Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 89(14): 9755-9768, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38935873

RESUMEN

A nickel-catalyzed direct sulfonylation of alkenes with sulfonyl chlorides has been developed using 1,10-phenanthroline-5,6-dione as the ligand. Unactivated alkenes and styrenes including 1,1-, 1,2-disubstituted alkenes can be subjected to the protocol, and a wide range of vinyl sulfones was obtained in high to excellent yields with good functional group compatibility. Notably, the process did not allow the desulfonylation of sulfonyl chloride or chlorosulfonylation of alkenes. Radical-trapping experiment supported that a sulfonyl free-radical was likely produced and triggered subsequent transformation in the process.

2.
Acta Pharmacol Sin ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926478

RESUMEN

Somatostatin receptor 5 (SSTR5) is highly expressed in ACTH-secreting pituitary adenomas and is an important drug target for the treatment of Cushing's disease. Two cyclic SST analog peptides (pasireotide and octreotide) both can activate SSTR5 and SSTR2. Pasireotide is preferential binding to SSTR5 than octreotide, while octreotide is biased to SSTR2 than SSTR5. The lack of selectivity of both pasireotide and octreotide causes side effects, such as hyperglycemia, gastrointestinal disturbance, and abnormal glucose homeostasis. However, little is known about the binding and selectivity mechanisms of pasireotide and octreotide with SSTR5, limiting the development of subtype-selective SST analog drugs specifically targeting SSTR5. Here, we report two cryo-electron microscopy (cryo-EM) structures of SSTR5-Gi complexes activated by pasireotide and octreoitde at resolutions of 3.09 Å and 3.24 Å, respectively. In combination with structural analysis and functional experiments, our results reveal the molecular mechanisms of ligand recognition and receptor activation. We also demonstrate that pasireotide preferentially binds to SSTR5 through the interactions between Tyr(Bzl)/DTrp of pasireotide and SSTR5. Moreover, we find that the Q2.63, N6.55, F7.35 and ECL2 of SSTR2 play a crucial role in octreotide biased binding of SSTR2. Our results will provide structural insights and offer new opportunities for the drug discovery of better selective pharmaceuticals targeting specific SSTR subtypes.

3.
J Org Chem ; 88(19): 13825-13837, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37737590

RESUMEN

A metal-free selective ortho-C-H amidation of aryl iodines(III) with the use of N-methoxy amides as aminating reagents under mild conditions is described here. In the protocol, excellent chemoselectivity and high regioselectivity were obtained. Notably, the iodine substituent rendered the amidation product suitable to be used for further elaboration.

4.
J Org Chem ; 87(21): 14194-14207, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36265020

RESUMEN

An acyl lactonization of alkenes with aldehydes under visible-light photoredox catalysis is described. With the protocol, a broad scope of alkenoic acids and aldehydes could be compatible and good functional group tolerance is obtained. A series of acyl lactones are obtained with isolated yields ranging from 50-95%. Mechanistic studies revealed that the transformation should proceed via a radical chain process.


Asunto(s)
Aldehídos , Alquenos , Lactonas , Estructura Molecular , Catálisis
5.
Neurochem Res ; 42(10): 2841-2849, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28508993

RESUMEN

Neuronal apoptosis mediated by the mitochondrial apoptosis pathway is an important pathological process in cerebral ischemia-reperfusion injury. 14,15-EET, an intermediate metabolite of arachidonic acid, can promote cell survival during ischemia/reperfusion. However, whether the mitochondrial apoptotic pathway is involved this survival mechanism is not fully understood. In this study, we observed that infarct size in ischemia-reperfusion injury was reduced in sEH gene knockout mice. In addition, Caspase 3 activation, cytochrome C release and AIF nuclear translocation were also inhibited. In this study, 14,15-EET pretreatment reduced neuronal apoptosis in the oxygen-glucose deprivation and re-oxygenation group in vitro. The mitochondrial apoptosis pathway was also inhibited, as evidenced by AIF translocation from the mitochondria to nucleus and the reduction in the expressions of cleaved-caspase 3 and cytochrome C in the cytoplasm. 14,15-EET could reduce neuronal apoptosis through upregulation of the ratio of Bcl-2 (anti-apoptotic protein) to Bax (apoptosis protein) and inhibition of Bax aggregation onto mitochondria. PI3K/AKT pathway is also probably involved in the reduction of neuronal apoptosis by EET. Our study suggests that 14,15-EET could suppress neuronal apoptosis and reduce infarct volume through the mitochondrial apoptotic pathway. Furthermore, the PI3K/AKT pathway also appears to be involved in the neuroprotection against ischemia-reperfusion by 14,15-EET.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Apoptosis/fisiología , Citocromos c/efectos de los fármacos , Citocromos c/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA