Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 481(7381): 371-5, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22190037

RESUMEN

Restriction factors, such as the retroviral complementary DNA deaminase APOBEC3G, are cellular proteins that dominantly block virus replication. The AIDS virus, human immunodeficiency virus type 1 (HIV-1), produces the accessory factor Vif, which counteracts the host's antiviral defence by hijacking a ubiquitin ligase complex, containing CUL5, ELOC, ELOB and a RING-box protein, and targeting APOBEC3G for degradation. Here we reveal, using an affinity tag/purification mass spectrometry approach, that Vif additionally recruits the transcription cofactor CBF-ß to this ubiquitin ligase complex. CBF-ß, which normally functions in concert with RUNX DNA binding proteins, allows the reconstitution of a recombinant six-protein assembly that elicits specific polyubiquitination activity with APOBEC3G, but not the related deaminase APOBEC3A. Using RNA knockdown and genetic complementation studies, we also demonstrate that CBF-ß is required for Vif-mediated degradation of APOBEC3G and therefore for preserving HIV-1 infectivity. Finally, simian immunodeficiency virus (SIV) Vif also binds to and requires CBF-ß to degrade rhesus macaque APOBEC3G, indicating functional conservation. Methods of disrupting the CBF-ß-Vif interaction might enable HIV-1 restriction and provide a supplement to current antiviral therapies that primarily target viral proteins.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Citidina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Marcadores de Afinidad , Animales , Proteínas Cullin/metabolismo , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Macaca mulatta/metabolismo , Macaca mulatta/virología , Espectrometría de Masas , Modelos Biológicos , Unión Proteica , Proteolisis , Virus de la Inmunodeficiencia de los Simios/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Replicación Viral
2.
Nature ; 481(7381): 365-70, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22190034

RESUMEN

Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV-human protein-protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.


Asunto(s)
VIH-1/química , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/fisiología , Marcadores de Afinidad , Secuencia de Aminoácidos , Secuencia Conservada , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Proteasa del VIH/metabolismo , VIH-1/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/análisis , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/aislamiento & purificación , Humanos , Inmunoprecipitación , Células Jurkat , Espectrometría de Masas , Unión Proteica , Reproducibilidad de los Resultados , Replicación Viral
3.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598178

RESUMEN

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Ratones , Distribución Tisular , Anticuerpos , Ingeniería , Macaca fascicularis
4.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35226042

RESUMEN

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Receptores de Transferrina , Proteínas Recombinantes de Fusión , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Iduronato Sulfatasa/metabolismo , Iduronato Sulfatasa/farmacología , Lisosomas/metabolismo , Ratones , Mucopolisacaridosis II/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Distribución Tisular
5.
BMC Bioinformatics ; 12: 298, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777475

RESUMEN

BACKGROUND: The increasing availability of HIV-host interaction datasets, including both physical and genetic interactions, has created a need for software tools to integrate and visualize the data. Because these host-pathogen interactions are extensive and interactions between human proteins are found within many different databases, it is difficult to generate integrated HIV-human interaction networks. RESULTS: We have developed a web-based platform, termed GPS-Prot http://www.gpsprot.org, that allows for facile integration of different HIV interaction data types as well as inclusion of interactions between human proteins derived from publicly-available databases, including MINT, BioGRID and HPRD. The software has the ability to group proteins into functional modules or protein complexes, generating more intuitive network representations and also allows for the uploading of user-generated data. CONCLUSIONS: GPS-Prot is a software tool that allows users to easily create comprehensive and integrated HIV-host networks. A major advantage of this platform compared to other visualization tools is its web-based format, which requires no software installation or data downloads. GPS-Prot allows novice users to quickly generate networks that combine both genetic and protein-protein interactions between HIV and its human host into a single representation. Ultimately, the platform is extendable to other host-pathogen systems.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1 , Interacciones Huésped-Patógeno , Programas Informáticos , Biología de Sistemas/métodos , Humanos , Internet , Mapeo de Interacción de Proteínas , Interfaz Usuario-Computador
6.
J Virol ; 83(11): 5708-17, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19297467

RESUMEN

BK virus (BKV) causes persistent and asymptomatic infections in most humans and is the etiologic agent of polyomavirus-associated nephropathy (PVAN) and other pathologies. Unfortunately, there are no animal models with which to study activation of BKV replication in the human kidney and the accompanying PVAN. Here we report studies of the restriction of BKV replication in murine cells and extracts and the cause(s) of this restriction. Upon infection of murine cells, BKV expressed large T antigen (TAg), but viral DNA replication and progeny were not detected. Transfection of murine cells with BKV TAg expression vectors also caused TAg expression without accompanying DNA replication. Analysis of the replication of DNAs containing chimeric BKV and murine polyomavirus origins revealed the importance of BKV core origin sequences and TAg for DNA replication. A sensitive assay was developed with purified BKV TAg that supported TAg-dependent BKV DNA replication with human but not with murine cell extracts. Addition of human replication proteins, DNA polymerase alpha-primase, replication protein A, or topoisomerase I to the murine extracts with BKV TAg did not rescue viral DNA replication. Notably, addition of murine extracts to human extracts inhibited BKV TAg-dependent DNA replication at a step prior to or during unwinding of the viral origin. These findings and differences in replication specificity between BKV TAg and the TAgs of simian virus 40 (SV40) and JC virus (JCV) and their respective origins implicate features of the BKV TAg and origin distinct from SV40 and JCV in restriction of BKV replication in murine cells.


Asunto(s)
Virus BK/genética , Virus BK/metabolismo , Extractos Celulares/genética , Replicación del ADN/genética , ADN Viral/genética , Animales , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/inmunología , Antígenos Virales de Tumores/metabolismo , Secuencia de Bases , Células Cultivadas , ADN Intergénico/genética , Humanos , Ratones
7.
EMBO Mol Med ; 12(4): e11227, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32154671

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for the transition of homeostatic microglia to a disease-associated microglial state. To enhance TREM2 activity, we sought to selectively increase the full-length protein on the cell surface via reducing its proteolytic shedding by A Disintegrin And Metalloproteinase (i.e., α-secretase) 10/17. We screened a panel of monoclonal antibodies against TREM2, with the aim to selectively compete for α-secretase-mediated shedding. Monoclonal antibody 4D9, which has a stalk region epitope close to the cleavage site, demonstrated dual mechanisms of action by stabilizing TREM2 on the cell surface and reducing its shedding, and concomitantly activating phospho-SYK signaling. 4D9 stimulated survival of macrophages and increased microglial uptake of myelin debris and amyloid ß-peptide in vitro. In vivo target engagement was demonstrated in cerebrospinal fluid, where nearly all soluble TREM2 was 4D9-bound. Moreover, in a mouse model for Alzheimer's disease-related pathology, 4D9 reduced amyloidogenesis, enhanced microglial TREM2 expression, and reduced a homeostatic marker, suggesting a protective function by driving microglia toward a disease-associated state.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Glicoproteínas de Membrana/inmunología , Microglía , Mieloma Múltiple , Receptores Inmunológicos/inmunología , Péptidos beta-Amiloides , Animales , Línea Celular Tumoral , Femenino , Macrófagos , Ratones , Microglía/patología , Ratas , Ratas Wistar
8.
Sci Transl Med ; 12(545)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461332

RESUMEN

Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-ß-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Barrera Hematoencefálica , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Haplorrinos/metabolismo , Fragmentos Fc de Inmunoglobulinas , Ratones , Receptores de Transferrina/metabolismo
9.
Sci Transl Med ; 12(545)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461331

RESUMEN

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Asunto(s)
Barrera Hematoencefálica , Iduronato Sulfatasa , Animales , Encéfalo , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Lisosomas , Ratones
10.
Microbiology (Reading) ; 155(Pt 11): 3673-3682, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19556294

RESUMEN

Fungi are capable of degrading proteins in their environment by secreting peptidases. However, the link between extracellular digestion and intracellular proteolysis has scarcely been investigated. Mycelial lysates of the filamentous fungus Talaromyces emersonii were screened for intracellular peptidase production. Five distinct proteolytic activities with specificity for the p-nitroanilide (pNA) peptides Suc-AAPF-pNA, Suc-AAA-pNA, K-pNA, F-pNA and P-pNA were identified. The native enzyme responsible for the removal of N-terminal proline residues was purified to homogeneity by ammonium sulfate fractionation followed by five successive chromatographic steps. The enzyme, termed Talaromyces emersonii prolyl aminopeptidase (TePAP), displayed a 50-fold specificity for cleaving N-terminal Pro-X (k(cat)/K(m)=2.1 x 10(6) M(-1) s(-1)) compared with Ala-X or Val-X bonds. This intracellular aminopeptidase was optimally active at pH 7.4 and 50 degrees C. Peptide sequencing facilitated the design of degenerate oligonucleotides from homologous sequences encoding putative fungal proline aminopeptidases, enabling subsequent cloning of the gene. TePAP was shown to be relatively uninhibited by classical serine peptidase inhibitors and to be sensitive to selected cysteine- and histidine-modifying reagents, yet gene sequence analysis identified the protein as a serine peptidase with an alpha/beta hydrolase fold. Northern analysis indicated that Tepap mRNA levels were regulated by the composition of the growth medium. Highest Tepap transcript levels were observed when the fungus was grown in medium containing glucose and the protein hydrolysate casitone. Interestingly, both the induction profile and substrate preference of this enzyme suggest potential co-operativity between extracellular and intracellular proteolysis in this organism. Gel filtration chromatography suggested that the enzyme exists as a 270 kDa homo-hexamer, whereas most bacterial prolyl aminopeptidases (PAPs) are monomers. Phylogenetic analysis of known PAPs revealed two diverse subfamilies that are distinguishable on the basis of primary and secondary structure and appear to correlate with the subunit composition of the native enzymes. Sequence comparisons revealed that PAPs with key conserved topological features are widespread in bacterial and fungal kingdoms, and this study identified many putative PAP candidates within sequenced genomes. This work represents, to our knowledge, the first detailed biochemical and molecular analysis of an inducible PAP from a eukaryote and the first intracellular peptidase isolated from the thermophilic fungus T. emersonii.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Talaromyces/enzimología , Secuencia de Aminoácidos , Aminopeptidasas/genética , Aminopeptidasas/aislamiento & purificación , Clonación Molecular , ADN de Hongos/genética , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Calor , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato , Talaromyces/genética
11.
Cell Rep ; 26(5): 1333-1343.e7, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699358

RESUMEN

Using proteomic approaches, we uncovered a DNA damage response (DDR) function for peroxisome proliferator activated receptor γ (PPARγ) through its interaction with the DNA damage sensor MRE11-RAD50-NBS1 (MRN) and the E3 ubiquitin ligase UBR5. We show that PPARγ promotes ATM signaling and is essential for UBR5 activity targeting ATM interactor (ATMIN). PPARγ depletion increases ATMIN protein independent of transcription and suppresses DDR-induced ATM signaling. Blocking ATMIN in this context restores ATM activation and DNA repair. We illustrate the physiological relevance of PPARγ DDR functions by using pulmonary arterial hypertension (PAH) as a model that has impaired PPARγ signaling related to endothelial cell (EC) dysfunction and unresolved DNA damage. In pulmonary arterial ECs (PAECs) from PAH patients, we observed disrupted PPARγ-UBR5 interaction, heightened ATMIN expression, and DNA lesions. Blocking ATMIN in PAH PAEC restores ATM activation. Thus, impaired PPARγ DDR functions may explain the genomic instability and loss of endothelial homeostasis in PAH.


Asunto(s)
Reparación del ADN , Células Endoteliales/metabolismo , Homeostasis , PPAR gamma/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Inestabilidad Genómica , Células HEK293 , Humanos , Modelos Biológicos , Unión Proteica , Arteria Pulmonar/patología , Transducción de Señal , Ubiquitinación
13.
Adv Exp Med Biol ; 604: 3-16, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17695718

RESUMEN

DNA replication is a fundamental process within the cell cycle. The exact duplication of the genetic information ensures genome stability. Extensive research has identified the principal players required for the sequential processes: origin-licensing (a controlled order of events giving a chromosome site the potential to be initiated within the S phase of the same cell cycle); initiation (by removing the license a previous licensed site is transformed into a site where the DNA helix starts to melt); and DNA replication (copying the parental DNA by leading and lagging strand DNA-synthesis). The present report compares the advantages and limitations of studying DNA replication in the model systems Xenopus laevis (X. laevis) and in Simian Virus 40 (SV40).


Asunto(s)
Replicación del ADN , Virus 40 de los Simios/metabolismo , Xenopus laevis/metabolismo , Animales , Sitios de Unión , Ciclo Celular , ADN/química , Humanos , Complejo de Reconocimiento del Origen , Origen de Réplica , Fase S , Especificidad de la Especie
14.
Virology ; 477: 10-17, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25618414

RESUMEN

Vpr and Vpx are a group of highly related accessory proteins from primate lentiviruses. Despite the high degree of amino acid homology within this group, these proteins can be highly divergent in their functions. In this work, we constructed chimeric and mutant proteins between HIV-1 and SIVagm Vpr in order to better understand the structure-function relationships. We tested these constructs for their abilities to induce G2 arrest in human cells and to degrade agmSAMHD1 and Mus81. We found that the C-terminus of HIV-1 Vpr, when transferred onto SIVagm Vpr, provides the latter with the de novo ability to induce G2 arrest in human cells. We confirmed that HIV-1 Vpr induces degradation of Mus81 although, surprisingly, degradation is independent and genetically separable from Vpr׳s ability to induce G2 arrest.


Asunto(s)
Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Productos del Gen vpr/metabolismo , VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas de Unión al GTP Monoméricas/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología , Productos del Gen vpr/genética , Células HeLa , Humanos , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína 1 que Contiene Dominios SAM y HD
15.
Biomolecules ; 4(4): 897-930, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25314029

RESUMEN

The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity.


Asunto(s)
Proteínas Cullin/metabolismo , Interacciones Huésped-Patógeno , Ubiquitina-Proteína Ligasas/metabolismo , Virus/patogenicidad , Proteínas Cullin/genética , Virus ADN/metabolismo , Virus ADN/patogenicidad , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Virus ARN/metabolismo , Virus ARN/patogenicidad , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Virales/metabolismo , Virosis/metabolismo
16.
J Biol Chem ; 283(43): 29186-95, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18687686

RESUMEN

The thermophilic filamentous fungus Talaromyces emersonii secretes a variety of hydrolytic enzymes that are of interest for processing of biomass into fuel. Many carbohydrases have been isolated and characterized from this fungus, but no studies had been performed on peptidases. In this study, two acid-acting endopeptidases were isolated and characterized from the culture filtrate of T. emersonii. One of these enzymes was identified as a member of the recently classified glutamic peptidase family and was subsequently named T. emersonii glutamic peptidase 1 (TGP1). The second enzyme was identified as an aspartyl peptidase (PEP1). TGP1 was cloned and sequenced and shown to exhibit 64 and 47% protein identity to peptidases from Aspergillus niger and Scytalidium lignocolum, respectively. Substrate profiling of 16 peptides determined that TGP1 has broad specificity with a preference for large residues in the P1 site, particularly Met, Gln, Phe, Lys, Glu, and small amino acids at P1' such as Ala, Gly, Ser, or Thr. This enzyme efficiently cleaves an internally quenched fluorescent substrate containing the zymogen activation sequence (k(cat)/K(m)=2 x 10(5) m(-1) s(-1)). Maximum hydrolysis occurs at pH 3.4 and 50 degrees C. The reaction is strongly inhibited by a transition state peptide analog, TA1 (K(i)=1.5 nM), as well as a portion of the propeptide sequence, PT1 (K(i)=32 nM). Ex vivo studies show that hyphal extension of T. emersonii in complex media is unaffected by the aspartyl peptidase inhibitor pepstatin but is inhibited by TA1 and PT1. This study provides insight into the functional role of the glutamic peptidase TGP1 for growth of T. emersonii.


Asunto(s)
Endopeptidasas/metabolismo , Endopeptidasas/fisiología , Regulación Fúngica de la Expresión Génica , Glutamina/química , Talaromyces/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Endopeptidasas/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Pepstatinas/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA