RESUMEN
We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.
Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Proteínas de la Membrana/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Radioisótopos de Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica , Proteolípidos/metabolismo , Canales de Translocación SEC , Radioisótopos de Azufre/metabolismo , Vesículas Transportadoras/metabolismoRESUMEN
Export of protein into the periplasm of Escherichia coli via the general secretory system requires that the transported polypeptides be devoid of stably folded tertiary structure. Capture of the precursor polypeptides before they fold is achieved by the promiscuous binding to the chaperone SecB. SecB delivers its ligand to export sites through its specific binding to SecA, a peripheral component of the membrane translocon. At the translocon the ligand is passed from SecB to SecA and subsequently through the SecYEG channel. We have previously used site-directed spin labeling and electron paramagnetic resonance spectroscopy to establish a docking model between SecB and SecA. Here we report use of the same strategy to map the pathway of a physiologic ligand, the unfolded form of precursor galactose-binding protein, on SecB. Our set of SecB variants each containing a single cysteine, which was used in the previous study, has been expanded to 48 residues, which cover 49% of the surface of SecB. The residues on SecB involved in contacts were identified as those that, upon addition of the unfolded polypeptide ligand, showed changes in spectral line shape consistent with restricted motion of the nitroxide. We conclude that the bound precursor makes contact with a large portion of the surface of the small chaperone. The sites on SecB that interact with the ligand are compared with the previously identified sites that interact with SecA and a model for transfer of the ligand is discussed.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mapeo de Interacción de Proteínas , Precursores de Proteínas/metabolismo , Marcadores de Spin , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Ligandos , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Pliegue de Proteína , Propiedades de SuperficieRESUMEN
SecB, a small tetrameric chaperone in Escherichia coli, facilitates export of precursor polypeptides from the cytoplasm to the periplasmic space. During this process, SecB displays two modes of binding. As a chaperone, it binds promiscuously to precursors to maintain them in a non-native conformation. SecB also demonstrates specific recognition of, and binding to, SecA. SecB with the precursor tightly bound enters an export-active complex with SecA and must pass the ligand to SecA at the translocon in the membrane. Here we use variants of SecA and SecB to further probe these interactions. We show that, unexpectedly, the binding between the two symmetric molecules is asymmetric and that the C-terminal alpha-helices of SecB bind in the interfacial region of the SecA dimer. We suggest that disruption of this interface by SecB facilitates conformational changes of SecA that are crucial to the transfer of the precursor from SecB to SecA.
Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Dimerización , Escherichia coli/genética , Ligandos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecARESUMEN
Export of protein into the periplasm of Escherichia coli via the general secretory system is achieved by action of a ternary complex comprising the polypeptide ligand, the chaperone SecB and SecA, a peripheral component of the membrane translocon, which is itself an ATPase. The unfolded ligand is captured initially by SecB and must be transferred to SecA and subsequently through the membrane translocon into the periplasm. We have taken the first steps in the elucidation of the mechanism of this dynamic transfer by determining the interface of interaction between SecB and SecA. Site-directed spin labeling and electron paramagnetic resonance spectroscopy were combined to identify which of the residues on SecB showed changes in spectral line shape upon addition of SecA. In all, 43% of the surface of SecB was covered by the 41 positions examined. A model of docking between SecB and SecA is proposed based on the pattern of amino acid residues on SecB shown to make contacts when in complex with SecA. This model in combination with previously published biochemical data provides insight into the transfer of the unfolded polypeptide from the chaperone SecB to SecA.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas/fisiología , Marcadores de Spin , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Canales de Translocación SEC , Proteína SecARESUMEN
Site-directed spin-labeling and the analysis of proteins by electron paramagnetic resonance spectroscopy provides a powerful tool for identifying sites of contact within protein complexes at the resolution of aminoacyl side chains. Here we describe the method as we have used it to study interactions of proteins involved in export via the Sec secretory system in Escherichia coli. The method is amendable to the study of most protein interactions.
Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas/metabolismo , Marcadores de Spin , Unión ProteicaRESUMEN
SecB, a remarkable chaperone involved in protein export, binds diverse ligands rapidly with high affinity and low specificity. Site-directed spin labeling and electron paramagnetic resonance spectroscopy were used to investigate the surface of interaction on the export chaperone SecB. We examined SecB in complex with the unfolded precursor form of outer membrane protein OmpA as well as with a truncated version of OmpA that includes the transmembrane domain and lacks both the signal peptide and the periplasmic domain. In addition, we studied the binding of SecB to the unfolded mature form of galactose-binding protein, a soluble periplasmic protein. We have previously used the same strategy to map the binding surface for the precursor of galactose-binding protein. We show that for all ligands tested the patterns of contact are the same.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas de Unión al Calcio/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Proteínas de Escherichia coli/química , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Unión Proteica , Pliegue de ProteínaRESUMEN
In all living cells, regulated passage across membranes of specific proteins occurs through a universally conserved secretory channel. In bacteria and chloroplasts, the energy for the mechanical work of moving polypeptides through that channel is provided by SecA, a regulated ATPase. Here, we use site-directed spin labeling and electron paramagnetic resonance spectroscopy to identify the interactive surface used by SecA for each of the diverse binding partners encountered during the dynamic cycle of export. Although the binding sites overlap, resolution at the level of aminoacyl side chains allows us to identify contacts that are unique to each partner. Patterns of constraint and mobilization of residues on that interactive surface suggest a conformational change that may underlie the coupling of ATP hydrolysis to precursor translocation.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Motoras Moleculares/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Sitios de Unión , Ligandos , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Proteínas Motoras Moleculares/química , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Canales de Translocación SEC , Proteína SecA , Marcadores de Spin , Propiedades de SuperficieRESUMEN
Chemotaxis signalling complexes of Escherichia coli, composed of chemoreceptors, CheA and CheW, form clusters located predominantly at cell poles. As the only kind of receptor in a cell, high-abundance receptors are polar and clustered whereas low-abundance chemoreceptors are polar but largely unclustered. We found that clustering was a function of the cytoplasmic, carboxyl-terminal domain and that effective clustering was conferred on low-abundance receptors by addition of the approximately 20-residue sequence from the carboxyl terminus of either high-abundance receptor. These sequences are different but share a carboxyl-terminal pentapeptide that enhances adaptational covalent modification and allows a physiological balance between modified and unmodified methyl-accepting sites, implying that receptor modification might influence clustering. Thus we investigated directly effects of modification state on chemoreceptor clustering. As the sole receptor type in a cell, low-abundance receptors were clustered only if modified, but high-abundance receptors were clustered independent of extent of modification. This difference could mean that the two receptor types are fundamentally different or that they are poised at different positions in the same conformational equilibrium. Notably, no receptor perturbation we tested altered a predominant location at cell poles, emphasizing a distinction between determinants of clustering and polar localization.