Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(3): 516-530.e9, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36738738

RESUMEN

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Asunto(s)
Inflamación , Fosforilación Oxidativa , Humanos , Ratones , Animales , Inflamación/metabolismo , Macrófagos/metabolismo , Homeostasis , Lípidos , Tejido Adiposo/metabolismo
2.
Kidney Int ; 100(6): 1165-1167, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34802556

RESUMEN

The metabolic impairment of kidney tubular cells is a key mechanism underlying the pathophysiology of renal fibrosis. In particular, a drastic reduction in fatty acid oxidation is essentially responsible for the global energy failure occurring in the tubulointerstitial compartment. Piret et al. propose a novel transcriptional regulatory mechanism involving the decrease in the expression of Krüppel-like factor 15 in proximal tubular cells after kidney injury, which results in a major derangement of fatty acid oxidation.


Asunto(s)
Enfermedades Renales , Túbulos Renales Proximales , Fibrosis , Humanos , Riñón/patología , Enfermedades Renales/patología , Túbulos Renales Proximales/metabolismo , Metabolismo de los Lípidos
3.
FASEB J ; 34(1): 410-431, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914684

RESUMEN

MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and control biological processes (BPs), including fibrogenesis. Kidney fibrosis remains a clinical challenge and miRNAs may represent a valid therapeutic avenue. We show that miR-9-5p protected from renal fibrosis in the mouse model of unilateral ureteral obstruction (UUO). This was reflected in reduced expression of pro-fibrotic markers, decreased number of infiltrating monocytes/macrophages, and diminished tubular epithelial cell injury and transforming growth factor-beta 1 (TGF-ß1)-dependent de-differentiation in human kidney proximal tubular (HKC-8) cells. RNA-sequencing (RNA-Seq) studies in the UUO model revealed that treatment with miR-9-5p prevented the downregulation of genes related to key metabolic pathways, including mitochondrial function, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and glycolysis. Studies in human tubular epithelial cells demonstrated that miR-9-5p impeded TGF-ß1-induced bioenergetics derangement. The expression of the FAO-related axis peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-peroxisome proliferator-activated receptor alpha (PPARα) was reduced by UUO, although preserved by the administration of miR-9-5p. We found that in mice null for the mitochondrial master regulator PGC-1α, miR-9-5p was unable to promote a protective effect in the UUO model. We propose that miR-9-5p elicits a protective response to chronic kidney injury and renal fibrosis by inducing reprogramming of the metabolic derangement and mitochondrial dysfunction affecting tubular epithelial cells.


Asunto(s)
Reprogramación Celular , Fibrosis/prevención & control , Regulación de la Expresión Génica , Enfermedades Renales/prevención & control , MicroARNs/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Obstrucción Ureteral/prevención & control , Animales , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transcriptoma , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
4.
Anal Bioanal Chem ; 412(24): 6391-6405, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32285184

RESUMEN

Despite the recent advances in the standardization of untargeted metabolomics workflows, there is still a lack of attention to specific data treatment strategies that require deep knowledge of the biological problem and need to be applied after a well-thought out process to understand the effect of the practice. One of those strategies is data normalization. Data-driven assumptions are critical especially addressing unwanted variation present in the biological model as it can be the case in heterogeneous tissues, cells with different sizes or biofluids with different concentrations. Chronic kidney disease (CKD) is a widespread disorder affecting kidney structure and function. Animal models are being developed to be able to get valuable insights into the etiopathogenesis of the condition and effect of the treatments. Moreover, diagnosis and disease staging still require defining appropriate biomarkers. Untargeted metabolomics has the potential to deal with those challenges. Renal fibrosis is one of the consequences of kidney injury which greatly affects the concentration of metabolites in the same quantity of sample. To overcome this challenge, several data normalization strategies have been applied, following a multilevel normalization method with the overall aim of focussing on the relevant biological information and reducing the influence of disturbing factors. A comprehensive evaluation of the performance of the normalization strategies, both on methods assessing the intragroup variation and on the impact on differential analysis, is provided. Finally, we present evidence of the importance of biological-model-driven guided normalization methods and discuss multiple criteria that need to be taken into consideration to obtain robust and reliable data. Special concern is transmitted on the misleading conclusions that might be the consequence of inappropriate data pre-treatment solutions applied for untargeted methods. Graphical abstract.


Asunto(s)
Riñón/metabolismo , Metabolómica/métodos , Insuficiencia Renal Crónica/metabolismo , Animales , Análisis Discriminante , Modelos Animales de Enfermedad , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Transgénicos
6.
J Biol Chem ; 292(7): 3029-3038, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049732

RESUMEN

Mitochondrial bioenergetics are critical for cellular homeostasis and stress responses. The reactive oxygen species-generating enzyme, NADPH oxidase 4 (Nox4), regulates a number of physiological and pathological processes, including cellular differentiation, host defense, and tissue fibrosis. In this study we explored the role of constitutive Nox4 activity in regulating mitochondrial function. An increase in mitochondrial oxygen consumption and reserve capacity was observed in murine and human lung fibroblasts with genetic deficiency (or silencing) of Nox4. Inhibition of Nox4 expression/activity by genetic or pharmacological approaches resulted in stimulation of mitochondrial biogenesis, as evidenced by elevated mitochondrial-to-nuclear DNA ratio and increased expression of the mitochondrial markers transcription factor A (TFAM), citrate synthase, voltage-dependent anion channel (VDAC), and cytochrome c oxidase subunit 4 (COX IV). Induction of mitochondrial biogenesis was dependent on TFAM up-regulation but was independent of the activation of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). The enhancement of mitochondrial bioenergetics as well as the increase in mitochondrial proteins in Nox4-deficient lung fibroblasts is inhibited by silencing of nuclear factor erythroid-derived 2-like 2 (Nrf2), supporting a key role for Nrf2 in control of mitochondrial biogenesis. Together, these results indicate a critical role for both Nox4 and Nrf2 in counter-regulation of mitochondrial biogenesis and metabolism.


Asunto(s)
Pulmón/metabolismo , NADPH Oxidasas/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Biogénesis de Organelos , Animales , Proteínas de Unión al ADN/genética , Metabolismo Energético , Silenciador del Gen , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Pulmón/citología , Ratones , Ratones Noqueados , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/genética
7.
Chem Rec ; 18(7-8): 1010-1019, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29473716

RESUMEN

Magneto-mechanically active surfaces (MMAS) represent a new family of nano/micro-structured surfaces in which motion is induced by an external magnetic field. Under the name of "artificial cilia", "biomimetic cilia", "magnetic actuated patterns", "nanopillars", etc., published works in this area continue their quick growth in number. Notwithstanding their potential application in microfluidic, chemical sensors, catalytic processes and microelectronics to increase device perfomances, there is still a lot to do in the development of these materials. Improvement and optimization of the performance of these structures are essential tasks in order to fulfil their complete development. Along this article, a critical review involving the main aspects in the design of the patterned nanocomposites will be presented.

8.
Drug Metab Dispos ; 42(5): 943-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24568887

RESUMEN

Lignans are phytoestrogens that are metabolized by the gut microbiota to enterodiol and enterolactone, the main biologically active enterolignans. Substantial interindividual variation in plasma concentration and urinary excretion of enterolignans has been reported, this being determined, at least in part, by the intake of lignan precursors, the gut microbiota, and the host's phase 2 conjugating enzyme activity. However, the role of ATP-binding cassette (ABC) transporters in the transport and disposition of enterolactone has not been reported so far. Active transport assays using parental and Madin-Darby canine kidney epithelial cells transduced with murine and human ABCG2 showed a significant increase in apically directed translocation of enterolactone in transduced cells, which was confirmed by using the selective ABCG2 inhibitor Ko143. In addition, enterolactone also inhibited transport of the antineoplastic agent mitoxantrone as a model substrate, with inhibition percentages of almost 40% at 200 µM for human ABCG2. Furthermore, the endogenous levels in plasma and milk of enterolactone in wild-type and Abcg2((-/-)) knockout female mice were analyzed. The milk/plasma ratio decreased significantly in the Abcg2((-/-)) phenotype, as compared with the wild-type mouse group (0.4 ± 0.1 as against 6.4 ± 2.6). This paper is the first to report that enterolactone is a transported substrate and therefore most probably a competitive inhibitor of ABCG2, which suggests it has a role in the interindividual variations in the disposition of enterolactone and its secretion into milk. The inhibitory activity identified provides a solid basis for further investigation in possible food-drug interactions.


Asunto(s)
4-Butirolactona/análogos & derivados , Transportadoras de Casetes de Unión a ATP/fisiología , Lignanos/farmacocinética , Leche/química , Proteínas de Neoplasias/fisiología , 4-Butirolactona/sangre , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Transporte Biológico , Dicetopiperazinas , Perros , Femenino , Compuestos Heterocíclicos de 4 o más Anillos , Lignanos/sangre , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , Mitoxantrona/metabolismo , Mitoxantrona/farmacocinética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Especificidad por Sustrato
9.
Artículo en Inglés | MEDLINE | ID: mdl-38763781

RESUMEN

Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.

10.
Free Radic Biol Med ; 222: 85-105, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838921

RESUMEN

Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.

11.
Macromol Rapid Commun ; 34(4): 310-29, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23225073

RESUMEN

Photoremovable protecting groups (PRPGs) are applied to organic surfaces, thin polymer films, and hydrogels to achieve light-based remote control of their (bio)chemical and physical properties. These can be localized (i.e. patterned), tunable by exposure dose, and generated on-demand. Using PRPGs with independent response to different wavelengths, multifunctional materials with a number of individually addressable functional states can be generated. Light-triggered polymerization, crosslinking, and degradation processes as well as release of attached molecules can be realized. Light-responsive surfaces and materials based on PRPGs open interesting possibilities for the next generation of instructive materials for cell culture and tissue regeneration.


Asunto(s)
Hidrogeles/química , Luz , Polímeros/química , Materiales Biocompatibles/química , Nanotecnología , Propiedades de Superficie
12.
FEBS Open Bio ; 13(7): 1154-1163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36723270

RESUMEN

Fibrosis driven by excessive accumulation of extracellular matrix (ECM) is the hallmark of chronic kidney disease (CKD). Myofibroblasts, which are the cells responsible for ECM production, are activated by cross talk with injured proximal tubule and immune cells. Emerging evidence suggests that alterations in metabolism are not only a feature of but also play an influential role in the pathogenesis of renal fibrosis. The application of omics technologies to cell-tracing animal models and follow-up functional data suggest that cell-type-specific metabolic shifts have particular roles in the fibrogenic response. In this review, we cover the main metabolic reprogramming outcomes in renal fibrosis and provide a future perspective on the field of renal fibrometabolism.


Asunto(s)
Fibrosis , Insuficiencia Renal Crónica , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología , Fibrosis/complicaciones , Fibrosis/metabolismo , Fibrosis/patología , Fibrosis/fisiopatología , Humanos , Animales , Fosforilación Oxidativa , Glucosa/metabolismo , Glutamina/metabolismo , Ácidos Grasos/metabolismo
13.
Front Mol Biosci ; 10: 1161036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377862

RESUMEN

Background: Chronic kidney disease (CKD) is characterized by the progressive and irreversible deterioration of kidney function and structure with the appearance of renal fibrosis. A significant decrease in mitochondrial metabolism, specifically a reduction in fatty acid oxidation (FAO) in tubular cells, is observed in tubulointerstitial fibrosis, whereas FAO enhancement provides protection. Untargeted metabolomics offers the potential to provide a comprehensive analysis of the renal metabolome in the context of kidney injury. Methodology: Renal tissue from a carnitine palmitoyl transferase 1a (Cpt1a) overexpressing mouse model, which displays enhanced FAO in the renal tubule, subjected to folic acid nephropathy (FAN) was studied through a multiplatform untargeted metabolomics approach based on LC-MS, CE-MS and GC-MS analysis to achieve the highest coverage of the metabolome and lipidome affected by fibrosis. The expression of genes related to the biochemical routes showing significant changes was also evaluated. Results: By combining different tools for signal processing, statistical analysis and feature annotation, we were able to identify variations in 194 metabolites and lipids involved in many metabolic routes: TCA cycle, polyamines, one-carbon metabolism, amino acid metabolism, purine metabolism, FAO, glycerolipids and glycerophospholipids synthesis and degradation, glycosphingolipids interconversion, and sterol metabolism. We found several metabolites strongly altered by FAN, with no reversion induced by Cpt1a overexpression (v.g. citric acid), whereas other metabolites were influenced by CPT1A-induced FAO (v.g. glycine-betaine). Conclusion: It was implemented a successful multiplatform metabolomics approach for renal tissue analysis. Profound metabolic changes accompany CKD-associated fibrosis, some associated with tubular FAO failure. These results highlight the importance of addressing the crosstalk between metabolism and fibrosis when undertaking studies attempting to elucidate the mechanism of CKD progression.

14.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37487638

RESUMEN

Tubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFß significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.


Asunto(s)
Adenina , Riñón , Humanos , Animales , Ratones , Ritmo Circadiano , Células Epiteliales , Macrófagos
15.
STAR Protoc ; 4(1): 101999, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36607813

RESUMEN

Metabolic derangement is a key culprit in kidney pathophysiology. Organoids have emerged as a promising in vitro tool for kidney research. Here, we present a fine-tuned protocol to analyze bioenergetics in single human induced-pluripotent-stem-cell (iPSC)-derived kidney organoids using Seahorse XF96. We describe the generation of self-organized three-dimensional kidney organoids, followed by preparation of organoids for Seahorse XF96 analysis. We then detail how to carry out stress tests to determine mitochondrial and glycolytic rates in single kidney organoids.


Asunto(s)
Células Madre Pluripotentes Inducidas , Riñón Único , Humanos , Riñón Único/metabolismo , Diferenciación Celular , Riñón , Organoides , Metabolismo Energético
16.
Redox Biol ; 68: 102957, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977043

RESUMEN

Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. It is the final outcome of the acute respiratory distress syndrome (ARDS), characterized by an initial exacerbated inflammatory response, metabolic derangement and ultimate tissue scarring. A positive balance of cellular energy may result crucial for the recovery of clinical COVID-19. Hence, we asked if two key pathways involved in cellular energy generation, AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling and fatty acid oxidation (FAO) could be beneficial. We tested the drugs metformin (AMPK activator) and baicalin (CPT1A activator) in different experimental models mimicking COVID-19 associated inflammation in lung and kidney. We also studied two different cohorts of COVID-19 patients that had been previously treated with metformin. These drugs ameliorated lung damage in an ARDS animal model, while activation of AMPK/ACC signaling increased mitochondrial function and decreased TGF-ß-induced fibrosis, apoptosis and inflammation markers in lung epithelial cells. Similar results were observed with two indole derivatives, IND6 and IND8 with AMPK activating capacity. Consistently, a reduced time of hospitalization and need of intensive care was observed in COVID-19 patients previously exposed to metformin. Baicalin also mitigated the activation of pro-inflammatory bone marrow-derived macrophages (BMDMs) and reduced kidney fibrosis in two animal models of kidney injury, another key target of COVID-19. In human epithelial lung and kidney cells, both drugs improved mitochondrial function and prevented TGF-ß-induced renal epithelial cell dedifferentiation. Our results support that favoring cellular energy production through enhanced FAO may prove useful in the prevention of COVID-19-induced lung and renal damage.


Asunto(s)
COVID-19 , Metformina , Síndrome de Dificultad Respiratoria , Animales , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Riñón/metabolismo , Pulmón/metabolismo , Inflamación/tratamiento farmacológico , Factor de Crecimiento Transformador beta , Fibrosis , Ácidos Grasos
17.
Langmuir ; 28(2): 1217-21, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22149173

RESUMEN

Photoreactive surfaces derived from a new photocleavable surface modification agent and with photosensitivity in the Vis and IR region are described. A ruthenium(II) caged aminosilane, [Ru(bpy)(2)(PMe(3))(APTS)](PF(6))(2), was synthesized and attached to silica surfaces. Light irradiation removed the cage and generated surface patterns with reactive amine groups. The photosensitivity of this compound under single (460 nm) and two-photon (900) excitation is demonstrated. Functional patterns with site-selective attachment of other molecular species are described.

18.
Ann Transl Med ; 10(15): 835, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36034978

RESUMEN

Background: The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be upregulated in several solid tumors. Whether CRNDE affects osteosarcoma (OS) and its underling mechanism remains unknown. Methods: Tumor tissues and corresponding normal tissues were collected from 45 patients with OS. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was applied to determine lncRNA CRNDE level in the tissues. Participants were divided into a high CRNDE group and a low CRNDE group according to the median value of lncRNA CRNDE expression detected by in situ hybridization (ISH). The differences between high and low expression of lncRNA CRNDE in patients were compared clinically by chi-square test. Kaplan-Meier survival analysis was applied to analyze the relationship between lncRNA CRNDE expression and patient survival. Subsequently, silencing or overexpression of lncRNA CRNDE were performed in MG63 and 143B cell lines, qRT-PCR was applied to verify the expression of lncRNA CRNDE, miR-136-5p, and MRP9; dual-luciferase reporter assay was used to evaluate the targeting relationship between miR-136-5p, lncRNA CRNDE, and Cell Counting Kit-8 (CCK8), wound-healing, and Transwell assays were used to analyze for cell proliferation, migration, and invasion, respectively, and western blot was used to detect expression in cells. Results: The expression of CRNDE in OS tissues was higher than that in normal tissues. High lncRNA CRNDE expression was significantly associated with clinical stage, lung metastasis, and poor prognosis in OS patients. Additionally, overexpression of lncRNA CRNDE promoted proliferation and migration of OS cells. Bioinformatics analysis showed that lncRNA CRNDE competitively inhibited miR-136-5p through acting as a competitive endogenous RNA (ceRNA). It was also revealed that miR-136-5p is a binding target gene of lncRNA CRNDE and that MRP9 is involved in this process as a downstream target gene of miR-136-5p. Conclusions: The lncRNA CRNDE promotes the proliferation and migration of OS cells by regulating the miR-136-5p/MRP9 pathway, and lncRNA CRNDE can be a significant marker of OS prognosis.

19.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335500

RESUMEN

Epoxy resins are thermosets with interesting physicochemical properties for numerous engineering applications, and considerable efforts have been made to improve their performance by adding nanofillers to their formulations. MXenes are one of the most promising functional materials to use as nanofillers. They have attracted great interest due to their high electrical and thermal conductivity, hydrophilicity, high specific surface area and aspect ratio, and chemically active surface, compatible with a wide range of polymers. The use of MXenes as nanofillers in epoxy resins is incipient; nevertheless, the literature indicates a growing interest due to their good chemical compatibility and outstanding properties as composites, which widen the potential applications of epoxy resins. In this review, we report an overview of the recent progress in the development of MXene/epoxy nanocomposites and the contribution of nanofillers to the enhancement of properties. Particularly, their application for protective coatings (i.e., anticorrosive and friction and wear), electromagnetic-interference shielding, and composites is discussed. Finally, a discussion of the challenges in this topic is presented.

20.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501504

RESUMEN

The use of block copolymers as a sacrificial template has been demonstrated to be a powerful method for obtaining porous carbons as electrode materials in energy storage devices. In this work, a block copolymer of polystyrene and polyacrylonitrile (PS-b-PAN) has been used as a precursor to produce fibers by electrospinning and powdered carbons, showing high carbon yield (~50%) due to a low sacrificial block content (fPS ≈ 0.16). Both materials have been compared structurally (in addition to comparing their electrochemical behavior). The porous carbon fibers showed superior pore formation capability and exhibited a hierarchical porous structure, with small and large mesopores and a relatively high surface area (~492 m2/g) with a considerable quantity of O/N surface content, which translates into outstanding electrochemical performance with excellent cycle stability (close to 100% capacitance retention after 10,000 cycles) and high capacitance value (254 F/g measured at 1 A/g).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA