Neuronales/enzimología , Trastornos Parkinsonianos/enzimología , alfa-Sinucleína/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Conducta Animal , Encéfalo/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Ratones , Ratones Mutantes , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , ATPasas de Translocación de Protón , alfa-Sinucleína/genética
12.
Am J Hum Genet ; 90(6): 1102-7, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22608501

RESUMEN

We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Animales , Mapeo Cromosómico , Análisis Mutacional de ADN , Demencia/genética , Salud de la Familia , Femenino , Ligamiento Genético , Heterocigoto , Homocigoto , Humanos , Escala de Lod , Masculino , Ratones , Linaje , Fenotipo , Progranulinas
13.
J Neurosci Res ; 93(10): 1567-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26123245

RESUMEN

Hyperphosphorylation and aggregation of tau are observed in multiple neurodegenerative diseases termed tauopathies. Tau has also been implicated in the pathogenesis of Parkinson's disease (PD) and parkinsonisms. Some PD patients with mutations in the leucine-rich repeat kinase 2 (LRRK2) gene exhibit tau pathology. Mutations in LRRK2 are a major risk factor for PD, but LRRK2 protein function remains unclear. The most common mutation, G2019S, is located in the kinase domain of LRRK2 and enhances kinase activity in vitro. This suggests that the kinase activity of LRRK2 may underlie its cellular toxicity. Recently, in vitro studies have suggested a direct interaction between tubulin-bound tau and LRRK2 that results in tau phosphorylation at one identified site. Here we present data suggesting that microtubules (MTs) enhance LRRK2-mediated tau phosphorylation at three different epitopes. We also explore the effect of divalent cations as catalytic cofactors for G2019S LRRK2-mediated tau phosphorylation and show that manganese does not support kinase activity but inhibits the efficient ability of magnesium to catalyze LRRK2-mediated phosphorylation of tau. These results suggest that cofactors such as MTs and cations in the cellular milieu have an important impact on LRRK2-tau interactions and resultant tau phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas tau/metabolismo , Animales , Especificidad de Anticuerpos , Glicina/genética , Glicina/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Manganeso/metabolismo , Mutación/genética , Fosforilación/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Serina/genética , Serina/metabolismo , Treonina/metabolismo , Proteínas tau/genética , Proteínas tau/inmunología
14.
Genes (Basel) ; 15(3)2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540368

RESUMEN

Neurodegenerative proteinopathies such as Alzheimer's Disease are characterized by abnormal protein aggregation and neurodegeneration. Neuroresilience or regenerative strategies to prevent neurodegeneration, preserve function, or restore lost neurons may have the potential to combat human proteinopathies; however, the adult human brain possesses a limited capacity to replace lost neurons. In contrast, axolotls (Ambystoma mexicanum) show robust brain regeneration. To determine whether axolotls may help identify potential neuroresilience or regenerative strategies in humans, we first interrogated whether axolotls express putative proteins homologous to human proteins associated with neurodegenerative diseases. We compared the homology between human and axolotl proteins implicated in human proteinopathies and found that axolotls encode proteins highly similar to human microtubule-binding protein tau (tau), amyloid precursor protein (APP), and ß-secretase 1 (BACE1), which are critically involved in human proteinopathies like Alzheimer's Disease. We then tested monoclonal Tau and BACE1 antibodies previously used in human and rodent neurodegenerative disease studies using immunohistochemistry and western blotting to validate the homology for these proteins. These studies suggest that axolotls may prove useful in studying the role of these proteins in disease within the context of neuroresilience and repair.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Deficiencias en la Proteostasis , Adulto , Animales , Humanos , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide , Enfermedades Neurodegenerativas/genética , Ácido Aspártico Endopeptidasas , Proteínas tau/genética
15.
Acta Neuropathol ; 126(6): 809-27, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24113872

RESUMEN

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson's disease (PD). The neuropathology of LRRK2-related PD is heterogeneous and can include aberrant tau phosphorylation or neurofibrillary tau pathology. Recently, LRRK2 has been shown to phosphorylate tau in vitro; however, the major epitopes phosphorylated by LRRK2 and the physiological or pathogenic consequences of these modifications in vivo are unknown. Using mass spectrometry, we identified multiple sites on recombinant tau that are phosphorylated by LRRK2 in vitro, including pT149 and pT153, which are phospho-epitopes that to date have been largely unexplored. Importantly, we demonstrate that expression of transgenic LRRK2 in a mouse model of tauopathy increased the aggregation of insoluble tau and its phosphorylation at T149, T153, T205, and S199/S202/T205 epitopes. These findings indicate that tau can be a LRRK2 substrate and that this interaction can enhance salient features of human disease.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/metabolismo , Encéfalo/patología , Epítopos/genética , Epítopos/metabolismo , Femenino , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Tauopatías/genética , Tauopatías/patología
16.
Acta Neuropathol ; 126(1): 39-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666556

RESUMEN

Frontotemporal lobar degeneration (FTLD) has been subdivided based on the main pathology found in the brains of affected individuals. When the primary pathology is aggregated, hyperphosphorylated tau, the pathological diagnosis is FTLD-tau. When the primary pathology is cytoplasmic and/or nuclear aggregates of phosphorylated TAR-DNA-binding protein (TDP-43), the pathological diagnosis is FTLD-TDP. Notably, TDP-43 pathology can also occur in conjunction with a number of neurodegenerative disorders; however, unknown environmental and genetic factors may regulate this TDP-43 pathology. Using transgenic mouse models of several diseases of the central nervous system, we explored whether a primary proteinopathy might secondarily drive TDP-43 proteinopathy. We found abnormal, cytoplasmic accumulation of phosphorylated TDP-43 specifically in two tau transgenic models, but TDP-43 pathology was absent in mouse models of Aß deposition, α-synucleinopathy or Huntington's disease. Though tau pathology showed considerable overlap with cytoplasmic, phosphorylated TDP-43, tau pathology generally preceded TDP-43 pathology. Biochemical analysis confirmed the presence of TDP-43 abnormalities in the tau mice, which showed increased levels of high molecular weight, soluble TDP-43 and insoluble full-length and ~35 kD TDP-43. These data demonstrate that the neurodegenerative cascade associated with a primary tauopathy in tau transgenic mice can also promote TDP-43 abnormalities. These findings provide the first in vivo models to understand how TDP-43 pathology may arise as a secondary consequence of a primary proteinopathy.


Asunto(s)
Encéfalo/patología , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas/patología , Tauopatías/patología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Citoplasma/patología , Citoplasma/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Transgénicos , Microscopía Inmunoelectrónica , Mutación/genética , Neuronas/ultraestructura , Fosforilación/genética , Proteínas del Grupo Polycomb , Presenilina-1/genética , Tauopatías/genética , Factores de Transcripción/metabolismo , Proteínas tau/genética
17.
Zebrafish ; 20(6): 260-270, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38011514

RESUMEN

Zebrafish have become a go-to model organism for in vivo studies, in part because of their reputation as being inexpensive to rear and house. Multiple do-it-yourself designs are currently available that provide laboratories with cost-effective housing systems. Unfortunately, these designs suffer from a range of issues ranging from poor water cycling rates and fragile housing tanks to inconsistent water conditions and designs that are prohibitively expensive for smaller laboratories to construct and maintain. These issues cause many of these housing systems to fall far short of the quality of commercially available zebrafish housing facilities. In this article, we present a novel, affordable, and easy-to-construct zebrafish housing system that improves upon previously published systems. The system utilizes three-dimensional printing technology to construct adaptable zebrafish tanks allowing for the housing of zebrafish at any stage of development. In addition, the water recirculation system utilizes multiple layers of filtration and no chemical adhesives, which allows for stable, long-term, housing of zebrafish in conditions suitable for research and teaching laboratories. The build described herein has been used by our laboratory to house zebrafish for over 3 years, representing multiple generations of housed fish.


Asunto(s)
Perciformes , Pez Cebra , Animales , Vivienda para Animales , Investigación , Agua
18.
Front Physiol ; 14: 1272980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811498

RESUMEN

Rationale: Although sleep apnea occurs in over 50% of individuals with Alzheimer's Disease (AD) or related tauopathies, little is known concerning the potential role of tauopathy in the pathogenesis of sleep apnea. Here, we tested the hypotheses that, during presumptive sleep, a murine model of tauopathy (rTg4510) exhibits: 1) increased breathing instability; 2) impaired chemoreflex function; and 3) exacerbation of these effects with tauopathy progression. Methods: rTg4510 mice initially develop robust tauopathy in the hippocampus and cortex, and eventually progresses to the brainstem. Type I and II post-sigh apnea, Type III (spontaneous) apnea, sigh, and hypopnea incidence were measured in young adult (5-6 months; n = 10-14/group) and aged (13-15 months; n = 22-24/group) non-transgenic (nTg), monogenic control tetracycline transactivator, and bigenic rTg4510 mice using whole-body plethysmography during presumptive sleep (i.e., eyes closed, curled/laying posture, stable breathing for >200 breaths) while breathing room air (21% O2). Peripheral and central chemoreceptor sensitivity were assessed with transient exposures (5 min) to hyperoxia (100% O2) or hypercapnia (3% and 5% CO2 in 21% O2), respectively. Results: We report significant increases in Type I, II, and III apneas (all p < 0.001), sighs (p = 0.002) and hypopneas (p < 0.001) in aged rTg4510 mice, but only Type III apneas in young adult rTg4510 mice (p < 0.001) versus age-matched nTg controls. Aged rTg4510 mice exhibited profound chemoreflex impairment versus age matched nTg and tTA mice. In rTg4510 mice, breathing frequency, tidal volume and minute ventilation were not affected by hyperoxic or hypercapnic challenges, in striking contrast to controls. Histological examination revealed hyperphosphorylated tau in brainstem regions involved in the control of breathing (e.g., pons, medullary respiratory column, retrotrapezoid nucleus) in aged rTg4510 mice. Neither breathing instability nor hyperphosphorylated tau in brainstem tissues were observed in young adult rTg4510 mice. Conclusion: Older rTg4510 mice exhibit profound impairment in the neural control of breathing, with greater breathing instability and near absence of oxygen and carbon-dioxide chemoreflexes. Breathing impairments paralleled tauopathy progression into brainstem regions that control breathing. These findings are consistent with the idea that tauopathy per se undermines chemoreflexes and promotes breathing instability during sleep.

19.
Front Pharmacol ; 14: 1227220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701025

RESUMEN

Increased use of cannabis and cannabinoids for recreational and medical purposes has led to a growth in research on their effects in animal models. The majority of this work has employed cannabinoid injections; however, smoking remains the most common route of cannabis consumption. To better model real-world cannabis use, we exposed mice to cannabis smoke to establish the pharmacokinetics of Δ9THC and its metabolites in plasma and brain. To determine the time course of Δ9THC and two major metabolites [11-hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (11-COOH-THC)], male and female C57BL/6J mice were exposed to smoke from sequentially burning 5 cannabis cigarettes. Following smoke exposure, trunk blood and brains were collected at 6 time points (10-240 min). Plasma and brain homogenates were analyzed for Δ9THC and metabolites using a validated ultraperformance liquid chromatography-tandem mass spectrometry method. To assess effects of age, sex, and mouse strain, we exposed mice of four strains (C57BL/6J, FVB, Swiss Webster, and 129S6/SvEv, aged 4-24 months) to cannabis using the same smoke regimen. Samples were collected 10 and 40 min following exposure. Lastly, to assess effects of dose, C57BL/6J mice were exposed to smoke from burning 3 or 5 cannabis cigarettes, with samples collected 40 min following exposure. The pharmacokinetic study revealed that maximum plasma Δ9THC concentrations (Cmax) were achieved at 10 and 40 min for males and females, respectively, while Cmax for brain Δ9THC was observed at 20 and 40 min for males and females, respectively. There were no age or strain differences in plasma Δ9THC concentrations at 10 or 40 min; however, 129S6/SvEv mice had significantly higher brain Δ9THC concentrations than FVB mice. Additionally, 3 cigarettes produced significantly lower plasma 11-COOH-THC concentrations compared to 5 cigarettes, although dose differences were not evident in plasma or brain concentrations of Δ9THC or 11-OH-THC. Across all experiments, females had higher levels of 11-COOH-THC in plasma compared to males. The results reveal robust sex differences in Δ9THC pharmacokinetics, and lay the groundwork for future studies using mice to model the pharmacodynamics of smoked cannabis.

20.
Acta Neuropathol ; 123(6): 807-23, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22539017

RESUMEN

Ubiquitin-immunoreactive neuronal inclusions composed of TAR DNA binding protein of 43 kDa (TDP-43) are a major pathological feature of frontotemporal lobar degeneration (FTLD-TDP). In vivo studies with TDP-43 knockout mice have suggested that TDP-43 plays a critical, although undefined role in development. In the current report, we generated transgenic mice that conditionally express wild-type human TDP-43 (hTDP-43) in the forebrain and established a paradigm to examine the sensitivity of neurons to TDP-43 overexpression at different developmental stages. Continuous TDP-43 expression during early neuronal development produced a complex phenotype, including aggregation of phospho-TDP-43, increased ubiquitin immunoreactivity, mitochondrial abnormalities, neurodegeneration and early lethality. In contrast, later induction of hTDP-43 in the forebrain of weaned mice prevented early death and mitochondrial abnormalities while yielding salient features of FTLD-TDP, including progressive neurodegeneration and ubiquitinated, phospho-TDP-43 neuronal cytoplasmic inclusions. These results suggest that neurons in the developing forebrain are extremely sensitive to TDP-43 overexpression and that timing of TDP-43 overexpression in transgenic mice must be considered when distinguishing normal roles of TDP-43, particularly as they relate to development, from its pathogenic role in FTLD-TDP and other TDP-43 proteinopathies. Finally, our adult induction of hTDP-43 strategy provides a mouse model that develops critical pathological features that are directly relevant for human TDP-43 proteinopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , Proteinopatías TDP-43/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/citología , Proteinopatías TDP-43/genética , Factores de Tiempo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA