Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 185(7): 1189-1207.e25, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35325594

RESUMEN

Macrophage infiltration is a hallmark of solid cancers, and overall macrophage infiltration correlates with lower patient survival and resistance to therapy. Tumor-associated macrophages, however, are phenotypically and functionally heterogeneous. Specific subsets of tumor-associated macrophage might be endowed with distinct roles on cancer progression and antitumor immunity. Here, we identify a discrete population of FOLR2+ tissue-resident macrophages in healthy mammary gland and breast cancer primary tumors. FOLR2+ macrophages localize in perivascular areas in the tumor stroma, where they interact with CD8+ T cells. FOLR2+ macrophages efficiently prime effector CD8+ T cells ex vivo. The density of FOLR2+ macrophages in tumors positively correlates with better patient survival. This study highlights specific roles for tumor-associated macrophage subsets and paves the way for subset-targeted therapeutic interventions in macrophages-based cancer therapies.


Asunto(s)
Neoplasias de la Mama , Macrófagos , Mama/inmunología , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos , Femenino , Receptor 2 de Folato , Humanos , Linfocitos Infiltrantes de Tumor , Pronóstico
2.
Immunity ; 53(2): 335-352.e8, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32610077

RESUMEN

Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor ß (TGF-ß) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.


Asunto(s)
Antígenos CD1/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/citología , Células Dendríticas/inmunología , Glicoproteínas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos NOD , Factor de Crecimiento Transformador beta1/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo
3.
Nat Cell Biol ; 25(12): 1736-1745, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036749

RESUMEN

Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity1-13. Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs14. Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs)15-17. HSPCs can sense inflammatory signals from the periphery during infections18-21 or inflammatory disorders22-27. In these settings, HSPC expansion is associated with increased myeloid differentiation28,29. During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors5,30. However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues31-35. Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis36-41. Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells22,42. It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis.


Asunto(s)
Médula Ósea , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Células Madre Hematopoyéticas/metabolismo , Células Madre Multipotentes/metabolismo , Diferenciación Celular , Nicho de Células Madre , Células de la Médula Ósea
4.
Cancer Immunol Res ; 10(11): 1340-1353, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36122412

RESUMEN

TIM4 has previously been associated with antitumor immunity, yet the pattern of expression and the function of this receptor across human cancer tissues remain poorly explored. Here we combined extensive immunolabeling of human tissues with in silico analysis of pan-cancer transcriptomic data sets to explore the clinical significance of TIM4 expression. Our results unveil that TIM4 is expressed on a fraction of cavity macrophages (CATIM4+MΦ) of carcinoma patients. Moreover, we uncover a high expression of TIM4 on macrophages of the T-cell zone of the carcinoma-associated tertiary lymphoid structures (TLSTIM4+MΦ). In silico analysis of a pan-cancer data set revealed a positive correlation between TIM4 expression and markers of B cells, effector CD8+ T cells, and a 12-chemokine signature defining tertiary lymphoid structure. In addition, TLSTIM4+MΦ were enriched in cancers displaying microsatellite instability and high CD8+ T-cell infiltration, confirming their association with immune-reactive tumors. Both CATIM4+MΦ and TLSTIM4+MΦ express FOLR2, a marker of tissue-resident MΦ. However, CATIM4+MΦ had a higher expression of the immunosuppressive molecules TREM2, IL10, and TGFß as compared with TLSTIM4+MΦ. By analyzing a scRNA sequence data set of tumor-associated myeloid cells, we identified two TIM4+FOLR2+ clusters coherent with CATIM4+MΦ and TLSTIM4+MΦ. We defined specific gene signatures for each subset and found that the CATIM4+ MΦ signature was associated with worse patient survival. In contrast, TLSTIM4+MΦ gene signature positively correlates with a better prognosis. Together, these data illustrate that TIM4 marks two distinct macrophage populations with distinct phenotypes and tissue localization and that may have opposing roles in tumor immunity.


Asunto(s)
Carcinoma , Receptor 2 de Folato , Estructuras Linfoides Terciarias , Humanos , Macrófagos , Linfocitos T CD8-positivos , Quimiocinas/metabolismo , Carcinoma/metabolismo , Receptor 2 de Folato/metabolismo
5.
Front Immunol ; 12: 690201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220848

RESUMEN

Ovarian carcinomas (OCs) are poorly immunogenic and immune checkpoint inhibitors (ICIs) have offered a modest benefit. In this study, high CD3+ T-cells and CD163+ tumor-associated macrophages (TAMs) densities identify a subgroup of immune infiltrated high-grade serous carcinomas (HGSCs) with better outcomes and superior response to platinum-based therapies. On the contrary, in most clear cell carcinomas (CCCs) showing poor prognosis and refractory to platinum, a high TAM density is associated with low T cell frequency. Immune infiltrated HGSC are characterized by the 30-genes signature (OC-IS30) covering immune activation and IFNγ polarization and predicting good prognosis (n = 312, TCGA). Immune infiltrated HGSC contain CXCL10 producing M1-type TAM (IRF1+pSTAT1Y701+) in close proximity to T-cells. A fraction of these M1-type TAM also co-expresses TREM2. M1-polarized TAM were barely detectable in T-cell poor CCC, but identifiable across various immunogenic human cancers. Single cell RNA sequencing data confirm the existence of a tumor-infiltrating CXCL10+IRF1+STAT1+ M1-type TAM overexpressing antigen processing and presentation gene programs. Overall, this study highlights the clinical relevance of the CXCL10+IRF1+STAT1+ macrophage subset as biomarker for intratumoral T-cell activation and therefore offers a new tool to select patients more likely to respond to T-cell or macrophage-targeted immunotherapies.


Asunto(s)
Carcinoma/metabolismo , Quimiocina CXCL10/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Quísticas, Mucinosas y Serosas/metabolismo , Neoplasias Ováricas/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Anciano , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Complejo CD3/metabolismo , Carcinoma/tratamiento farmacológico , Carcinoma/genética , Carcinoma/inmunología , Células Cultivadas , Quimiocina CXCL10/genética , Resistencia a Antineoplásicos , Femenino , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Neoplasias Quísticas, Mucinosas y Serosas/tratamiento farmacológico , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Quísticas, Mucinosas y Serosas/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Fenotipo , Pronóstico , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Macrófagos Asociados a Tumores/inmunología
6.
Nat Commun ; 11(1): 2054, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345968

RESUMEN

Classical dendritic cells (cDCs) are rare sentinel cells specialized in the regulation of adaptive immunity. Modeling cDC development is crucial to study cDCs and harness their therapeutic potential. Here we address whether cDCs could differentiate in response to trophic cues delivered by mesenchymal components of the hematopoietic niche. We find that mesenchymal stromal cells engineered to express membrane-bound FLT3L and stem cell factor (SCF) together with CXCL12 induce the specification of human cDCs from CD34+ hematopoietic stem and progenitor cells (HSPCs). Engraftment of engineered mesenchymal stromal cells (eMSCs) together with CD34+ HSPCs creates an in vivo synthetic niche in the dermis of immunodeficient mice driving the differentiation of cDCs and CD123+AXL+CD327+ pre/AS-DCs. cDC2s generated in vivo display higher levels of resemblance with human blood cDCs unattained by in vitro-generated subsets. Altogether, eMSCs provide a unique platform recapitulating the full spectrum of cDC subsets enabling their functional characterization in vivo.


Asunto(s)
Células Dendríticas/citología , Nicho de Células Madre , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Quimiocina CXCL12/farmacología , Análisis por Conglomerados , Colágeno/farmacología , Células Dendríticas/efectos de los fármacos , Combinación de Medicamentos , Humanos , Laminina/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Organoides/efectos de los fármacos , Organoides/metabolismo , Proteoglicanos/farmacología , Nicho de Células Madre/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA