Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 321(2): C247-C256, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106785

RESUMEN

The islets of Langerhans of the pancreas are the primary endocrine organ responsible for regulating whole body glucose homeostasis. The use of isolated primary islets for research development and training requires organ resection, careful digestion, and isolation of the islets from nonendocrine tissue. This process is time consuming, expensive, and requires substantial expertise. For these reasons, we sought to develop a more rapidly obtainable and consistent model system with characteristic islet morphology and function that could be employed to train personnel and better inform experiments prior to using isolated rodent and human islets. Immortalized ß cell lines reflect several aspects of primary ß cells, but cell propagation in monolayer cell culture limits their usefulness in several areas of research, which depend on islet morphology and/or functional assessment. In this manuscript, we describe the propagation and characterization of insulinoma pseudo-islets (IPIs) from a rat insulinoma cell line INS832/3. IPIs were generated with an average diameter of 200 µm, consistent with general islet morphology. The rates of oxygen consumption and mitochondrial oxidation-reduction changes in response to glucose and metabolic modulators were similar to isolated rat islets. In addition, the dynamic insulin secretory patterns of IPIs were similar to primary rat islets. Thus, INS832/3-derived IPIs provide a valuable and convenient model for accelerating islet and diabetes research.


Asunto(s)
Diabetes Mellitus/metabolismo , Insulinoma/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Animales , Línea Celular , Glucosa/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Consumo de Oxígeno/fisiología
2.
Am J Physiol Endocrinol Metab ; 319(1): E67-E80, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32396498

RESUMEN

Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower hindlimb oxygen consumption rates (OCRs), indicating depressed mitochondrial oxidative phosphorylation capacity in their skeletal muscle. We hypothesized that OCRs are lower in skeletal muscle mitochondria from IUGR fetuses, due to reduced electron transport chain (ETC) activity and lower abundances of tricarboxylic acid (TCA) cycle enzymes. IUGR sheep fetuses (n = 12) were created with mid-gestation maternal hyperthermia and compared with control fetuses (n = 12). At 132 ± 1 days of gestation, biceps femoris muscles were collected, and the mitochondria were isolated. Mitochondria from IUGR muscle have 47% lower State 3 (Complex I-dependent) OCRs than controls, whereas State 4 (proton leak) OCRs were not different between groups. Furthermore, Complex I, but not Complex II or IV, enzymatic activity was lower in IUGR fetuses compared with controls. Proteomic analysis (n = 6/group) identified 160 differentially expressed proteins between groups, with 107 upregulated and 53 downregulated mitochondria proteins in IUGR fetuses compared with controls. Although no differences were identified in ETC subunit protein abundances, abundances of key TCA cycle enzymes [isocitrate dehydrogenase (NAD+) 3 noncatalytic subunit ß (IDH3B), succinate-CoA ligase ADP-forming subunit-ß (SUCLA2), and oxoglutarate dehydrogenase (OGDH)] were lower in IUGR mitochondria. IUGR mitochondria had a greater abundance of a hypoxia-inducible protein, NADH dehydrogenase 1α subcomplex 4-like 2, which is known to incorporate into Complex I and lower Complex I-mediated NADH oxidation. Our findings show that mitochondria from IUGR skeletal muscle adapt to hypoxemia and hypoglycemia by lowering Complex I activity and TCA cycle enzyme concentrations, which together, act to lower OCR and NADH production/oxidation in IUGR skeletal muscle.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Complejo I de Transporte de Electrón/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Mitocondrias Musculares/metabolismo , Animales , Regulación hacia Abajo , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Retardo del Crecimiento Fetal/enzimología , Músculos Isquiosurales/enzimología , Músculos Isquiosurales/metabolismo , Hipoglucemia/enzimología , Hipoglucemia/metabolismo , Hipoxia/enzimología , Hipoxia/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias Musculares/enzimología , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Insuficiencia Placentaria/enzimología , Insuficiencia Placentaria/metabolismo , Embarazo , Proteómica , Ovinos , Succinato-CoA Ligasas/metabolismo , Regulación hacia Arriba
3.
Am J Physiol Cell Physiol ; 316(1): C48-C56, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30404557

RESUMEN

Linking two pharmacophores that bind different cell surface receptors into a single molecule can enhance cell-targeting specificity to cells that express the complementary receptor pair. In this report, we developed and tested a synthetic multivalent ligand consisting of glucagon-like peptide-1 (GLP-1) linked to glibenclamide (Glb) (GLP-1/Glb) for signaling efficacy in ß-cells. Expression of receptors for these ligands, as a combination, is relatively specific to the ß-cell in the pancreas. The multivalent GLP-1/Glb increased both intracellular cAMP and Ca2+, although Ca2+ responses were significantly depressed compared with the monomeric Glb. Moreover, GLP-1/Glb increased glucose-stimulated insulin secretion in a dose-dependent manner. However, unlike the combined monomers, GLP-1/Glb did not augment insulin secretion at nonstimulatory glucose concentrations in INS 832/13 ß-cells or human islets of Langerhans. These data suggest that linking two binding elements, such as GLP-1 and Glb, into a single bivalent ligand can provide a unique functional agent targeted to ß-cells.


Asunto(s)
Linfocitos B/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Receptores de Glucagón/metabolismo , Receptores de Sulfonilureas/metabolismo , Linfocitos B/efectos de los fármacos , Femenino , Gliburida/farmacología , Humanos , Hipoglucemiantes/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Persona de Mediana Edad , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología
4.
Xenotransplantation ; 25(6): e12432, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30052287

RESUMEN

BACKGROUND: There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS: Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, ß-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS: Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, ß-cell percentage, and ß-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS: The oxygen demand, membrane integrity, ß-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.


Asunto(s)
Supervivencia de Injerto/inmunología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Consumo de Oxígeno/fisiología , Animales , Animales Recién Nacidos , Diabetes Mellitus Experimental/terapia , Rechazo de Injerto/inmunología , Células Secretoras de Insulina/inmunología , Trasplante de Islotes Pancreáticos/métodos , Páncreas/inmunología , Páncreas/metabolismo , Porcinos , Transcriptoma/inmunología , Trasplante Heterólogo/métodos
5.
Mol Vis ; 21: 347-59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25878489

RESUMEN

PURPOSE: Mutations in BEST1, encoding Bestrophin-1 (Best1), cause Best vitelliform macular dystrophy (BVMD) and other inherited retinal degenerative diseases. Best1 is an integral membrane protein localized to the basolateral plasma membrane of the retinal pigment epithelium (RPE). Data from numerous in vitro and in vivo models have demonstrated that Best1 regulates intracellular Ca2+ levels. Although it is known from in vitro and crystal structure data that Best1 is also a calcium-activated anion channel, evidence for Best1 functioning as a channel in human RPE is lacking. To assess Best1-associated channel activity in the RPE, we examined the transepithelial electrical properties of fetal human RPE (fhRPE) cells, which express endogenous Best1. METHODS: Using adenovirus-mediated gene transfer, we overexpressed Best1 and the BVMD mutant Best1W93C in fhRPE cells and assessed resting transepithelial potential (TEP), transepithelial resistance, short circuit current (Isc), and intracellular Ca2+ levels. Cl- currents were directly measured in transfected HEK293 cells using whole-cell patch clamp. RESULTS: Best1W93C showed ablated Cl- currents and, when co-expressed, suppressed the channel activity of Best1 in HEK293 cells. In fhRPE, overexpression of Best1 increased TEP and Isc, while Best1W93C diminished TEP and Isc. Substitution of Cl- in the bath media resulted in a significant reduction of Isc in monolayers overexpressing Best1, but no significant Isc change in monolayers expressing Best1W93C. We removed Ca2+ as a limit on transepithelial electrical properties by treating cells with ionomycin, and found that changes in Isc and TEP for monolayers expressing Best1 were absent in monolayers expressing Best1W93C. Similarly, inhibition of calcium-activated anion channels with niflumic acid reduced both Isc and TEP of control and Best1 monolayers, but did not notably affect Best1W93C monolayers. Stimulation with extracellular ATP induced an increase in TEP in control monolayers that was greater than that observed in those expressing Best1(W93C). Examination of [Ca2+]i following ATP stimulation demonstrated that the expression of Best1W93C impaired intracellular Ca2+ signaling. CONCLUSIONS: These data indicate that Best1 activity strongly influences electrophysiology and Ca2+ signaling in RPE cells, and that a common BVMD mutation disrupts both of these parameters. Our findings support the hypothesis that Best1 functions as an anion channel in human RPE.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Células Epiteliales/metabolismo , Proteínas del Ojo/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Adenosina Trifosfato/farmacología , Adenovirus Humanos/genética , Bestrofinas , Membrana Celular/efectos de los fármacos , Canales de Cloruro/genética , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Proteínas del Ojo/genética , Feto , Expresión Génica , Vectores Genéticos , Células HEK293 , Humanos , Transporte Iónico/efectos de los fármacos , Ionomicina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Mutación , Ácido Niflúmico/farmacología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Transfección , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/metabolismo , Distrofia Macular Viteliforme/patología
6.
Org Biomol Chem ; 13(47): 11507-17, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26461460

RESUMEN

Molecules bearing one, two, three, or four copies of the tetrapeptide His-dPhe-Arg-Trp were attached to scaffolds based on ethylene glycol, glycerol, and d-mannitol by means of the copper-assisted azide-alkyne cyclization. The abilities of these compounds to block binding of a probe at the melanocortin 4 receptor were evaluated using a competitive binding assay. All of the multivalent molecules studied exhibited 30- to 40-fold higher apparent affinites when compared to a monovalent control. These results are consistent with divalent binding to receptor dimers. No evidence for tri- or tetravalent binding was obtained. Differences in the interligand spacing required for divalent binding, as opposed to tri- or tetravalent binding, may be responsible for these results.


Asunto(s)
Oligopéptidos/química , Oligopéptidos/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Alquinos/química , Secuencia de Aminoácidos , Azidas/química , Unión Competitiva , Ciclización , Glicol de Etileno/química , Glicol de Etileno/metabolismo , Glicerol/química , Glicerol/metabolismo , Células HEK293 , Humanos , Manitol/química , Manitol/metabolismo , Multimerización de Proteína , Relación Estructura-Actividad
7.
Org Biomol Chem ; 13(6): 1778-91, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25502141

RESUMEN

Melanocortin receptors can be used as biomarkers to detect and possibly treat melanoma. To these ends, molecules bearing one, two, or three copies of the weakly binding ligand MSH(4) were attached to scaffolds based on phloroglucinol, tripropargylamine, and 1,4,7-triazacyclononane by means of the copper-assisted azide-alkyne cyclization. This synthetic design allows rapid assembly of multivalent molecules. The bioactivities of these compounds were evaluated using a competitive binding assay that employed human embryonic kidney cells engineered to overexpress the melanocortin 4 receptor. The divalent molecules exhibited 10- to 30-fold higher levels of inhibition when compared to the corresponding monovalent molecules, consistent with divalent binding. The trivalent molecules were only statistically (∼2-fold) better than the divalent molecules, still consistent with divalent binding but inconsistent with trivalent binding. Possible reasons for these behaviors and planned refinements of the multivalent constructs targeting melanocortin receptors based on these scaffolds are discussed.


Asunto(s)
Compuestos Heterocíclicos/farmacología , Pargilina/análogos & derivados , Floroglucinol/farmacología , Propilaminas/farmacología , Receptores de Melanocortina/antagonistas & inhibidores , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Compuestos Heterocíclicos/química , Humanos , Estructura Molecular , Pargilina/química , Pargilina/farmacología , Floroglucinol/química , Propilaminas/química , Receptores de Melanocortina/metabolismo , Relación Estructura-Actividad
8.
Bioorg Med Chem ; 23(8): 1841-8, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25769518

RESUMEN

The synthesis, characterization, and use of Eu-DTPA-PEGO-Trp-Nle-Asp-Phe-NH2 (Eu-DTPA-PEGO-CCK4), a luminescent probe targeted to cholecystokinin 2 receptor (CCK2R, aka CCKBR), are described. The probe was prepared by solid phase synthesis. A Kd value of 17±2nM was determined by means of saturation binding assays using HEK-293 cells that overexpress CCK2R. The probe was then used in competitive binding assays against Ac-CCK4 and three new trivalent CCK4 compounds. Repeatable and reproducible binding assay results were obtained. Given its ease of synthesis, purification, receptor binding properties, and utility in competitive binding assays, Eu-DTPA-PEGO-CCK4 could become a standard tool for high-throughput screening of compounds in development targeted to cholecystokinin receptors.


Asunto(s)
Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Receptor de Colecistoquinina B/metabolismo , Unión Competitiva , Colorantes Fluorescentes/síntesis química , Células HEK293 , Humanos , Espectrometría de Fluorescencia
9.
Tetrahedron Lett ; 56(23): 3060-3065, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26120211

RESUMEN

Oligomers incorporating the tetrapeptide MSH4, the minimum active sequence of melanocyte stimulating hormone, were synthesized by an A2 + B2 strategy involving microwave-assisted copper-catalyzed azide-alkyne cycloaddition. A2 contained an MSH4 core while B2 contained a (Pro-Gly)3 spacer. Soluble mixtures containing compounds with up to eight MSH4 units were obtained from oligomerizations at high monomer concentrations. The avidities of several oligomeric mixtures were evaluated by means of a competitive binding assay using HEK293 cells engineered to overexpress the melanocortin 4 receptor. When based on total MSH4 concentrations, avidities were only minimally enhanced compared with a monovalent control. The lack of variation in the effect of ligands on probe binding is consistent with high off rates for MSH4 in both monovalent and oligomeric constructs relative to that of the competing probe.

10.
Proc Natl Acad Sci U S A ; 109(52): 21295-300, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23236171

RESUMEN

A challenge in tumor targeting is to deliver payloads to cancers while sparing normal tissues. A limited number of antibodies appear to meet this challenge as therapeutics themselves or as drug-antibody conjugates. However, antibodies suffer from their large size, which can lead to unfavorable pharmacokinetics for some therapeutic payloads, and that they are targeted against only a single epitope, which can reduce their selectivity and specificity. Here, we propose an alternative targeting approach based on patterns of cell surface proteins to rationally develop small, synthetic heteromultivalent ligands (htMVLs) that target multiple receptors simultaneously. To gain insight into the multivalent ligand strategy in vivo, we have generated synthetic htMVLs that contain melanocortin (MSH) and cholecystokinin (CCK) pharmacophores that are connected via a fluorescent labeled, rationally designed synthetic linker. These ligands were tested in an experimental animal model containing tumors that expressed only one (control) or both (target) MSH and CCK receptors. After systemic injection of the htMVL in tumor-bearing mice, label was highly retained in tumors that expressed both, compared with one, target receptors. Selectivity was quantified by using ex vivo measurement of Europium-labeled htMVL, which had up to 12-fold higher specificity for dual compared with single receptor expressing cells. This proof-of-principle study provides in vivo evidence that small, rationally designed bivalent htMVLs can be used to selectively target cells that express both, compared with single complimentary cell surface targets. These data open the possibility that specific combinations of targets on tumors can be identified and selectively targeted using htMVLs.


Asunto(s)
Receptores de Superficie Celular/metabolismo , Animales , Carbocianinas/metabolismo , Supervivencia Celular , Europio/metabolismo , Fluorescencia , Células HCT116 , Humanos , Imagenología Tridimensional , Cinética , Ligandos , Ratones , Simulación de Dinámica Molecular , Neoplasias/metabolismo , Coloración y Etiquetado
11.
Chembiochem ; 15(1): 135-45, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24259278

RESUMEN

G protein-coupled receptor (GPCR) cell signalling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are selected based on analysis of cell-specific expression of a receptor combination, then the linked binding elements might provide enhanced specificity of targeting the cell type of interest, that is, only to cells that express the complementary receptors. Two receptors whose expression is relatively specific (in combination) to insulin-secreting pancreatic ß-cells are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled from the active fragment of GLP-1 (7-36 GLP-1) and glibenclamide, a small organic ligand for SUR1. The synthetic construct was labelled with Cy5 or europium chelated in DTPA to evaluate binding to ß-cells, by using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to ß-cells, it is rapidly capped and presumably removed from the cell surface by endocytosis. The bivalent ligand had an affinity approximately fivefold higher than monomeric europium-labelled GLP-1, likely a result of cooperative binding to the complementary receptors on the ßTC3 cells. The high-affinity binding was lost in the presence of either unlabelled monomer, thus demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, thus indicating that this approach might be applicable for ß-cell targeting in vivo.


Asunto(s)
Péptido 1 Similar al Glucagón/química , Gliburida/farmacología , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Células Cultivadas , Colorantes Fluorescentes/química , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Gliburida/química , Gliburida/metabolismo , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Células Secretoras de Insulina/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Ratas , Receptores de Glucagón/metabolismo , Relación Estructura-Actividad , Receptores de Sulfonilureas/metabolismo
12.
Xenotransplantation ; 21(4): 385-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24801676

RESUMEN

The scarcity of human cadaveric pancreata limits large-scale application of islet transplantation for patients with diabetes. Islets isolated from pathogen-free pigs provide an economical and abundant alternative source assuming immunologic barriers are appropriate. Membrane receptors involved in insulin secretion that also have potential as imaging targets were investigated in isolated porcine islets. Quantitative (q)PCR revealed that porcine islets express mRNA transcripts for sulfonylurea receptor 1 (Sur1), inward rectifying potassium channel (Kir6.2, associated with Sur1), glucagon-like peptide 1 receptor (GLP1R), and adrenergic receptor alpha 2A (ADRα2A). Receptor function was assessed in static incubations with stimulatory glucose concentrations, and in the presence of receptor agonists. Glibenclamide, an anti-diabetic sulfonylurea, and exendin-4, a GLP-1 mimetic, potentiated glucose-stimulated insulin secretion >2-fold. Conversely, epinephrine maximally reduced insulin secretion 72 ± 9% (P < 0.05) and had a half maximal inhibitory concentration of 60 nm in porcine islets (95% confidence interval of 45-830 nm). The epinephrine action was inhibited by the ADRα2A antagonist yohimbine. Our findings demonstrate that porcine islets express and are responsive to both stimulatory and inhibitory membrane localized receptors, which can be used as imaging targets after transplantation or to modify insulin secretion.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Glucagón/metabolismo , Receptores de Sulfonilureas/metabolismo , Sus scrofa/metabolismo , Trasplante Heterólogo , Animales , Epinefrina/farmacología , Receptor del Péptido 1 Similar al Glucagón , Gliburida/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Adrenérgicos alfa 2/genética , Receptores de Glucagón/genética , Receptores de Sulfonilureas/genética
13.
Biochemistry ; 52(19): 3332-45, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23594148

RESUMEN

As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Células 3T3-L1 , Animales , Retículo Endoplásmico/metabolismo , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Oxidación-Reducción , Ingeniería de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Espectrometría de Fluorescencia
14.
Bioorg Med Chem Lett ; 23(8): 2422-5, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23489620

RESUMEN

In the quest for novel tools for early detection and treatment of cancer, we propose the use of multimers targeting overexpressed receptors at the cancer cell surface. Indeed, multimers are prone to create multivalent interactions, more potent and specific than their corresponding monovalent versions, thus enabling the potential for early detection. There is a lack of tools for early detection of pancreatic cancer, one of the deadliest forms of cancer, but CCK2-R overexpression on pancreatic cancer cells makes CCK based multimers potential markers for these cells. In this Letter, we describe the synthesis and evaluation of CCK trimers targeting overexpressed CCK2-R.


Asunto(s)
Colecistoquinina/análogos & derivados , Colecistoquinina/síntesis química , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/química , Colecistoquinina/química , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamiento farmacológico , Receptores de Colecistoquinina/biosíntesis , Receptores de Colecistoquinina/química , Receptores de Colecistoquinina/metabolismo
15.
Bioorg Med Chem ; 21(17): 5029-38, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23890524

RESUMEN

Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Receptores de Melanocortina/metabolismo , Unión Competitiva , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Ácido Pentético/química , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Receptor de Colecistoquinina B/química , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/metabolismo , Receptor de Melanocortina Tipo 4/química , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Receptores de Melanocortina/química , Técnicas de Síntesis en Fase Sólida
16.
Bioconjug Chem ; 22(7): 1270-8, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21639139

RESUMEN

Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Receptor de Colecistoquinina B/análisis , Receptor de Melanocortina Tipo 4/análisis , Expresión Génica , Células HEK293 , Humanos , Ligandos , Unión Proteica , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/metabolismo , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Transfección
17.
PLoS Biol ; 6(9): e236, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18828673

RESUMEN

Albinism is a genetic defect characterized by a loss of pigmentation. The neurosensory retina, which is not pigmented, exhibits pathologic changes secondary to the loss of pigmentation in the retina pigment epithelium (RPE). How the loss of pigmentation in the RPE causes developmental defects in the adjacent neurosensory retina has not been determined, but offers a unique opportunity to investigate the interactions between these two important tissues. One of the genes that causes albinism encodes for an orphan GPCR (OA1) expressed only in pigmented cells, including the RPE. We investigated the function and signaling of OA1 in RPE and transfected cell lines. Our results indicate that OA1 is a selective L-DOPA receptor, with no measurable second messenger activity from two closely related compounds, tyrosine and dopamine. Radiolabeled ligand binding confirmed that OA1 exhibited a single, saturable binding site for L-DOPA. Dopamine competed with L-DOPA for the single OA1 binding site, suggesting it could function as an OA1 antagonist. OA1 response to L-DOPA was defined by several common measures of G-protein coupled receptor (GPCR) activation, including influx of intracellular calcium and recruitment of beta-arrestin. Further, inhibition of tyrosinase, the enzyme that makes L-DOPA, resulted in decreased PEDF secretion by RPE. Further, stimulation of OA1 in RPE with L-DOPA resulted in increased PEDF secretion. Taken together, our results illustrate an autocrine loop between OA1 and tyrosinase linked through L-DOPA, and this loop includes the secretion of at least one very potent retinal neurotrophic factor. OA1 is a selective L-DOPA receptor whose downstream effects govern spatial patterning of the developing retina. Our results suggest that the retinal consequences of albinism caused by changes in melanin synthetic machinery may be treated by L-DOPA supplementation.


Asunto(s)
Albinismo/metabolismo , Dopaminérgicos/metabolismo , Proteínas del Ojo/metabolismo , Levodopa/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Dopaminérgicos/metabolismo , Transducción de Señal/fisiología , Albinismo/genética , Animales , Comunicación Autocrina , Calcio/metabolismo , Línea Celular , Dopamina/metabolismo , Proteínas del Ojo/agonistas , Proteínas del Ojo/genética , Humanos , Ligandos , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Monofenol Monooxigenasa/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Epitelio Pigmentado Ocular/citología , Epitelio Pigmentado Ocular/metabolismo , Inhibidores de Proteasas/metabolismo , Receptores Dopaminérgicos/genética , Serpinas/metabolismo , Tirosina/metabolismo
18.
Front Endocrinol (Lausanne) ; 12: 612888, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079518

RESUMEN

Intrauterine growth restriction (IUGR) of the fetus, resulting from placental insufficiency (PI), is characterized by low fetal oxygen and nutrient concentrations that stunt growth rates of metabolic organs. Numerous animal models of IUGR recapitulate pathophysiological conditions found in human fetuses with IUGR. These models provide insight into metabolic dysfunction in skeletal muscle and liver. For example, cellular energy production and metabolic rate are decreased in the skeletal muscle and liver of IUGR fetuses. These metabolic adaptations demonstrate that fundamental processes in mitochondria, such as substrate utilization and oxidative phosphorylation, are tempered in response to low oxygen and nutrient availability. As a central metabolic organelle, mitochondria coordinate cellular metabolism by coupling oxygen consumption to substrate utilization in concert with tissue energy demand and accretion. In IUGR fetuses, reducing mitochondrial metabolic capacity in response to nutrient restriction is advantageous to ensure fetal survival. If permanent, however, these adaptations may predispose IUGR fetuses toward metabolic diseases throughout life. Furthermore, these mitochondrial defects may underscore developmental programming that results in the sequela of metabolic pathologies. In this review, we examine how reduced nutrient availability in IUGR fetuses impacts skeletal muscle and liver substrate catabolism, and discuss how enzymatic processes governing mitochondrial function, such as the tricarboxylic acid cycle and electron transport chain, are regulated. Understanding how deficiencies in oxygen and substrate metabolism in response to placental restriction regulate skeletal muscle and liver metabolism is essential given the importance of these tissues in the development of later lifer metabolic dysfunction.


Asunto(s)
Retardo del Crecimiento Fetal/etiología , Mitocondrias/fisiología , Enfermedades Mitocondriales/complicaciones , Animales , Ciclo del Ácido Cítrico/fisiología , Femenino , Retardo del Crecimiento Fetal/metabolismo , Humanos , Recién Nacido , Hígado/metabolismo , Hígado/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fosforilación Oxidativa , Oxígeno/metabolismo , Insuficiencia Placentaria/etiología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/patología , Embarazo
19.
Am J Physiol Heart Circ Physiol ; 299(2): H548-56, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20543086

RESUMEN

The Na(+)-K(+)-ATPase (NKA) can affect intracellular Ca(2+) concentration regulation via coupling to the Na(+)-Ca(2+) exchanger and may be important in myogenic tone. We previously reported that in mice carrying a transgene for the NKA alpha(2)-isoform in smooth muscle (alpha(2sm+)), the alpha(2)-isoform protein as well as the alpha(1)-isoform (not contained in the transgene) increased to similar degrees (2-7-fold). Aortas from alpha(2sm+) mice relaxed faster from a KCl-induced contraction, hypothesized to be related to more rapid Ca(2+) clearance. To elucidate the mechanisms underlying this faster relaxation, we therefore measured the expression and distribution of proteins involved in Ca(2+) clearance. Na(+)-Ca(2+) exchanger, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), and plasma membrane Ca(2+)-ATPase (PMCA) proteins were all elevated up to approximately fivefold, whereas actin, myosin light chain, and calponin proteins were not changed in smooth muscle from alpha(2sm+) mice. Interestingly, the corresponding Ca(2+) clearance mRNA levels were unchanged. Immunocytochemical data indicate that the Ca(2+) clearance proteins are distributed similarly in wild-type and alpha(2sm+) aorta cells. In studies measuring relaxation half-times from a KCl-induced contraction in the presence of pharmacological inhibitors of SERCA and PMCA, we estimated that together these proteins were responsible for approximately 60-70% of relaxation in aorta. Moreover, the percent contribution of SERCA and PMCA to relaxation rates in alpha(2sm+) aorta was not significantly different from that in wild-type aorta. The coordinate expressions of NKA and Ca(2+) clearance proteins without change in the relative contributions of each individual protein to smooth muscle function suggest that NKA may be but one component of a larger functional Ca(2+) clearance system.


Asunto(s)
Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Transporte Biológico , Presión Sanguínea , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/genética , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ARN Mensajero/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Tiempo , Vasoconstricción , Vasodilatación
20.
Micromachines (Basel) ; 10(8)2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412604

RESUMEN

Lung-on-a-chip (LoC) models hold the potential to rapidly change the landscape for pulmonary drug screening and therapy, giving patients more advanced and less invasive treatment options. Understanding the drug absorption in these microphysiological systems, modeling the lung-blood barrier is essential for increasing the role of the organ-on-a-chip technology in drug development. In this work, epithelial/endothelial barrier tissue interfaces were established in microfluidic bilayer devices and transwells, with porous membranes, for permeability characterization. The effect of shear stress on the molecular transport was assessed using known paracellular and transcellular biomarkers. The permeability of porous membranes without cells, in both models, is inversely proportional to the molecular size due to its diffusivity. Paracellular transport, between epithelial/endothelial cell junctions, of large molecules such as transferrin, as well as transcellular transport, through cell lacking required active transporters, of molecules such as dextrans, is negligible. When subjected to shear stress, paracellular transport of intermediate-size molecules such as dextran was enhanced in microfluidic devices when compared to transwells. Similarly, shear stress enhances paracellular transport of small molecules such as Lucifer yellow, but its effect on transcellular transport is not clear. The results highlight the important role that LoC can play in drug absorption studies to accelerate pulmonary drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA