Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(2): 459-469.e9, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585083

RESUMEN

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.


Asunto(s)
Bacteriófago T3/genética , Infecciones por Escherichia coli/terapia , Escherichia coli/virología , Terapia de Fagos/métodos , Enfermedades Cutáneas Bacterianas/terapia , Proteínas de la Cola de los Virus/genética , Animales , Farmacorresistencia Bacteriana , Especificidad del Huésped , Ratones , Mutagénesis Sitio-Dirigida
2.
Cell ; 171(5): 1138-1150.e15, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29056342

RESUMEN

Despite its success in several clinical trials, cancer immunotherapy remains limited by the rarity of targetable tumor-specific antigens, tumor-mediated immune suppression, and toxicity triggered by systemic delivery of potent immunomodulators. Here, we present a proof-of-concept immunomodulatory gene circuit platform that enables tumor-specific expression of immunostimulators, which could potentially overcome these limitations. Our design comprised de novo synthetic cancer-specific promoters and, to enhance specificity, an RNA-based AND gate that generates combinatorial immunomodulatory outputs only when both promoters are mutually active. These outputs included an immunogenic cell-surface protein, a cytokine, a chemokine, and a checkpoint inhibitor antibody. The circuits triggered selective T cell-mediated killing of cancer cells, but not of normal cells, in vitro. In in vivo efficacy assays, lentiviral circuit delivery mediated significant tumor reduction and prolonged mouse survival. Our design could be adapted to drive additional immunomodulators, sense other cancers, and potentially treat other diseases that require precise immunological programming.


Asunto(s)
Redes Reguladoras de Genes , Inmunoterapia/métodos , Neoplasias Ováricas/terapia , Animales , Femenino , Humanos , Inmunomodulación , Ratones , Neoplasias Ováricas/inmunología , Regiones Promotoras Genéticas , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/inmunología
3.
Nat Immunol ; 16(6): 618-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25939025

RESUMEN

A20 is an anti-inflammatory protein linked to multiple human diseases; however, the mechanisms by which A20 prevents inflammatory disease are incompletely defined. We found that A20-deficient T cells and fibroblasts were susceptible to caspase-independent and kinase RIPK3-dependent necroptosis. Global deficiency in RIPK3 significantly restored the survival of A20-deficient mice. A20-deficient cells exhibited exaggerated formation of RIPK1-RIPK3 complexes. RIPK3 underwent physiological ubiquitination at Lys5 (K5), and this ubiquitination event supported the formation of RIPK1-RIPK3 complexes. Both the ubiquitination of RIPK3 and formation of the RIPK1-RIPK3 complex required the catalytic cysteine of A20's deubiquitinating motif. Our studies link A20 and the ubiquitination of RIPK3 to necroptotic cell death and suggest additional mechanisms by which A20 might prevent inflammatory disease.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Fibroblastos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Linfocitos T/fisiología , Animales , Apoptosis/genética , Dominio Catalítico/genética , Cisteína Endopeptidasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/genética , Necrosis/genética , Unión Proteica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Ubiquitinación/genética , Ubiquitinas/metabolismo
4.
Cell ; 150(3): 647-58, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863014

RESUMEN

Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.


Asunto(s)
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Dedos de Zinc , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Biología Sintética , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Mol Cell ; 75(4): 769-780.e4, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442423

RESUMEN

The ability to process and store information in living cells is essential for developing next-generation therapeutics and studying biology in situ. However, existing strategies have limited recording capacity and are challenging to scale. To overcome these limitations, we developed DOMINO, a robust and scalable platform for encoding logic and memory in bacterial and eukaryotic cells. Using an efficient single-nucleotide-resolution Read-Write head for DNA manipulation, DOMINO converts the living cells' DNA into an addressable, readable, and writable medium for computation and storage. DOMINO operators enable analog and digital molecular recording for long-term monitoring of signaling dynamics and cellular events. Furthermore, multiple operators can be layered and interconnected to encode order-independent, sequential, and temporal logic, allowing recording and control over the combination, order, and timing of molecular events in cells. We envision that DOMINO will lay the foundation for building robust and sophisticated computation-and-memory gene circuits for numerous biotechnological and biomedical applications.


Asunto(s)
Computadores Moleculares , ADN , ADN/química , ADN/metabolismo , Células HEK293 , Humanos
6.
Annu Rev Microbiol ; 74: 337-359, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32660390

RESUMEN

The ability to detect disease early and deliver precision therapy would be transformative for the treatment of human illnesses. To achieve these goals, biosensors that can pinpoint when and where diseases emerge are needed. Rapid advances in synthetic biology are enabling us to exploit the information-processing abilities of living cells to diagnose disease and then treat it in a controlled fashion. For example, living sensors could be designed to precisely sense disease biomarkers, such as by-products of inflammation, and to respond by delivering targeted therapeutics in situ. Here, we provide an overview of ongoing efforts in microbial biosensor design, highlight translational opportunities, and discuss challenges for enabling sense-and-respond precision medicines.


Asunto(s)
Bacterias/metabolismo , Tecnología Biomédica , Técnicas Biosensibles/métodos , Biología Sintética/métodos , Bacterias/genética , Biotecnología/organización & administración , Humanos , Inflamación/diagnóstico , Procesamiento Proteico-Postraduccional
7.
Mol Cell ; 68(1): 247-257.e5, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985507

RESUMEN

The genome-wide perturbation of transcriptional networks with CRISPR-Cas technology has primarily involved systematic and targeted gene modulation. Here, we developed PRISM (Perturbing Regulatory Interactions by Synthetic Modulators), a screening platform that uses randomized CRISPR-Cas transcription factors (crisprTFs) to globally perturb transcriptional networks. By applying PRISM to a yeast model of Parkinson's disease (PD), we identified guide RNAs (gRNAs) that modulate transcriptional networks and protect cells from alpha-synuclein (αSyn) toxicity. One gRNA identified in this screen outperformed the most protective suppressors of αSyn toxicity reported previously, highlighting PRISM's ability to identify modulators of important phenotypes. Gene expression profiling revealed genes differentially modulated by this strong protective gRNA that rescued yeast from αSyn toxicity when overexpressed. Human homologs of top-ranked hits protected against αSyn-induced cell death in a human neuronal PD model. Thus, high-throughput and unbiased perturbation of transcriptional networks via randomized crisprTFs can reveal complex biological phenotypes and effective disease modulators.


Asunto(s)
Sistemas CRISPR-Cas , Redes Reguladoras de Genes , ARN Guía de Kinetoplastida/genética , Factores de Transcripción/genética , Transcripción Genética , alfa-Sinucleína/genética , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo , ARN Guía de Kinetoplastida/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transgenes , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/metabolismo
8.
Annu Rev Genet ; 50: 515-538, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27732793

RESUMEN

High-order interactions among components of interconnected genetic networks regulate complex functions in biological systems, but deciphering these interactions is challenging. New strategies are emerging to decode these combinatorial genetic interactions across a wide range of organisms. Here, we review advances in multiplexed and combinatorial genetic perturbation technologies and high-throughput profiling platforms that are enabling the systematic dissection of complex genetic networks. These rapidly evolving technologies are being harnessed to probe combinatorial gene functions in functional genomics studies and have the potential to advance our understanding of how genetic networks regulate sophisticated biological phenotypes, to generate novel therapeutic strategies, and to enable the engineering of complex artificial gene networks.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Ingeniería Genética/métodos , Animales , Expresión Génica , Humanos , Modelos Genéticos , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Biología de Sistemas/métodos
9.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33906944

RESUMEN

Creating and characterizing individual genetic variants remains limited in scale, compared to the tremendous variation both existing in nature and envisioned by genome engineers. Here we introduce retron library recombineering (RLR), a methodology for high-throughput functional screens that surpasses the scale and specificity of CRISPR-Cas methods. We use the targeted reverse-transcription activity of retrons to produce single-stranded DNA (ssDNA) in vivo, incorporating edits at >90% efficiency and enabling multiplexed applications. RLR simultaneously introduces many genomic variants, producing pooled and barcoded variant libraries addressable by targeted deep sequencing. We use RLR for pooled phenotyping of synthesized antibiotic resistance alleles, demonstrating quantitative measurement of relative growth rates. We also perform RLR using the sheared genomic DNA of an evolved bacterium, experimentally querying millions of sequences for causal variants, demonstrating that RLR is uniquely suited to utilize large pools of natural variation. Using ssDNA produced in vivo for pooled experiments presents avenues for exploring variation across the genome.


Asunto(s)
Sistemas CRISPR-Cas/genética , ADN de Cadena Simple/genética , Farmacorresistencia Microbiana/genética , Ingeniería Genética , Genoma Bacteriano/genética , Alelos , ADN de Cadena Simple/biosíntesis , Escherichia coli/genética , Biblioteca de Genes , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae/genética , Biología Sintética
10.
Mol Syst Biol ; 18(11): e9933, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36377768

RESUMEN

The gut microbiome is essential for processing complex food compounds and synthesizing nutrients that the host cannot digest or produce, respectively. New model systems are needed to study how the metabolic capacity provided by the gut microbiome impacts the nutritional status of the host, and to explore possibilities for altering host metabolic capacity via the microbiome. Here, we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C. elegans to utilize cellulose, an otherwise indigestible substrate, as a carbon source. Cellulolytic bacteria as a community component in the worm gut can also support additional bacterial species with specialized roles, which we demonstrate by using Lactobacillus plantarum to protect C. elegans against Salmonella enterica infection. This work shows that engineered microbiome communities can be used to endow host organisms with novel functions, such as the ability to utilize alternate nutrient sources or to better fight pathogenic bacteria.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Caenorhabditis elegans/microbiología , Bacterias
11.
Nat Chem Biol ; 17(6): 724-731, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33820990

RESUMEN

Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.


Asunto(s)
Bacterias/efectos de los fármacos , Hidrogeles/farmacología , Alginatos/química , Antibacterianos/farmacología , Bacterias/genética , Materiales Biocompatibles , Bioingeniería , ADN Bacteriano/química , ADN Bacteriano/genética , Monitoreo del Ambiente , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Hemo/química , Metales Pesados/química , Organismos Modificados Genéticamente , Percepción de Quorum , Ríos , Contaminantes del Agua/química
12.
J Pept Sci ; 29(8): e3482, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36739581

RESUMEN

Membrane-active peptides play an essential role in many living organisms and their immune systems and counter many infectious diseases. Many have dual or multiple mechanisms and can synergize with other molecules, like peptides, proteins, and small molecules. Although membrane-active peptides have been intensively studied in the past decades and more than 3500 sequences have been identified, only a few received approvals from the US Food and Drug Administration. In this review, we investigated all the peptide therapeutics that have entered the market or were subjected to preclinical and clinical studies to understand how they succeeded. With technological advancement (e.g., chemical modifications and pharmaceutical formulations) and a better understanding of the mechanism of action and the potential targets, we found at least five membrane-active peptide drugs that have entered preclinical/clinical phases and show promising results for cancer treatment. We summarized our findings in this review and provided insights into membrane-active anticancer peptide therapeutics.


Asunto(s)
Péptidos , Proteínas , Estados Unidos , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Composición de Medicamentos
13.
Mol Cell ; 59(2): 146-8, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186289

RESUMEN

In a recent issue of Nature Methods, Shechner et al. (2015) reported the development of CRISPR Display (CRISP-Disp), which is a sophisticated, flexible, modular, and multiplexable platform for targeting different types of non-coding RNAs (ncRNAs) to genomic loci. CRISP-Disp will facilitate synthetic-biology applications and enable the elucidation of ncRNA functions.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Largo no Codificante/fisiología , Humanos
14.
Proc Natl Acad Sci U S A ; 117(43): 26936-26945, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046640

RESUMEN

Novel antibiotics are urgently needed to combat multidrug-resistant pathogens. Venoms represent previously untapped sources of novel drugs. Here we repurposed mastoparan-L, the toxic active principle derived from the venom of the wasp Vespula lewisii, into synthetic antimicrobials. We engineered within its N terminus a motif conserved among natural peptides with potent immunomodulatory and antimicrobial activities. The resulting peptide, mast-MO, adopted an α-helical structure as determined by NMR, exhibited increased antibacterial properties comparable to standard-of-care antibiotics both in vitro and in vivo, and potentiated the activity of different classes of antibiotics. Mechanism-of-action studies revealed that mast-MO targets bacteria by rapidly permeabilizing their outer membrane. In animal models, the peptide displayed direct antimicrobial activity, led to enhanced ability to attract leukocytes to the infection site, and was able to control inflammation. Permutation studies depleted the remaining toxicity of mast-MO toward human cells, yielding derivatives with antiinfective activity in animals. We demonstrate a rational design strategy for repurposing venoms into promising antimicrobials.


Asunto(s)
Bacteriemia/tratamiento farmacológico , Proteínas Citotóxicas Formadoras de Poros/química , Venenos de Avispas/química , Animales , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/uso terapéutico , Proteínas Citotóxicas Formadoras de Poros/toxicidad , Venenos de Avispas/uso terapéutico , Venenos de Avispas/toxicidad
15.
Nat Mater ; 20(5): 691-700, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33432140

RESUMEN

Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.


Asunto(s)
Acetobacteraceae/crecimiento & desarrollo , Celulosa/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Acetobacteraceae/genética , Técnicas de Cocultivo , Saccharomyces cerevisiae/genética
17.
Trends Immunol ; 40(10): 952-973, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601521

RESUMEN

The gut microbiome has a significant impact on health and disease and can actively contribute to obesity, diabetes, inflammatory bowel disease, cardiovascular disease, and neurological disorders. We do not yet have the necessary tools to fine-tune the microbial communities that constitute the microbiome, though such tools could unlock extensive benefits to human health. Here, we provide an overview of the current state of technological tools that may be used for microbiome engineering. These tools can enable investigators to define the parameters of a healthy microbiome and to determine how gut bacteria may contribute to the etiology of a variety of diseases. These tools may also allow us to explore the exciting prospect of developing targeted therapies and personalized treatments for microbiome-linked diseases.


Asunto(s)
Microbioma Gastrointestinal , Ingeniería Metabólica , Animales , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Humanos
18.
Immunity ; 38(5): 896-905, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23602765

RESUMEN

A20 is an anti-inflammatory protein linked to multiple human autoimmune diseases and lymphomas. A20 possesses a deubiquitinating motif and a zinc finger, ZF4, that binds ubiquitin and supports its E3 ubiquitin ligase activity. To understand how these activities mediate A20's physiological functions, we generated two lines of gene-targeted mice, abrogating either A20's deubiquitinating activity (Tnfaip3(OTU) mice) or A20's ZF4 (Tnfaip3(ZF4) mice). Both Tnfaip3(OTU) and Tnfaip3(ZF4) mice exhibited increased responses to TNF and sensitivity to colitis. A20's C103 deubiquitinating motif restricted both K48- and K63-linked ubiquitination of receptor interacting protein 1 (RIP1). A20's ZF4 was required for recruiting A20 to ubiquitinated RIP1. A20(OTU) proteins and A20(ZF4) proteins complemented each other to regulate RIP1 ubiquitination and NFκB signaling normally in compound mutant Tnfaip3(OTU/ZF4) cells. This complementation involved homodimerization of A20 proteins, and we have defined an extensive dimerization interface in A20. These studies reveal how A20 proteins collaborate to restrict TNF signaling.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/genética , Cisteína Endopeptidasas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Multimerización de Proteína , Transducción de Señal/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Dedos de Zinc/genética
19.
Mol Cell ; 54(4): 698-710, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24837679

RESUMEN

RNA-based regulation and CRISPR/Cas transcription factors (CRISPR-TFs) have the potential to be integrated for the tunable modulation of gene networks. A major limitation of this methodology is that guide RNAs (gRNAs) for CRISPR-TFs can only be expressed from RNA polymerase III promoters in human cells, limiting their use for conditional gene regulation. We present new strategies that enable expression of functional gRNAs from RNA polymerase II promoters and multiplexed production of proteins and gRNAs from a single transcript in human cells. We use multiple RNA regulatory strategies, including RNA-triple-helix structures, introns, microRNAs, and ribozymes, with Cas9-based CRISPR-TFs and Cas6/Csy4-based RNA processing. Using these tools, we efficiently modulate endogenous promoters and implement tunable synthetic circuits, including multistage cascades and RNA-dependent networks that can be rewired with Csy4 to achieve complex behaviors. This toolkit can be used for programming scalable gene circuits and perturbing endogenous networks for biology, therapeutic, and synthetic biology applications.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Redes Reguladoras de Genes , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Intrones/genética , Intrones/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Catalítico/metabolismo , Biología Sintética , Factores de Transcripción/genética , ARN Pequeño no Traducido
20.
BMC Biol ; 19(1): 46, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722216

RESUMEN

BACKGROUND: Iron is essential for bacterial survival. Bacterial siderophores are small molecules with unmatched capacity to scavenge iron from proteins and the extracellular milieu, where it mostly occurs as insoluble Fe3+. Siderophores chelate Fe3+ for uptake into the cell, where it is reduced to soluble Fe2+. Siderophores are key molecules in low soluble iron conditions. The ability of bacteria to synthesize proprietary siderophores may have increased bacterial evolutionary fitness; one way that bacteria diversify siderophore structure is by incorporating different polyamine backbones while maintaining the catechol moieties. RESULTS: We report that Serratia plymuthica V4 produces a variety of siderophores, which we term the siderome, and which are assembled by the concerted action of enzymes encoded in two independent gene clusters. Besides assembling serratiochelin A and B with diaminopropane, S. plymuthica utilizes putrescine and the same set of enzymes to assemble photobactin, a siderophore found in the bacterium Photorhabdus luminescens. The enzymes encoded by one of the gene clusters can independently assemble enterobactin. A third, independent operon is responsible for biosynthesis of the hydroxamate siderophore aerobactin, initially described in Enterobacter aerogenes. Mutant strains not synthesizing polyamine-siderophores significantly increased enterobactin production levels, though lack of enterobactin did not impact the production of serratiochelins. Knocking out SchF0, an enzyme involved in the assembly of enterobactin alone, significantly reduced bacterial fitness. CONCLUSIONS: This study shows the natural occurrence of serratiochelins, photobactin, enterobactin, and aerobactin in a single bacterial species and illuminates the interplay between siderophore biosynthetic pathways and polyamine production, indicating routes of molecular diversification. Given its natural yields of diaminopropane (97.75 µmol/g DW) and putrescine (30.83 µmol/g DW), S. plymuthica can be exploited for the industrial production of these compounds.


Asunto(s)
Familia de Multigenes , Poliaminas/metabolismo , Serratia/química , Sideróforos/química , Serratia/metabolismo , Sideróforos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA