Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37536338

RESUMEN

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Asunto(s)
Cromosomas de Insectos , Drosophila , Animales , Cromatina/genética , Empaquetamiento del ADN , Drosophila/genética , Mamíferos/genética , Neurogénesis , Neuronas , Factores de Transcripción , Proteínas de Drosophila , Genoma de los Insectos , Regulación de la Expresión Génica
2.
Cell ; 151(2): 427-39, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063130

RESUMEN

Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous survival motor neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm, and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to nonautonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K(+) channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Neuronas Colinérgicas/metabolismo , Modelos Animales de Enfermedad , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Humanos , Larva/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Mutación , Proteínas de Unión al ARN/genética , Células Receptoras Sensoriales/metabolismo
3.
Cell ; 151(2): 440-54, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063131

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Atrofia Muscular Espinal/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Humanos , Proteínas de la Membrana/genética , Ratones , Células 3T3 NIH , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Nature ; 573(7775): 526-531, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31534217

RESUMEN

Metastasis-the disseminated growth of tumours in distant organs-underlies cancer mortality. Breast-to-brain metastasis (B2BM) is a common and disruptive form of cancer and is prevalent in the aggressive basal-like subtype, but is also found at varying frequencies in all cancer subtypes. Previous studies revealed parameters of breast cancer metastasis to the brain, but its preference for this site remains an enigma. Here we show that B2BM cells co-opt a neuronal signalling pathway that was recently implicated in invasive tumour growth, involving activation by glutamate ligands of N-methyl-D-aspartate receptors (NMDARs), which is key in model systems for metastatic colonization of the brain and is associated with poor prognosis. Whereas NMDAR activation is autocrine in some primary tumour types, human and mouse B2BM cells express receptors but secrete insufficient glutamate to induce signalling, which is instead achieved by the formation of pseudo-tripartite synapses between cancer cells and glutamatergic neurons, presenting a rationale for brain metastasis.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/secundario , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Neoplasias Encefálicas/ultraestructura , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Metástasis de la Neoplasia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica
5.
PLoS Genet ; 16(2): e1008609, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097408

RESUMEN

Neuromodulators such as monoamines are often expressed in neurons that also release at least one fast-acting neurotransmitter. The release of a combination of transmitters provides both "classical" and "modulatory" signals that could produce diverse and/or complementary effects in associated circuits. Here, we establish that the majority of Drosophila octopamine (OA) neurons are also glutamatergic and identify the individual contributions of each neurotransmitter on sex-specific behaviors. Males without OA display low levels of aggression and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but without a concurrent increase in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT puncta differ in localization suggesting spatial differences in OA signaling. Our findings establish a previously undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples aggression from OA-dependent courtship-related behavior. These results indicate that dual neurotransmission can increase the efficacy of individual neurotransmitters while maintaining unique functions within a multi-functional social behavior neuronal network.


Asunto(s)
Agresión , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Neuronas/metabolismo , Transmisión Sináptica/genética , Proteínas de Transporte Vesicular de Glutamato/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Cortejo , Proteínas de Drosophila/metabolismo , Femenino , Ácido Glutámico/metabolismo , Masculino , Octopamina/metabolismo , Factores Sexuales , Transducción de Señal/genética , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
6.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918092

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-κB. Besides its connection to inflammation, NF-κB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-κB activation. Collectively, this has led many to hypothesize that NF-κB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-κB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Susceptibilidad a Enfermedades , FN-kappa B/metabolismo , Alelos , Esclerosis Amiotrófica Lateral/patología , Animales , Biomarcadores , Ambiente , Activación Enzimática , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología
7.
Neurobiol Dis ; 105: 42-50, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28502804

RESUMEN

SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Locomoción/fisiología , Trastornos del Movimiento/etiología , Atrofia Muscular Espinal/complicaciones , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Fenotipo , Interferencia de ARN/fisiología , Proteínas de Unión al ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora
8.
Cell Rep ; 43(6): 114256, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795343

RESUMEN

The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age-dependent structural fragmentation co-incident with diminishing motor ability. Here, we show that motor synapse levels of Trio, an evolutionarily conserved guanine nucleotide exchange factor (GEF), decline with age. We demonstrate that increasing Trio expression in adult Drosophila can abrogate age-dependent synaptic structural fragmentation, postpone the decline of motor ability, and maintain the capacity of motor synapses to sustain high-intensity neurotransmitter release. This preservative activity is conserved in transgenic human Trio, requires Trio Rac GEF function, and can also ameliorate synapse degeneration induced by depletion of miniature neurotransmission. Our results support a paradigm where the structural dissolution of motor synapses precedes and promotes motor behavioral diminishment and where intervening in this process can postpone the decline of motor function during aging.


Asunto(s)
Envejecimiento , Sinapsis , Animales , Envejecimiento/fisiología , Sinapsis/metabolismo , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neuronas Motoras/metabolismo , Actividad Motora , Transmisión Sináptica , Proteínas Serina-Treonina Quinasas
9.
J Neurosci ; 32(20): 7058-73, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22593074

RESUMEN

Pre-mRNA alternative splicing is an important mechanism for the generation of synaptic protein diversity, but few factors governing this process have been identified. From a screen for Drosophila mutants with aberrant synaptic development, we identified beag, a mutant with fewer synaptic boutons and decreased neurotransmitter release. Beag encodes a spliceosomal protein similar to splicing factors in humans and Caenorhabditis elegans. We find that both beag mutants and mutants of an interacting gene dsmu1 have changes in the synaptic levels of specific splice isoforms of Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule. We show that restoration of one splice isoform of FasII can rescue synaptic morphology in beag mutants while expression of other isoforms cannot. We further demonstrate that this FasII isoform has unique functions in synaptic development independent of transsynaptic adhesion. beag and dsmu1 mutants demonstrate an essential role for these previously uncharacterized splicing factors in the regulation of synapse development and function.


Asunto(s)
Empalme Alternativo/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/fisiología , Terminales Presinápticos/fisiología , Empalme Alternativo/genética , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalmosomas/metabolismo
10.
Genetics ; 223(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36602539

RESUMEN

Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Drosophila , Animales , Femenino , Drosophila/metabolismo , Proteínas CCN de Señalización Intercelular/química , Proteínas CCN de Señalización Intercelular/metabolismo , Transmisión Sináptica/genética , Fertilidad/genética , Fibrinógeno
11.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873436

RESUMEN

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

12.
J Neurosci Methods ; 372: 109540, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219770

RESUMEN

BACKGROUND: Throughout the animal kingdom, GABA is the principal inhibitory neurotransmitter of the nervous system. It is essential for maintaining the homeostatic balance between excitation and inhibition required for the brain to operate normally. Identification of GABAergic neurons and their GABA release sites are thus essential for understanding how the brain regulates the excitability of neurons and the activity of neural circuits responsible for numerous aspects of brain function including information processing, locomotion, learning, memory, and synaptic plasticity, among others. NEW METHOD: Since the structure and features of GABA synapses are critical to understanding their function within specific neural circuits of interest, here we developed and characterized a conditional marker of GABAergic synaptic vesicles for Drosophila, 9XV5-vGAT. RESULTS: 9XV5-vGAT is validated for conditionality of expression, specificity for localization to synaptic vesicles, specificity for expression in GABAergic neurons, and functionality. Its utility for GABAergic neurotransmitter phenotyping and identification of GABA release sites was verified for ellipsoid body neurons of the central complex. In combination with previously reported conditional SV markers for acetylcholine and glutamate, 9XV5-vGAT was used to demonstrate fast neurotransmitter phenotyping of subesophageal ganglion neurons. COMPARISON WITH EXISTING METHODS: This method is an alternative to single cell transcriptomics for neurotransmitter phenotyping and can be applied to any neurons of interest represented by a binary transcription system driver. CONCLUSION: A conditional GABAergic synaptic vesicle marker has been developed and validated for GABA neurotransmitter phenotyping and subcellular localization of GABAergic synaptic vesicles.


Asunto(s)
Drosophila , Vesículas Sinápticas , Animales , Drosophila/metabolismo , Neuronas GABAérgicas , Ácido Glutámico/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
13.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100385

RESUMEN

Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development, as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here, we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.


Asunto(s)
Drosophila , Vesículas Sinápticas , Animales , Sistema Nervioso Central/metabolismo , Drosophila/genética , Drosophila/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo
14.
Elife ; 112022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801638

RESUMEN

Establishing with precision the quantity and identity of the cell types of the brain is a prerequisite for a detailed compendium of gene and protein expression in the central nervous system (CNS). Currently, however, strict quantitation of cell numbers has been achieved only for the nervous system of Caenorhabditis elegans. Here, we describe the development of a synergistic pipeline of molecular genetic, imaging, and computational technologies designed to allow high-throughput, precise quantitation with cellular resolution of reporters of gene expression in intact whole tissues with complex cellular constitutions such as the brain. We have deployed the approach to determine with exactitude the number of functional neurons and glia in the entire intact larval Drosophila CNS, revealing fewer neurons and more glial cells than previously predicted. We also discover an unexpected divergence between the sexes at this juvenile developmental stage, with the female CNS having significantly more neurons than that of males. Topological analysis of our data establishes that this sexual dimorphism extends to deeper features of CNS organisation. We additionally extended our analysis to quantitate the expression of voltage-gated potassium channel family genes throughout the CNS and uncover substantial differences in abundance. Our methodology enables robust and accurate quantification of the number and positioning of cells within intact organs, facilitating sophisticated analysis of cellular identity, diversity, and gene expression characteristics.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Caenorhabditis elegans , Sistema Nervioso Central/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Neuroglía , Caracteres Sexuales
15.
Nat Commun ; 13(1): 5049, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030267

RESUMEN

Alteration of the levels, localization or post-translational processing of the microtubule associated protein Tau is associated with many neurodegenerative disorders. Here we develop adult-onset models for human Tau (hTau) toxicity in Drosophila that enable age-dependent quantitative measurement of central nervous system synapse loss and axonal degeneration, in addition to effects upon lifespan, to facilitate evaluation of factors that may contribute to Tau-dependent neurodegeneration. Using these models, we interrogate the interaction of hTau with the retromer complex, an evolutionarily conserved cargo-sorting protein assembly, whose reduced activity has been associated with both Parkinson's and late onset Alzheimer's disease. We reveal that reduction of retromer activity induces a potent enhancement of hTau toxicity upon synapse loss, axon retraction and lifespan through a specific increase in the production of a C-terminal truncated isoform of hTau. Our data establish a molecular and subcellular mechanism necessary and sufficient for the depletion of retromer activity to exacerbate Tau-dependent neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Tauopatías , Animales , Axones , Modelos Animales de Enfermedad , Drosophila , Humanos , Procesamiento Proteico-Postraduccional , Proteínas tau
16.
Nat Commun ; 12(1): 4399, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285221

RESUMEN

The decline of neuronal synapses is an established feature of ageing accompanied by the diminishment of neuronal function, and in the motor system at least, a reduction of behavioural capacity. Here, we have investigated Drosophila motor neuron synaptic terminals during ageing. We observed cumulative fragmentation of presynaptic structures accompanied by diminishment of both evoked and miniature neurotransmission occurring in tandem with reduced motor ability. Through discrete manipulation of each neurotransmission modality, we find that miniature but not evoked neurotransmission is required to maintain presynaptic architecture and that increasing miniature events can both preserve synaptic structures and prolong motor ability during ageing. Our results establish that miniature neurotransmission, formerly viewed as an epiphenomenon, is necessary for the long-term stability of synaptic connections.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Potenciales Evocados Motores/fisiología , Masculino , Microscopía Electrónica , Modelos Animales , Neuronas Motoras/ultraestructura , Músculos/inervación , Músculos/fisiología , Músculos/ultraestructura , Terminales Presinápticos/ultraestructura , Factores de Tiempo
17.
Aging Cell ; 20(5): e13365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33909313

RESUMEN

Age is the greatest risk factor for Parkinson's disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex- and age-related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age-related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age- and sex-related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age-related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age- and PD-related neurodegeneration.


Asunto(s)
Envejecimiento/fisiología , Neuronas Dopaminérgicas/fisiología , Proteínas de Drosophila/fisiología , Caracteres Sexuales , Proteínas de Transporte Vesicular de Glutamato/fisiología , Animales , Supervivencia Celular , Neuronas Dopaminérgicas/metabolismo , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Humanos , Locomoción , Masculino , Ratones , Ratas , Proteínas de Transporte Vesicular de Glutamato/metabolismo
18.
Neuron ; 39(2): 255-67, 2003 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-12873383

RESUMEN

Retrograde signaling plays an important role in synaptic homeostasis, growth, and plasticity. A retrograde signal at the neuromuscular junction (NMJ) of Drosophila controls the homeostasis of neurotransmitter release. Here, we show that this retrograde signal is regulated by the postsynaptic activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Reducing CaMKII activity in muscles enhances the signal and increases neurotransmitter release, while constitutive activation of CaMKII in muscles inhibits the signal and decreases neurotransmitter release. Postsynaptic inhibition of CaMKII increases the number of presynaptic, vesicle-associated T bars at the active zones. Consistently, we show that glutamate receptor mutants also have a higher number of T bars; this increase is suppressed by postsynaptic activation of CaMKII. Furthermore, we demonstrate that presynaptic BMP receptor wishful thinking is required for the retrograde signal to function. Our results indicate that CaMKII plays a key role in the retrograde control of homeostasis of synaptic transmission at the NMJ of Drosophila.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Unión Neuromuscular/enzimología , Unión Neuromuscular/fisiología , Proteínas de Saccharomyces cerevisiae , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Calcio/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Relación Dosis-Respuesta a Droga , Drosophila melanogaster , Electrofisiología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Regulación Enzimológica de la Expresión Génica , Genes de Insecto , Inmunohistoquímica , Manosiltransferasas/metabolismo , Manosiltransferasas/fisiología , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica , Músculos/metabolismo , Músculos/fisiología , Mutagénesis , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/ultraestructura , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores , Fragmentos de Péptidos/fisiología , Terminales Presinápticos/enzimología , Terminales Presinápticos/ultraestructura , Teoría Cuántica , Receptores AMPA/genética , Receptores AMPA/fisiología , Sinaptotagminas
19.
Neuron ; 33(4): 545-58, 2002 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-11856529

RESUMEN

We conducted a large-scale screen for Drosophila mutants that have structural abnormalities of the larval neuromuscular junction (NMJ). We recovered mutations in wishful thinking (wit), a gene that positively regulates synaptic growth. wit encodes a BMP type II receptor. In wit mutant larvae, the size of the NMJs is greatly reduced relative to the size of the muscles. wit NMJs have reduced evoked excitatory junctional potentials, decreased levels of the synaptic cell adhesion molecule Fasciclin II, and synaptic membrane detachment at active zones. Wit is expressed by a subset of neurons, including motoneurons. The NMJ phenotype is specifically rescued by transgenic expression of Wit only in motoneurons. Thus, Wit appears to function as a presynaptic receptor that regulates synaptic size at the Drosophila NMJ.


Asunto(s)
Tipificación del Cuerpo/genética , Sistema Nervioso Central/anomalías , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mutación/genética , Unión Neuromuscular/anomalías , Proteínas Serina-Treonina Quinasas/genética , Animales , Animales Modificados Genéticamente/anomalías , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Adhesión Celular/genética , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/ultraestructura , Regulación hacia Abajo/genética , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Venenos Elapídicos/metabolismo , Femenino , Pruebas Genéticas , Masculino , Datos de Secuencia Molecular , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/ultraestructura , Plasticidad Neuronal/genética , Neurotransmisores/genética , Neurotransmisores/metabolismo , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura
20.
Neuron ; 41(6): 891-905, 2004 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15046722

RESUMEN

Highwire (Hiw), a putative RING finger E3 ubiquitin ligase, negatively regulates synaptic growth at the neuromuscular junction (NMJ) in Drosophila. hiw mutants have dramatically larger synaptic size and increased numbers of synaptic boutons. Here we show that Hiw binds to the Smad protein Medea (Med). Med is part of a presynaptic bone morphogenetic protein (BMP) signaling cascade consisting of three receptor subunits, Wit, Tkv, and Sax, in addition to the Smad transcription factor Mad. When compared to wild-type, mutants of BMP signaling components have smaller NMJ size, reduced neurotransmitter release, and aberrant synaptic ultrastructure. BMP signaling mutants suppress the excessive synaptic growth in hiw mutants. Activation of BMP signaling, which in wild-type does not cause additional growth, in hiw mutants does lead to further synaptic expansion. These results reveal a balance between positive BMP signaling and negative regulation by Highwire, governing the growth of neuromuscular synapses.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Animales , Proteínas Morfogenéticas Óseas/genética , Tamaño de la Célula/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Microscopía Electrónica , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Terminales Presinápticos/ultraestructura , Unión Proteica/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/genética , Proteína Smad4 , Transmisión Sináptica/genética , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA