Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 604(7907): 662-667, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478237

RESUMEN

Plastic waste poses an ecological challenge1-3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling4. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste5, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products6-10. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics11. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives12 between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.


Asunto(s)
Hidrolasas , Aprendizaje Automático , Tereftalatos Polietilenos , Ingeniería de Proteínas , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrólisis , Plásticos , Tereftalatos Polietilenos/metabolismo
2.
Mol Pharm ; 20(12): 6330-6344, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37955890

RESUMEN

Long-acting injectable formulations based on poly(lactide-co-glycolide) (PLGA) have been commercialized for over 30 years in at least 20 FDA-approved products. These formulations offer several advantages, including reduced dosing frequency, improved patient compliance, and maintenance of therapeutic levels of drug. Despite extensive studies, the inherent complexity of the PLGA copolymer still poses significant challenges associated with the development of generic formulations having drug release profiles equivalent to those of the reference listed drugs. In addition, small changes to PLGA physicochemical properties or the drug product manufacturing process can have a major impact on the drug release profile of these long-acting formulations. This work seeks to better understand how variability in the physicochemical properties of similar PLGAs affects drug release from PLGA solid implants using Ozurdex (dexamethasone intravitreal implant) as the model system. Four 50:50, acid-terminated PLGAs of similar molecular weights were used to prepare four dexamethasone intravitreal implants structurally equivalent to Ozurdex. The PLGAs were extensively characterized by using a variety of analytical techniques prior to implant manufacture using a continuous, hot-melt extrusion process. In vitro release testing of the four structurally equivalent implants was performed in both normal saline and phosphate-buffered saline (PBS), yielding drastically different results between the two methods. In normal saline, no differences in the release profiles were observed. In PBS, the drug release profiles were sensitive to small changes in the residual monomer content, carboxylic acid end group content, and blockiness of the polymers. This finding further underscores the need for a physiologically relevant in vitro release testing method as part of a robust quality control strategy for PLGA-based solid implant formulations.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Humanos , Liberación de Fármacos , Ácido Poliglicólico/química , Ácido Láctico/química , Solución Salina , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Dexametasona/química
3.
Biomacromolecules ; 24(3): 1475-1482, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780271

RESUMEN

Through the postpolymerization modification of poly(allyl glycidyl ether) (PAGE), a functionalizable polyether with a poly(ethylene oxide) backbone, we engineered a new class of highly tunable polyampholyte materials. These polyampholytes can be synthesized to have several useful properties, including low cytotoxicity and pH-responsive coacervate formation. In this study, we used PAGE-based polyampholytes (PAGE-PAs) for the cryopreservation of mammalian cell suspensions. Typically, dimethyl sulfoxide (DMSO) is the cryoprotectant used for preserving mammalian cells, but DMSO suffers from key drawbacks including toxicity and difficult post-thaw removal that motivates the development of new materials and methods. Toxicity and post-thaw survival were dependent on PAGE-PA composition with the highest immediate post-thaw survival for normal human dermal fibroblasts occurring for the least toxic PAGE-PA at a cation/anion ratio of 35:65. With low toxicity, the PAGE-PA concentration could be increased in order to increase immediate post-thaw survival of the immortalized mouse embryonic fibroblasts (NIH/3T3). While immediate post-thaw viability was achieved using only the PAGE-PAs, long-term cell survival was low, highlighting the challenges involved with the design of cryoprotective polyampholytes. An environment utilizing both PAGE-PAs and DMSO in a cryoprotective solution offered promising post-thaw viabilities exceeding 70%, with long-term metabolic activities comparable to unfrozen cells.


Asunto(s)
Dimetilsulfóxido , Fibroblastos , Animales , Ratones , Humanos , Supervivencia Celular , Criopreservación/métodos , Poli A , Mamíferos
4.
Proc Natl Acad Sci U S A ; 115(18): 4559-4564, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666254

RESUMEN

Metabolic engineering has facilitated the production of pharmaceuticals, fuels, and soft materials but is generally limited to optimizing well-defined metabolic pathways. We hypothesized that the reaction space available to metabolic engineering could be expanded by coupling extracellular electron transfer to the performance of an exogenous redox-active metal catalyst. Here we demonstrate that the electroactive bacterium Shewanella oneidensis can control the activity of a copper catalyst in atom-transfer radical polymerization (ATRP) via extracellular electron transfer. Using S. oneidensis, we achieved precise control over the molecular weight and polydispersity of a bioorthogonal polymer while similar organisms, such as Escherichia coli, showed no significant activity. We found that catalyst performance was a strong function of bacterial metabolism and specific electron transport proteins, both of which offer potential biological targets for future applications. Overall, our results suggest that manipulating extracellular electron transport pathways may be a general strategy for incorporating organometallic catalysis into the repertoire of metabolically controlled transformations.


Asunto(s)
Transporte de Electrón/fisiología , Ingeniería Metabólica/métodos , Shewanella/metabolismo , Proteínas Bacterianas/metabolismo , Catálisis , Electrodos/microbiología , Electrones , Regulación Bacteriana de la Expresión Génica/genética , Redes y Vías Metabólicas , Oxidación-Reducción , Polimerizacion , Shewanella/fisiología
5.
Proc Natl Acad Sci U S A ; 115(9): 2096-2101, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440400

RESUMEN

Polyketides represent an extremely diverse class of secondary metabolites often explored for their bioactive traits. These molecules are also attractive building blocks for chemical catalysis and polymerization. However, the use of polyketides in larger scale chemistry applications is stymied by limited titers and yields from both microbial and chemical production. Here, we demonstrate that an oleaginous organism (specifically, Yarrowia lipolytica) can overcome such production limitations owing to a natural propensity for high flux through acetyl-CoA. By exploring three distinct metabolic engineering strategies for acetyl-CoA precursor formation, we demonstrate that a previously uncharacterized pyruvate bypass pathway supports increased production of the polyketide triacetic acid lactone (TAL). Ultimately, we establish a strain capable of producing over 35% of the theoretical conversion yield to TAL in an unoptimized tube culture. This strain also obtained an averaged maximum titer of 35.9 ± 3.9 g/L with an achieved maximum specific productivity of 0.21 ± 0.03 g/L/h in bioreactor fermentation. Additionally, we illustrate that a ß-oxidation-related overexpression (PEX10) can support high TAL production and is capable of achieving over 43% of the theoretical conversion yield under nitrogen starvation in a test tube. Next, through use of this bioproduct, we demonstrate the utility of polyketides like TAL to modify commodity materials such as poly(epichlorohydrin), resulting in an increased molecular weight and shift in glass transition temperature. Collectively, these findings establish an engineering strategy enabling unprecedented production from a type III polyketide synthase as well as establish a route through O-functionalization for converting polyketides into new materials.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Ingeniería Genética/métodos , Pironas/metabolismo , Yarrowia/metabolismo , Estructura Molecular , Oxidación-Reducción , Pironas/química , Piruvatos/metabolismo , Yarrowia/genética
6.
J Am Chem Soc ; 142(8): 3913-3922, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32011873

RESUMEN

Polymer topology dictates dynamic and mechanical properties of materials. For most polymers, topology is a static characteristic. In this article, we present a strategy to chemically trigger dynamic topology changes in polymers in response to a specific chemical stimulus. Starting with a dimerized PEG and hydrophobic linear materials, a lightly cross-linked polymer, and a cross-linked hydrogel, transformations into an amphiphilic linear polymer, lightly cross-linked and linear random copolymers, a cross-linked polymer, and three different hydrogel matrices were achieved via two controllable cross-linking reactions: reversible conjugate additions and thiol-disulfide exchange. Significantly, all the polymers, before or after topological changes, can be triggered to degrade into thiol- or amine-terminated small molecules. The controllable transformations of polymeric morphologies and their degradation herald a new generation of smart materials.


Asunto(s)
Hidrogeles/química , Polímeros/química , Química Clic , Reactivos de Enlaces Cruzados/química , Dimerización , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular
7.
Biomacromolecules ; 21(8): 3047-3055, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32649830

RESUMEN

Under the right conditions, some biological systems can maintain high viability after being frozen and thawed, but many others (e.g., organs and many mammalian cells) cannot. To increase the rates of post-thaw viability and widen the library of living cells and tissues that can be stored frozen, an improved understanding of the mode of action of polymeric cryoprotectants is required. Here, we present a polymeric cryoprotectant, poly(methyl glycidyl sulfoxide) (PMGS), that achieved higher post-thaw viability for fibroblast cells than its small-molecule analogue dimethyl sulfoxide. By limiting the amount of water that freezes and facilitating cellular dehydration after ice nucleation, PMGS mitigates the mechanical and osmotic stresses that the freezing of water imparts on cells and facilitates higher-temperature vitrification of the remaining unfrozen volume. The development of PMGS advances a fundamental physical understanding of polymer-mediated cryopreservation, which enables new material design for long-term preservation of complex cellular networks and tissue.


Asunto(s)
Criopreservación , Polímeros , Animales , Crioprotectores/farmacología , Dimetilsulfóxido/farmacología , Congelación , Vitrificación
8.
Biomacromolecules ; 19(1): 248-255, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29185730

RESUMEN

The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.


Asunto(s)
Hielo , Alcohol Polivinílico/química , Adsorción , Proteínas Anticongelantes/química , Criopreservación , Crioprotectores/química , Cristalización , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno
9.
J Am Chem Soc ; 137(19): 6160-3, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25915769

RESUMEN

We report the creation of highly asymmetric lamellar structures with a well-designed miktoarm star block copolymer of the S(IS')3 type, where S and S' are polystyrenes of different lengths and I is poly(isoprene). The domain spacing can be tuned continuously from 37 nm to over 300 nm when the miktoarm star block copolymer is blended with suitable molecular weight polystyrene homopolymers. Beyond the unbinding transition of the lamellar phase, extremely asymmetric lamellar structures were obtained with up to 97 wt % polystyrene, remarkably leaving the poly(isoprene) layers intact at only 3 wt %!

10.
Soft Matter ; 11(6): 1214-25, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25567551

RESUMEN

Nanostructured, responsive hydrogels formed due to electrostatic interactions have promise for applications such as drug delivery and tissue mimics. These physically cross-linked hydrogels are composed of an aqueous solution of oppositely charged triblocks with charged end-blocks and neutral, hydrophilic mid-blocks. Due to their electrostatic interactions, the end-blocks microphase separate and form physical cross-links that are bridged by the mid-blocks. The structure of this system was determined using a new, efficient embedded fluctuation (EF) model in conjunction with self-consistent field theory. The calculations using the EF model were validated against unapproximated field-theoretic simulations with complex Langevin sampling and were found consistent with small angle X-ray scattering (SAXS) measurements on an experimental system. Using both the EF model and SAXS, phase diagrams were generated as a function of end-block fraction and polymer concentration. Several structures were observed including a body-centered cubic sphere phase, a hexagonally packed cylinder phase, and a lamellar phase. Finally, the EF model was used to explore how parameters that directly relate to polymer chemistry can be tuned to modify the resulting phase diagram, which is of practical interest for the development of new hydrogels.


Asunto(s)
Hidrogeles/química , Modelos Moleculares , Polímeros/química , Electricidad Estática , Electrólitos/química , Interacciones Hidrofóbicas e Hidrofílicas , Transición de Fase , Reproducibilidad de los Resultados , Dispersión del Ángulo Pequeño , Difracción de Rayos X
11.
J Am Chem Soc ; 136(42): 15010-5, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25290917

RESUMEN

Viruses have evolved specialized mechanisms to efficiently transport nucleic acids and other biomolecules into specific host cells. They achieve this by performing a coordinated series of complex functions, resulting in delivery that is far more efficient than existing synthetic delivery mechanisms. Inspired by these natural systems, we describe a process for synthesizing chemically defined molecular constructs that likewise achieve targeted delivery through a series of coordinated functions. We employ an efficient "click chemistry" technique to synthesize aptamer-polymer hybrids (APHs), coupling cell-targeting aptamers to block copolymers that secure a therapeutic payload in an inactive state. Upon recognizing the targeted cell-surface marker, the APH enters the host cell via endocytosis, at which point the payload is triggered to be released into the cytoplasm. After visualizing this process with coumarin dye, we demonstrate targeted killing of tumor cells with doxorubicin. Importantly, this process can be generalized to yield APHs that specifically target different surface markers.


Asunto(s)
Aptámeros de Nucleótidos/química , Portadores de Fármacos/química , Polímeros/química , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Biomarcadores/metabolismo , Química Clic , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Células MCF-7
12.
ACS Appl Mater Interfaces ; 16(19): 25353-25365, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712527

RESUMEN

Tissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies─specifically, the absence of energy dissipation mechanisms and network uniformity─a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry. We systematically vary polymer concentration, constituent molar mass, and cross-linking protocols to understand the impact of architecture on hydrogel mechanical properties. The network architecture was resolved within the molecular model of Rubinstein-Panyukov to obtain the densities of chemical cross-links and entanglements. We employed both nucleophilic and radical pathways, uncovering notable differences in mechanical response, which highlight a remarkable degree of versatility achievable by tuning readily accessible parameters. Our approach yielded hydrogels with good cell viability and remarkably robust tensile and compression profiles. Finally, the hydrogels are shown to be amenable to advanced processing techniques by demonstrating injection- and extrusion-based 3D printing. Tuning the mechanism and network regularity during the cell-compatible formation of hydrogels is an emerging strategy to control the properties and processability of hydrogel biomaterials by making simple and rational design choices.

13.
ACS Macro Lett ; 13(5): 638-643, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709178

RESUMEN

Next-generation batteries demand solid polymer electrolytes (SPEs) with rapid ion transport and robust mechanical properties. However, many SPEs with liquid-like Li+ transport mechanisms suffer a fundamental trade-off between conductivity and strength. Dynamic polymer networks can improve bulk mechanics with minimal impact to segmental relaxation or ionic conductivity. This study demonstrates a system where a single polymer-bound ligand simultaneously dissociates Li+ and forms long-lived Ni2+ networks. The polymer comprises an ethylene oxide backbone and imidazole (Im) ligands, blended with Li+ and Ni2+ salts. Ni2+-Im dynamic cross-links result in the formation of a rubbery plateau resulting in, consequently, storage modulus improvement by a factor of 133× with the introduction of Ni2+ at rNi = 0.08, from 0.014 to 1.907 MPa. Even with Ni2+ loading, the high Li+ conductivity of 3.7 × 10-6 S/cm is retained at 90 °C. This work demonstrates that decoupling of ion transport and bulk mechanics can be readily achieved by the addition of multivalent metal cations to polymers with chelating ligands.

14.
J Am Chem Soc ; 135(41): 15650-5, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24050260

RESUMEN

ABA-triblock copolyethers 1a-1c as linear polymeric binders, in combination with clay nanosheets (CNSs), afford high-water-content moldable supramolecular hydrogels with excellent mechanical properties by constructing a well-developed crosslinked network in water. The linear binders carry in their terminal A blocks guanidinium ion (Gu(+)) pendants for adhesion to the CNS surface, while their central B block comprises poly(ethylene oxide) (PEO) that serves as a flexible linker for adhered CNSs. Although previously reported dendritic binder 2 requires multistep synthesis and purification, the linear binders can be obtained in sizable quantities from readily available starting materials by controlled polymerization. Together with dendritic reference 2, the modular nature of compounds 1a-1c with different numbers of Gu(+) pendants and PEO linker lengths allowed for investigating how their structural parameters affect the gel network formation and hydrogel properties. The newly obtained hydrogels are mechanically as tough as that with 2, although the hydrogelation takes place more slowly. Irrespective of which binder is used, the supramolecular gel network has a shape memory feature upon drying followed by rewetting, and the gelling water can be freely replaced with ionic liquids and organic fluids, affording novel clay-reinforced iono- and organogels, respectively.

15.
Soft Matter ; 9(1): 82-89, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25866546

RESUMEN

Histamine functionalized poly(allyl glycidyl ether)-b-poly(ethylene glycol)-b-poly(allyl glycidyl ether) (PAGE-PEO-PAGE) triblock copolymers represent a new class of physically cross-linked, pH-responsive hydrogels with significant potential for biomedical applications. These telechelic triblock copolymers exhibited abrupt and reversible hydrogelation above pH 7.0 due to a hudrophilic/hydrophobic transition of the histamine units to form a network of hydrophobic domains bridged by a hydrophilic PEO matrix. These hydrophobic domains displayed improved ordering upon increasing pH and self-assembled into a body centered cubic lattice at pH 8.0, while at lower concentrations formed well-defined micelles. Significantly, all materials were found to be non-toxic when evaluated on three different cell lines and suggests a range of medical and biomedical applications.

16.
Chem Commun (Camb) ; 59(83): 12390-12410, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37753731

RESUMEN

Polyethers and polythioethers have a long and storied history dating back to the start of polymer science as a distinct field. As such, these materials have been utilized in a wide range of commercial applications and fundamental studies. The breadth of their material properties and the contexts in which they are applied is ultimately owed to their diverse monomer pre-cursors, epoxides and thiiranes, respectively. The facile polymerization of these monomers, both historically and contemporaneously, across academia and industry, has occurred through the use of Earth-abundant metals as catalysts and/or initiators. Despite this, polymerization methods for these monomers are underutilized compared to other monomer classes like cyclic olefins, vinyls, and (meth)acrylates. We feel a focused review that clearly outlines the benefits and shortcomings of extant synthetic methods for poly(thio)ethers along with their proposed mechanisms and quirks will help facilitate the utilization of these methods and by extension the unique polymer materials they create. Therefore, this Feature Article briefly describes the applications of poly(thio)ethers before discussing the feature-set of each poly(thio)ether synthetic method and qualitatively scoring them on relevant metrics (e.g., ease-of-use, molecular weight control, etc.) to help would-be poly(thio)ether-makers find an appropriate synthetic approach. The article is concluded with a look ahead at the future of poly(thio)ether synthesis with Earth-abundant metals.

17.
Eur J Pharm Biopharm ; 187: 46-56, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37037387

RESUMEN

Ozurdex is an FDA-approved sustained-release, biodegradable implant formulated to deliver the corticosteroid dexamethasone to the posterior segment of the eye for up to 6 months. Hot-melt extrusion is used to prepare the 0.46 mm × 6 mm, rod-shaped implant by embedding the drug in a matrix of poly(lactic-co-glycolic acid) (PLGA) in a 60:40 drug:polymer ratio by weight. In our previous work, the Ozurdex implant was carefully studied and reverse engineered to produce a compositionally and structurally equivalent implant for further analysis. In this work, the reverse-engineered implant was thoroughly characterized throughout the in vitro dissolution process to elucidate the mechanisms of controlled drug release. The implant exhibited a triphasic release profile in 37 °C normal saline with a small burst release (1-2 %), a one-week lag phase with limited release (less than 10 %), and a final phase where the remainder of the dose was released over 3-4 weeks. The limited intermolecular interaction between dexamethasone and PLGA rendered the breakdown of the polymer the dominating mechanism of controlled release. A close relationship between drug release and total implant mass loss was observed. Unique chemical and structural differences were seen between the core of the implant and the implant surface driven by diffusional limitations, autocatalytic hydrolysis, and osmotic effects.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Liberación de Fármacos , Dexametasona/química , Implantes de Medicamentos
18.
Int J Pharm ; 634: 122625, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690129

RESUMEN

Ozurdex is a biodegradable implant formulated for sustained-release delivery of the corticosteroid dexamethasone to the posterior segment of the eye. The small, rod-shaped implant is administered directly to the vitreous using a dedicated applicator, and releases drug for up to 6 months after administration. Sustained release is achieved by embedding dexamethasone in a matrix of 50:50 poly(lactic-co-glycolic acid) (PLGA). In this work, the Ozurdex implant was thoroughly characterized to enable the reverse engineering of a compositionally and structurally equivalent implant. Advanced imaging techniques such as scanning electron microscopy (SEM) and microcomputed tomography (microCT) revealed that the Ozurdex implant exhibits an irregular surface and an internal porosity of 6% due to a large number of discrete voids approximately 3 µm in diameter. Thermal and spectroscopic analyses showed limited interaction between the drug and the polymer, resulting in a two-phase system of dexamethasone crystals embedded within a PLGA matrix. Reverse-engineered implants with properties similar to Ozurdex were prepared using a two-step hot-melt extrusion process. The reverse-engineered implants exhibited a triphasic drug release profile similar to Ozurdex. This work seeks to provide insight into the manufacturing process and characterization of PLGA-based solid implants to support future generic product development.


Asunto(s)
Dexametasona , Glucocorticoides , Microtomografía por Rayos X , Implantes de Medicamentos , Inyecciones Intravítreas
19.
Int J Pharm ; 647: 123515, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844672

RESUMEN

Over 20 long-acting injectable formulations based on poly(lactide-co-glycolide) (PLGA) have been approved by the FDA to date. PLGA is a biodegradable polymer that can extend drug release from these dosage forms for up to six months after administration. Despite the commercial success of several of these formulations, there are still a limited number of products that utilize PLGA, and there are currently no generic counterparts of these products on the market. Significant technical challenges are associated with preparation of chemically and structurally equivalent formulations that yield an equivalent drug release profile to the reference listed drug (RLD) both in vitro and in vivo. In this work, Ozurdex (dexamethasone intravitreal implant) was used as a model system to explore how the manufacturing process of PLGA-based solid implants impacts the quality and performance of the dosage form. Control of implant structural characteristics, including diameter, internal porosity, and surface roughness, was required to maintain accurate unit dose potency. Implants were prepared by a continuous hot-melt extrusion process that was thoroughly characterized to show the importance of precise feeding control to meet dimensional specifications. Five extruder die designs were evaluated using the same hot-melt extrusion process to produce five structurally-distinct implants. The structural differences did not alter the in vitro drug release profile when tested in both normal saline and phosphate-buffered saline (pH 7.4); however, implant porosity was shown to impact the mechanical strength of the implants. This work seeks to provide insight into the manufacturing process of PLGA-based solid implants to support development of future novel and generic drug products.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ácido Poliglicólico/química , Ácido Láctico/química , Composición de Medicamentos , Dexametasona , Implantes de Medicamentos
20.
Langmuir ; 27(22): 13762-72, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21888355

RESUMEN

To control the surface properties of a polystyrene-block-poly(ethylene oxide) diblock copolymer, perfluorinated chemical moieties were specifically incorporated into the block copolymer backbone. A polystyrene-block-poly[(ethylene oxide)-stat-(allyl glycidyl ether)] [PS-b-P(EO-stat-AGE)] statistical diblock terpolymer was synthesized with varying incorporations of allyl glycidyl ether (AGE) in the poly(ethylene oxide) block from 0 to 17 mol %. The pendant alkenes of the AGE repeat units were subsequently functionalized by thiol-ene chemistry with 1H,1H,2H,2H-perfluorooctanethiol, yielding fluorocarbon-functionalized AGE (fAGE) repeat units. (1)H NMR spectroscopy and size-exclusion chromatography indicated well-defined structures with complete functionalization of the pendant alkenes. The surfaces of the polymer films were characterized after spray coating by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), showing that the P(EO-stat-fAGE) block starts to compete with polystyrene to populate the surface after only 1 mol % incorporation of fAGE. Increasing the incorporation of fAGE led to an increased amount of perfluorocarbons on the surface and a decrease in the concentration of PS. At a fAGE incorporation of 8 mol %, PS was not detected at the surface, as measured by NEXAFS spectroscopy. Water contact angles measured by the captive-air-bubble technique showed the underwater surfaces to be dynamic, with advancing and receding contact angles varying by >20°. Protein adsorption studies demonstrated that the fluorinated surfaces effectively prevent nonspecific binding of proteins relative to an unmodified PS-b-PEO diblock copolymer. In biological systems, settlement of spores of the green macroalga Ulva was significantly lower for the fAGE-incorporated polymers compared to the unmodified diblock and a polydimethylsiloxane elastomer standard. Furthermore, the attachment strength of sporelings (young plants) of Ulva was also reduced for the fAGE-containing polymers, affirming their potential as fouling-release coatings.


Asunto(s)
Polietilenglicoles/química , Adsorción , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectroscopía de Fotoelectrones , Proteínas/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA