Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Immunol ; 210(1): 72-81, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426999

RESUMEN

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Proteínas de la Nucleocápside , Viremia , Beclina-1 , Rhabdoviridae/fisiología , Lisosomas , Autofagia
2.
J Virol ; 97(7): e0053223, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367226

RESUMEN

During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.


Asunto(s)
Enfermedades de los Peces , Factores Reguladores del Interferón , Proteínas Quinasas Activadas por Mitógenos , Infecciones por Rhabdoviridae , Ubiquitinación , Proteínas Estructurales Virales , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Rhabdoviridae/genética , Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Estructurales Virales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación hacia Arriba
3.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37882518

RESUMEN

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Asunto(s)
Infecciones por Virus ADN , Inmunidad Innata , Interferones , Infecciones por Virus ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Interferones/antagonistas & inhibidores , Interferones/biosíntesis , Transducción de Señal , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Retroalimentación Fisiológica , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
4.
PLoS Pathog ; 18(6): e1010626, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727817

RESUMEN

From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.


Asunto(s)
Carpas , Enfermedades de los Peces , Herpesviridae , Animales , Antivirales/farmacología , Autofagia , Femenino , Inmunidad Innata/genética , Masculino , Mamíferos , Pez Cebra/genética
5.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35418468

RESUMEN

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Animales , Virus ADN , Fosfotransferasas (Aceptor de Grupo Alcohol) , Rhabdoviridae , Ubiquitinación , Proteínas Virales , Viremia , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
6.
PLoS Pathog ; 17(2): e1009317, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600488

RESUMEN

The transmembrane protein 33 (TMEM33) was originally identified as an endoplasmic reticulum (ER) protein that influences the tubular structure of the ER and modulates intracellular calcium homeostasis. However, the role of TMEM33 in antiviral immunity in vertebrates has not been elucidated. In this article, we demonstrate that zebrafish TMEM33 is a negative regulator of virus-triggered interferon (IFN) induction via two mechanisms: mitochondrial antiviral signaling protein (MAVS) ubiquitination and a decrease in the kinase activity of TANK binding kinase 1 (TBK1). Upon stimulation with viral components, tmem33 was remarkably upregulated in the zebrafish liver cell line. The IFNφ1 promoter (IFNφ1pro) activity and mRNA level induced by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) were significantly inhibited by TMEM33. Knockdown of TMEM33 increased host ifn transcription. Subsequently, we found that TMEM33 was colocalized in the ER and interacted with the RLR cascades, whereas MAVS was degraded by TMEM33 during the K48-linked ubiquitination. On the other hand, TMEM33 reduced the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA)/IRF3 by acting as a decoy substrate of TBK1, which was also phosphorylated. A functional domain assay revealed that the N-terminal transmembrane domain 1 (TM1) and TM2 regions of TMEM33 were necessary for IFN suppression. Finally, TMEM33 significantly attenuated the host cellular antiviral capacity by blocking the IFN response. Taken together, our findings provide insight into the different mechanisms employed by TMEM33 in cellular IFN-mediated antiviral process.


Asunto(s)
Regulación de la Expresión Génica , Interferones/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones por Rhabdoviridae/virología , Proteínas de Pez Cebra/metabolismo , Animales , Hígado/inmunología , Hígado/virología , Proteínas de la Membrana/genética , Fosforilación , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Ubiquitinación , Pez Cebra , Proteínas de Pez Cebra/genética
7.
J Immunol ; 207(3): 784-798, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290106

RESUMEN

In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.


Asunto(s)
Proteínas de Peces/genética , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/genética , Infecciones por Rhabdoviridae/inmunología , Rhabdoviridae/fisiología , Animales , Carpas , Cyprinidae , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Carpa Dorada , Células HEK293 , Humanos , Inmunidad Innata/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Ubiquitinación , Proteínas de Pez Cebra/genética
8.
J Immunol ; 207(2): 512-522, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193603

RESUMEN

Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.


Asunto(s)
Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Ubiquitinación/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Antivirales/metabolismo , Línea Celular , Células HEK293 , Humanos , Unión Proteica/fisiología , Proteolisis , Transducción de Señal/fisiología , Ubiquitina/inmunología
9.
J Immunol ; 205(7): 1819-1829, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32859727

RESUMEN

IFN is essential for hosts to defend against viral invasion, whereas it must be tightly regulated to prevent hyperimmune responses. Fish mitochondrial antiviral signaling protein (MAVS) is a vital factor for IFN production, but until now, there have been few studies on the regulation mechanisms of fish MAVS enabling IFN to be properly controlled. In this study, we show that zebrafish RNA-binding motif protein 47 (RBM47) promotes MAVS degradation in a lysosome-dependent manner to suppress IFN production. First, the transcription of IFN activated by polyinosinic/polycytidylic acid (poly I:C), spring viremia of carp virus, or retinoic acid-inducible gene I (RIG-I)-like receptor pathway components were significantly suppressed by RBM47. Second, RBM47 interacted with MAVS and promoted lysosome-dependent degradation of MAVS, changing the cellular location of MAVS from the cytoplasm to the lysosome region. Finally, RBM47 inhibited downstream MITA and IRF3/7 activation, impairing the host antiviral response. Collectively, these data suggest that zebrafish RBM47 negatively regulates IFN production by promoting lysosome-dependent degradation of MAVS, providing insights into the role of RBM47 in the innate antiviral immune response in fish.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al ARN/metabolismo , Infecciones por Rhabdoviridae/inmunología , Rhabdoviridae/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Regulación hacia Abajo , Células HEK293 , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factores Reguladores del Interferón/genética , Interferones/metabolismo , Poli I-C/inmunología , Proteolisis , Proteínas de Unión al ARN/genética , Transgenes/genética , Proteínas de Pez Cebra/genética
10.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32434890

RESUMEN

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus in the common carp. The phosphoprotein (P protein) of SVCV is a multifunctional protein that acts as a polymerase cofactor and an antagonist of cellular interferon (IFN) response. Here, we report the 1.5-Å-resolution crystal structure of the P protein central domain (PCD) of SVCV (SVCVPCD). The PCD monomer consists of two ß sheets, an α helix, and another two ß sheets. Two PCD monomers pack together through their hydrophobic surfaces to form a dimer. The mutations of residues on the hydrophobic surfaces of PCD disrupt the dimer formation to different degrees and affect the expression of host IFN consistently. Therefore, the oligomeric state formation of the P protein of SVCV is an important mechanism to negatively regulate host IFN response.IMPORTANCE SVCV can cause spring viremia of carp with up to 90% lethality, and it is the homologous virus of the notorious vesicular stomatitis virus (VSV). There are currently no drugs that effectively cure this disease. P proteins of negative-strand RNA viruses (NSVs) play an essential role in many steps during the replication cycle and an additional role in immunosuppression as a cofactor. All P proteins of NSVs are oligomeric, but the studies on the role of this oligomerization mainly focus on the process of virus transcription or replication, and there are few studies on the role of PCD in immunosuppression. Here, we present the crystal structure of SVCVPCD A new mechanism of immune evasion is clarified by exploring the relationship between SVCVPCD and host IFN response from a structural biology point of view. These findings may provide more accurate target sites for drug design against SVCV and provide new insights into the function of NSVPCD.


Asunto(s)
Fosfoproteínas/química , Rhabdoviridae/química , Proteínas Virales/química , Animales , Cristalografía por Rayos X , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
11.
PLoS Pathog ; 15(3): e1007695, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30925159

RESUMEN

p53, which regulates cell-cycle arrest and apoptosis, is a crucial target for viruses to release cells from cell-cycle checkpoints or to protect cells from apoptosis for their own benefit. Viral evasion mechanisms of aquatic viruses remain mysterious. Here, we report the spring viremia of carp virus (SVCV) degrading and stabilizing p53 in the ubiquitin-proteasome pathway by the N and P proteins, respectively. Early in an SVCV infection, significant induction was observed in the S phase and p53 was decreased in the protein level. Further experiments demonstrated that p53 interacted with SVCV N protein and was degraded by suppressing the K63-linked ubiquitination. However, the increase of p53 was observed late in the infection and experiments suggested that p53 was bound to SVCV P protein and stabilized by enhancing the K63-linked ubiquitination. Finally, lysine residue 358 was the key site for p53 K63-linked ubiquitination by the N and P proteins. Thus, our findings suggest that fish p53 is modulated by SVCV N and P protein in two distinct mechanisms, which uncovers the strategy for the subversion of p53-mediated host innate immune responses by aquatic viruses.


Asunto(s)
Rhabdoviridae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Puntos de Control del Ciclo Celular/fisiología , Virus ADN , Enfermedades de los Peces , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Humanos , Inmunidad Innata , Rhabdoviridae/patogenicidad , Ubiquitinación , Viremia , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
J Immunol ; 202(2): 559-566, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530482

RESUMEN

IFN production is crucial for hosts to defend against viral infection, yet it must be tightly controlled to maintain immune homeostasis. TANK-binding kinase 1 (TBK1) is a pivotal kinase in the IFN induction signaling pathway, but it is negatively regulated by multiple molecules to avoid the excessive expression of IFN in mammals. However, the identified TBK1 suppressors and the mechanisms are rare in fish. In this study, we show that zebrafish major vault protein (MVP) recruits and degrades TBK1 in a lysosome-dependent manner to inhibit IFN production. Through viral infection, polyinosinic:polycytidylic acid and RIG-I-like receptor factor stimulation upregulated IFN expression, but overexpression of MVP significantly subverted these inductions. On the protein level, MVP interacted with TBK1, and interestingly, MVP recruited TBK1 from a uniformly distributed state in the cytoplasm to an aggregated state. Finally, MVP mediated the lysosome-dependent degradation of TBK1 and decreased the IFN response and IFN-stimulated genes expression. Our findings reveal that zebrafish MVP is a negative regulator of IFN production by restricting the activation of TBK1, supplying evidence of the balanced mechanisms of IFN expression in lower vertebrates.


Asunto(s)
Proteínas de Peces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Partículas Ribonucleoproteicas en Bóveda/metabolismo , Virosis/inmunología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Proteínas de Peces/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interferones/genética , Lisosomas/metabolismo , Poli I-C/inmunología , Agregación Patológica de Proteínas , Unión Proteica , Proteolisis , Transducción de Señal , Partículas Ribonucleoproteicas en Bóveda/genética
13.
J Immunol ; 202(1): 119-130, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30504422

RESUMEN

Viral infection activates the transcription factor IFN regulatory factor 7 (IRF7), which plays a critical role in the induction of IFNs and innate antiviral immune response. How virus-induced IFN signaling is controlled in fish is not fully understood. In this study, we demonstrate that N-myc downstream-regulated gene 1a (NDRG1a) in zebrafish plays a role as a negative regulator for virus-triggered IFN induction. First, the activation of the IFN promoter stimulated by the polyinosinic-polycytidylic acid or spring viremia of carp virus was decreased by the overexpression of NDRG1a. Second, NDRG1a interacted with IRF7 and blocked the IFN transcription activated by IRF7. Furthermore, NDRG1a was phosphorylated by TANK-binding kinase 1 (TBK1) and promoted the K48-linked ubiquitination and degradation of IRF7. Finally, the overexpression of NDRG1a blunted the transcription of several IFN-stimulated genes, resulting in the host cells becoming susceptible to spring viremia of carp virus infection. Our findings suggest that fish NDRG1a negatively regulates the cellular antiviral response by targeting IRF7 for ubiquitination and degradation, providing insights into the novel role of NDRG1a on the innate antiviral immune response in fish.


Asunto(s)
Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Factores Reguladores del Interferón/metabolismo , Interferones/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Rhabdoviridae/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/inmunología , Animales , Células Cultivadas , Susceptibilidad a Enfermedades , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/genética , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Ubiquitinación , Proteínas de Pez Cebra/genética
14.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31413136

RESUMEN

Interferon (IFN) production activated by phosphorylated interferon regulatory factor 7 (IRF7) is a pivotal process during host antiviral infection. For viruses, suppressing the host IFN response is beneficial for viral proliferation; in such cases, evoking host-derived IFN negative regulators would be very useful for viruses. Here, we report that the zebrafish rapunzel 5 (RPZ5) protein which activated by virus degraded phosphorylated IRF7 is activated by TANK-binding kinase 1 (TBK1), leading to a reduction in IFN production. Upon viral infection, zebrafish rpz5 was significantly upregulated, as was ifn, in response to the stimulation. Overexpression of RPZ5 blunted the IFN expression induced by both viral and retinoic acid-inducible gene I (RIG-I) like-receptor (RLR) factors. Subsequently, RPZ5 interacted with RLRs but did not affect the stabilization of the proteins in the normal state. Interestingly, RPZ5 degraded the phosphorylated IRF7 under TBK1 activation through K48-linked ubiquitination. Finally, the overexpression of RPZ5 remarkably reduced the host cell antiviral capacity. These findings suggest that zebrafish RPZ5 is a negative regulator of phosphorylated IRF7 and attenuates IFN expression during viral infection, providing insight into the IFN balance mechanism in fish.IMPORTANCE The phosphorylation of IRF7 is helpful for host IFN production to defend against viral infection; thus, it is a potential target for viruses to mitigate the antiviral response. We report that the fish RPZ5 is an IFN negative regulator induced by fish viruses and degrades the phosphorylated IRF7 activated by TBK1, leading to IFN suppression and promotion of viral proliferation. These findings reveal a novel mechanism for interactions between the host cell and viruses in the lower vertebrate.


Asunto(s)
Enfermedades de los Peces/virología , Inmunidad Innata/inmunología , Interferones/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Rhabdoviridae/inmunología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/virología , Animales , Antivirales/inmunología , Antivirales/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interferones/inmunología , Fosforilación , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Ubiquitinación , Replicación Viral , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
15.
Fish Shellfish Immunol ; 102: 449-459, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32408017

RESUMEN

Calcium (Ca) is a messenger that regulates a multitude of physiological processes, but its functions in antiviral progress remain undefined. In this study, we found that Ca2+ enhances fish survival to defend against spring viraemia of carp virus (SVCV) infection by reversing the instability of p53 mediated by the viral protein. First, Ca2+ significantly protected cells and fish against SVCV infection by inducing early apoptosis. Additionally, p53 expression, which was inhibited by SVCV N protein, was upregulated by Ca2+ treatment. Then, the mechanism underlying the reduction of K63-linked p53 ubiquitination by SVCV N protein via the K358 site was completely prevented by Ca2+. These findings reveal the role of Ca2+ in lower vertebrates in the antiviral response, which is connected to and corresponds with viral immune evasion, providing a solution to fish diseases caused by pathogens.


Asunto(s)
Antivirales/farmacología , Calcio/farmacología , Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/inmunología , Animales , Línea Celular , Cyprinidae , Femenino , Células HEK293 , Humanos , Masculino , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria
16.
Fish Shellfish Immunol ; 99: 99-106, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32032764

RESUMEN

Grass carp reovirus (GCRV) is an efficient pathogen causing high mortality in grass carp, meanwhile, fish interferon (IFN) is a powerful cytokine enabling host cells to establish an antiviral state; therefore, the strategies used by GCRV to escape the cellular IFN response need to be investigated. Here, we report that GCRV VP56 inhibits host IFN production by degrading the transcription factor IFN regulatory factor 7 (IRF7). First, overexpression of VP56 inhibited the IFN production induced by the polyinosinic-polycytidylic acid (poly I:C) and mitochondrial antiviral signaling protein (MAVS), while the capacity of IRF7 on IFN induction was unaffected. Second, VP56 interacted with RLRs but did not affect the stabilization of the proteins in the normal state, while the phosphorylated IRF7 activated by TBK1 was degraded by VP56 through K48-linked ubiquitination. Finally, overexpression of VP56 remarkably reduced the host cellular ifn transcription and facilitated viral proliferation. Taken together, our results demonstrate that GCRV VP56 suppresses the host IFN response by targeting phosphorylated IRF7 for ubiquitination and degradation.


Asunto(s)
Carpas/virología , Factor 7 Regulador del Interferón/metabolismo , Interferones/antagonistas & inhibidores , Infecciones por Reoviridae/veterinaria , Proteínas Virales/genética , Animales , Carpas/inmunología , Femenino , Células HEK293 , Humanos , Inmunidad Innata , Factor 7 Regulador del Interferón/inmunología , Interferones/inmunología , Ovario/citología , Fosforilación , Poli I-C/farmacología , Reoviridae , Infecciones por Reoviridae/inmunología , Ubiquitinación , Proteínas Virales/inmunología
17.
Fish Shellfish Immunol ; 97: 523-530, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31881328

RESUMEN

Interferon (IFN) is a vital antiviral factor in host in the early stages after the viral invasion. Meanwhile, viruses have to survive by taking advantage of the cellular machinery and complete their replication. As a result, viruses evolved several immune escape mechanisms to inhibit host IFN expression. However, the mechanisms used to escape the host's IFN system are still unclear for infectious hematopoietic necrosis virus (IHNV). In this study, we report that the N protein of IHNV inhibits IFN1 production in rainbow trout by degrading the MITA. Firstly, the upregulation of IFN1 promoter activity stimulated by poly I:C was suppressed by IHNV infection. Consistent with this result, the overexpression of the N protein of IHNV blocked the IFN1 transcription that was activated by poly I:C and MITA. Secondly, MITA was remarkably decreased by the overexpression of N protein at the protein level. Further analysis demonstrated that the N protein targeted MITA and promoted the ubiquitination of MITA. Taken together, these data suggested that the production of rainbow trout IFN1 could be suppressed by the N protein of IHNV via degrading MITA.


Asunto(s)
Proteínas de Peces/genética , Virus de la Necrosis Hematopoyética Infecciosa/inmunología , Interferones/inmunología , Proteínas de la Membrana/genética , Proteínas de la Nucleocápside/inmunología , Oncorhynchus mykiss/inmunología , Animales , Antivirales/farmacología , Células HEK293 , Interacciones Microbiota-Huesped/inmunología , Humanos , Virus de la Necrosis Hematopoyética Infecciosa/genética , Proteínas de la Nucleocápside/genética , Oncorhynchus mykiss/virología , Poli I-C/farmacología , Infecciones por Rhabdoviridae , Ubiquitinación
18.
Fish Shellfish Immunol ; 94: 871-879, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31597087

RESUMEN

Mammalian cyclic GMP-AMP synthase (cGAS) senses double-stranded (ds) DNA in the cytosol to activate the innate antiviral response. In the present study, a cGAS-like gene, namely cGASL, was cloned from grass carp Ctenopharyngodon idellus, and its role as a negative regulator of the IFN response was revealed. Phylogenetic analysis indicated that cGASL was evolutionarily closest to cGAS, but was not a true ortholog of cGAS. Overexpression of cGASL inhibited poly I:C-stimulated grass carp (gc)IFN1pro and ISRE activities. In addition, MITA-, but not TBK1-mediated activation of gcIFN1pro was impaired by cGASL. Co-immunoprecipitation and Western blot experiments indicated that cGASL interacted with MITA and TBK1, resulting in a reduction in the phosphorylation of MITA. Lastly, overexpression of cGASL reduced the transcriptional levels of several IFN-stimulated genes activated by MITA. Collectively, these data suggest that cGASL is a negative regulator of IFN response by targeting MITA in fish.


Asunto(s)
Carpas/genética , Carpas/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Interferones/metabolismo , Nucleotidiltransferasas/química , Filogenia , Poli I-C/farmacología , Alineación de Secuencia/veterinaria
19.
Fish Shellfish Immunol ; 92: 224-229, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31200068

RESUMEN

Fibroblast growth factor receptor (FGFR) 3 is one of the four distinct membrane-spanning tyrosine kinases required for proper skeletal development. In fish, the role of FGFR3 is still unclear. In this article, we reveal that zebrafish FGFR3 is a negative regulator of interferon (IFN) production in the innate immune response by suppressing the activity of TANK-binding kinase 1 (TBK1) in the process of virus infection. qPCR experiments demonstrate that the transcriptional level of cellular FGFR3 was upregulated by infection with spring viremia of carp virus (SVCV), indicating that FGFR3 might be involved in the process of host cell response to viral infection. Then, overexpression of FGFR3 significantly impeded the IFN promoter activity induced by a stimulator. In addition, the capabilities of a retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) system to activate IFN promoter were decreased during the overexpression of FGFR3. Subsequently, FGFR3 decreased the phosphorylation of interferon regulatory factor 3 (IRF3) and mediator of IRF3 activation (MITA) by TBK1. These findings suggest that zebrafish FGFR3 is a negative regulator of IFN by attenuating the kinase activity of TBK1, leading to the suppression of IFN expression.


Asunto(s)
Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Interferones/genética , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Proteínas de Pez Cebra/genética , Pez Cebra/inmunología , Animales , Interferones/metabolismo , Proteínas Serina-Treonina Quinasas/inmunología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/inmunología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Transducción de Señal/inmunología , Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/fisiología
20.
Fish Shellfish Immunol ; 89: 301-308, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30965085

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) is a kind of dioxygenase that can catalyze the degradation of levo-tryptophan (L-Trp) and plays key roles in immune tolerance. In this study, the IDO gene was cloned and functionally characterized from grass carp (gcIDO). The results showed that gcIDO overexpressed in GCO cells could catalyze the degradation of L-Trp through the L-Trp - kynurenine pathway, and this activity could be promoted by δ-aminolevulinic acid (ALA) while inhibited by levo-1-methyl tryptophan (L-1MT). Moreover, gcIDO was constitutively expressed in various tissues, and its expression could be significantly up-regulated by LPS and Poly (I:C) in peripheral blood leukocytes (PBLs). Furthermore, recombinant TGF-ß1 of grass carp could up-regulate the expression of IDO, TGF-ß1, CD25, and Foxp3 in PBLs, indicating that the TGF-ß1/IDO pathway is present in fish. In the soybean meal induced enteritis (SBMIE) model, the expression of gcIDO in the intestine was up-regulated significantly, demonstrating that gcIDO may play an immunoregulatory role in SBMIE. Taken together, these data suggest that the IDO plays multiple roles in the immunity of fish.


Asunto(s)
Carpas/genética , Enteritis/veterinaria , Enfermedades de los Peces/genética , Regulación de la Expresión Génica/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Animales , Carpas/inmunología , Enteritis/inducido químicamente , Enteritis/genética , Enteritis/inmunología , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Lipopolisacáridos/farmacología , Poli I-C/farmacología , Glycine max/química , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA